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This paper is a synthesis of previously published material on the topic. We show that an
adequate mathematical model for the physical (i.e., perceptible and therefore past) reality
must be finite. A finite approach to past proper time is given. Proper time turns out to be
proportional to the sum of the return probabilities of a Bernoulli random walk.

2000 Mathematics Subject Classification: 81P15, 81Q99, 60G50, 83A05, 93C99.

1. Introduction. Every physical measurement needs a finite, different-from-zero

measurement time and provides information in the form of the choice of a measure-

ment result from all possible measurement results. If infinitely many (different) mea-

surement results would be possible, the choice of a measurement result could deliver

an infinite quantity of information. But the results of physical measurements (of finite

duration) never deliver an infinite quantity of information; they describe past, finite

reality. Therefore, the set of all possible measurement results is a priori finite. In the

physical reality, only a finite information quantity can be processed within a finite time

interval. For mathematical models whose representation requires a processing of an

infinite quantity of information, for example, irrational numbers, no (exact) equivalent

exists in the physical reality. So, mathematical calculations, which have an equivalent

in physical reality, can include only rational (finitely many elementary) combinations

of rational numbers. Conclusions arise from this for the foundations of mathematical

physics.

1.1. On the finite information content of the physically existing reality. In the

nineteenth century, it was usual to assume a continuous behavior of physical nature

and to use for its description continuous functions with continuous sets as a domain of

definition and as a range of values. These sets a priori contain infinitely many elements.

Also the axioms of set theory permit the a priori existence of infinite sets and choice

functions on those sets. These axioms were formulated in 1900 and led to several para-

doxes (antinomies) from the beginning, which led to a discussion on the foundations

of mathematics [8, 13, 14, 38, 39, 40], which also deals with the concept of existence

(see below). There were suggestions for different attempts to moderate the difficulties

[4, 36, 37]. But a limitation of mathematical liberty remained so that the majority of

mathematicians keeps to axioms which demand the a priori existence of infinite sets.

This is surely also because of the noteworthy successes of analytical approaches in the

description of natural processes. So it is explainable that, in mathematical physics, the
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analytical work with infinite continuous number sets became a not scrutinized self-

evident fact (besides exceptions like [16, 17, 18, 19]), despite the mentioned open dis-

cussion on the foundations of mathematics and despite the discovery of quantization

of physical measurement results at the beginning of the twentieth century. It has been

a good opportunity for drawing conclusions with regard to the foundations of math-

ematical physics, but “the moment was lost” [17, page 15]. We know that a (nonzero)

quantity which exists in the physical meaning (which is perceptible) is already past and

thus by definition fixed and naturally restricted, that is, it cannot be infinitely small or

infinitely large. Concerning the physically existing reality (physical reality), a scientific

consensus is possible. Even Hilbert concluded the following result [14, page 165]: “now

we have established the finiteness of the reality in two directions: to the infinite small

and to the infinite large.”

In Section 1, which contains large parts of [31], it is shown that the finite informa-

tion quantity of every measurement result is closely connected with the quantization

and even with the finiteness of the set of all possible measurement results. So, for

continuous number sets, no equivalent can exist in physical reality.

1.2. Finite information from physical measurement results

1.2.1. Information from choices within sets. Sets can be created by the subdivision

of a totality into several components or elements. During the creation of a set, the

choice of a sequence of elements or subsets is possible. Both the choice and the order

of choices contain information. Every perception or every physical measurement pro-

vides information in the form of the choice of a measurement result from all possible

measurement results.

1.2.2. Quantum physical aspects. The quantum mechanical discoveries at the be-

ginning of the twentieth century have shown reductions of measuring precision as a

matter of principle. Location and impulse of a particle, for example, are never simul-

taneously measurable with arbitrary precision. In the end, this is a consequence of the

effect quantization, that is, the fact that only the effect differences are measurable,

which are multiples of the half effect quantum �/2.

Reasons for continuous approaches. For a long time, this quantization has

been undiscovered because such small effect differences are not relevant in the case of

usual macroscopic measurements: the systems to be measured are often in a complex

way composed of many parts whose mutual interaction and whose interaction with the

surroundings are not exactly known. For that reason, there are many possibilities of

uncontrolled influence on the measurement result so that its variance is so great that

effect differences in the order of � have no significant influence on the measurement

result. Therefore, in case of macroscopic considerations, it is justified to assume � as

negligibly small and to use analytical concepts.

Finite information from measurement results. In atomic and subatomic

physics, the quantization of the effect becomes evident [26, page 47] and it is also

very important from the information-theoretic point of view. Every information trans-

mission means the transfer of free energy from a transmitter to a receiver. In case of
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a physical measurement, the receiver consists of one or several sensors of the mea-

surement equipment. (If the absorption of energy at an object should be measured,

the measurement is done indirectly: initially the measurement equipment sends out

free energy which, after interaction with the object, is received again by sensors of the

measurement equipment, from which the measurement information results.)

During measuring, energy is transferred by photons to rest mass in the sensors. The

more energy is necessary, the shorter the measurement time is. If the measurement

time is tm <∞, then every photon at least transfers the energy �/tm. Since the avail-

able free energy is finite, only a finite number of photons are transferable to the sensors

within the measurement time. Energy quantities whose difference is less than �/tm, in

principle, are not distinguishable [26, page 129], that is, every photon has only finitely

many distinguishable possibilities for influencing the measurement equipment, respec-

tively, the measurement result. Due to the finite number of sensors in which photons

are absorbed, only a finite number of measurement results are possible. It is well known

that this restriction is a matter of principle; it is also valid in case of an ideal, maximal

exact measurement. So, every measurement result is a choice from an a priori finite

set and so it has only finite information content. Of course, another statement would

contradict any everyday experience which shows that the complete information of all

measurement results known by us is finite, it corresponds to the finite information

quantity which can be known by us up to some fixed time.

For clarification, the reasoning now will be specified more precisely by information-

theoretic argumentation. Readers who are familiar with the possible pathologies of con-

tinuous probability distributions may skip Section 1.2.3 and the beginning of Section

1.2.4, and continue with Section 1.3.

1.2.3. Information and entropy. Every measurement is an experiment whose result

is the measurement result. LetH(β) denote the entropy of an experimentβ, which quan-

tifies its uncertainty (the introduced entropy concept is closely connected to the one

of thermodynamics, cf. [32] and especially [5]). If J is a set of indices, M := {Ak : k∈ J}
is the set of all results of the experiment β, and p(Ak) are their probabilities, then the

entropy H(β) is defined by

H(β) :=−
∑
k∈J
p
(
Ak
)
log2p

(
Ak
)

(1.1)

(cf. [15, page 59]). The entropyH(β) is nonnegative because log2p(Ak)≤ 0. IfH(β)= 0,

the result of the experiment β is known in advance. A larger or smaller value of H(β)
corresponds to a larger or smaller uncertainty of the result. Now, letα be an experiment

which precedes β. The result of α can limit the number of possible results of β and so it

reduces its uncertainty, respectively, the entropyH(β). The entropy of β after execution

of α is called conditional entropy and we write it as Hα(β). If β is independent of α, the

realization of α does not reduce the entropy of β, that is, Hα(β) = H(β). If the result

of α completely determines the result of β, the conditional entropy Hα(β) is zero. The

difference

I(α,β) :=H(β)−Hα(β) (1.2)
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is called the quantity of information contained in the result of α about the result of

β, or in short the information contained in α about β (cf. [15, page 86]). It shows how

much the realization of α reduces the uncertainty of β and how much we learn from

the result of α about the result of β.

Entropy of physical experiments. Usually, the result of a physical experiment

is represented by a vector (if necessary, a multidimensional vector), whose components

are real numbers. Because the real numbers form a continuous ordered set, which

(equipped with a metric) is a Hausdorff space, such representation implies infinitely

many different possibilities for the result of the experiment. So, in (1.1), the defined

entropy cannot have a finite value [15, page 92].

Without restriction of generality, we clarify this by an example of a physical exper-

iment β, whose result is a one-dimensional quantity which is represented by a real

number x ≥ 0 (multiplied by a unit), for example, a length. We assume that x is finite,

that is, there is a number s so that s > x ≥ 0 holds. For a given set M ⊂ R, we write

p(M) for the probability that the result is contained in M .

We now suppose a continuous probability distribution of possible results within the

interval [0,s[. We can always find two numbers a,b ∈ [0,s[ with a < b and 1/e >
p([a,b[) > 0. The interval [a,b[⊂ [0,s[ can be so small that the probability is dis-

tributed nearly equally within it. Then we can assume that for all n ∈ N\{0} and

k∈ {1, . . . ,n} the probability for the intervals

Jk :=
[
a+(k−1)

b−a
n
,a+kb−a

n

[
(1.3)

is nearly equal, that is, p(Jk)≈ p([a,b[)/n, and with ε := p([a,b[)/2, particularly,

0<
ε
n
= p

(
[a,b[

)
2n

<p
(
Jk
)

(1.4)

holds. The function f :]0,∞[→ R, x → −x log2x, is strictly increasing in ]0,1/e[ and

p(Jk)∈]0,1/e[. From this and (1.1), for the entropy H(β) of the experiment, it follows

that

H(β)≥
n∑
k=1

(−p(Jk) log2p
(
Jk
))

>
n∑
k=1

(
− ε
n

log2
ε
n

)
=−ε log2

ε
n
= ε( log2n− log2 ε

)
.

(1.5)

Since n can be arbitrarily large, we cannot get a finite value for the entropy H(β) of

the experiment β. Such situation always arises if we start out the assumption that a

continuous set of numbers represents the set of possible results of an experiment (cf.

also [15, page 93]). After execution of β, a number (the measurement result) x ∈ [0,s[
has probability 1, while all other numbers have probability 0, so that the conditional
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entropy Hβ(β) of β is Hβ(β)= p(x) log2p(x)= 1log2 1= 0. Insertion of this into (1.2)

gives the information quantity which we receive from the execution of the experiment β:

I(β,β)=H(β)−Hβ(β)=H(β)−0=H(β). (1.6)

From this and (1.5), it follows that both H(β) and I(β,β) are not finite. In a nutshell,

the measurement result (of the experiment β) has infinite information quantity.

But all experiences from (finite) past have shown that measurement results (results

of experiments with finite duration) always have only finite information quantity.

1.2.4. Finite information and finite measuring accuracy. Usually, one says that

the reason for finite information of experimental results is finite measuring accuracy

(which can also be a matter of principle because of quantum physical reasons, resp.,

indetermination).

A physically possible experiment (which is always feasible within finite time) is not

the above-mentioned experiment β whose result is a number x ∈ [0,s[, but is at best

an experiment α with finite measuring accuracy δ > 0 whose result is an interval [xα−
δ,xα+δ[⊂ [0,s], so that the result x of the experiment β lies within this interval with

great probability. After using some simplifications, it can be shown that the result of α
contains only finite information (cf. [15, page 92]), that is, the experimentα is physically

possible.

The concept of “measuring accuracy” must have a basis. The problem of

this reasoning is the usage of the term result x of the experiment β. This x ∈ [0,s[ is

the result of an experiment which is not physically feasible, not even in the potential

sense. Terms which never have an equivalent in physical reality are used. So the basis

for the argumentation is missing.

This problem always occurs when one speaks about an experimental result repre-

sented by a selection from an infinite set of possible results, for instance, in the form

of a number from a continuum. In this case, the entropy and the gain of information

(1.6) are not finite. So the experiment is not feasible within finite time, that is, it is

not physically possible. Therefore, the conclusion in Section 1.2.2 can be found also

in purely information theoretical way. We must consider that also the duration of the

experiment contains information, and so there are also only finitely many possibilities

for the duration.

1.3. The finiteness of the set of possible measurement results. We summarize the

above results in the following theorem.

Theorem 1.1. Let β denote a physical experiment (which is completed after finite

time). Then there are only finitely many possibilities for the duration and for the results

of β. Each result represents the choice from an a priori only finite set of possible results.

From this we can easily deduce useful conclusions for physical calculations.

1.3.1. Indexing experimental results. For instance, an index (if necessary, multi-

dimensional) over all possible experimental results is possible and the sequence of
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the index is freely selectable (among others due to topological criteria or information-

theoretic coding depth). The simplest possibility is a one-dimensional index. IfM is the

set of all possible (different) results of a physical experiment (an experiment of finite

duration), we can writeM in the formM = {y1,y2, . . . ,y|M|}, in which yk can be vectors

which, respectively, represent an experimental result.

Example of a symmetrical index. It is often useful to consider symmetries. One

can choose the index symmetrically to a single experimental result or a couple of ex-

perimental results and represent the set M of all possible experimental results yk in

the following form:

M = {y−|M|+1,y−|M|+3, . . . ,y−2,y0,y2, . . . ,y|M|−3,y|M|−1
}

(1.7)

if |M| is odd, and

M = {y−|M|+1,y−|M|+3, . . . ,y−1,y1, . . . ,y|M|−3,y|M|−1
}

(1.8)

if |M| is even.

1.3.2. Finiteness of realistic physical calculations. If an estimation of possible re-

sults of a physical experiment should be given, one has to consider that the information

quantity of both the initial data and every possible experimental result is finite. So, with

the help of a mathematical model from the initial data, a probability distribution over a

finite set of possible experimental results has to be calculated. Particularly, each exper-

imental result, respectively, each equivalent result of a calculation, contains only finite

information. So there is a possibility to calculate the result exactly from the initial data

using only a finite number of elementary steps. We specify this now in a more precise

way.

Definition 1.2 (elementary combination). All permitted combinations of rational

numbers by one of the four basic arithmetic operations (i.e., addition, subtraction, mul-

tiplication, division) are called elementary combinations.

So, for a,b ∈Q, there are exactly the elementary combinations a+b = b+a, a−b,b−
a, ab = ba, a/b,b/a; in the last two cases, b �= 0, a �= 0, respectively, are presupposed.

We know that for each elementary combination within finite time an exact equivalent

can exist in the physical reality (e.g., in the form of a finite sequence of binary decisions).

Chaining elementary combinations. Now, for n∈N, a∈Q\{0}, we denote by

Mn(a) the set of all numbers which can be formed from a by chaining n elementary

combinations. If n∈N is a predefined (finite) number, then |Mn(a)| is finite. In the re-

verse case, if n is selectable subsequently and arbitrary large, there is no upper bound

for |Mn(a)|. The initial data of a physical experiment (of finite duration) represent the

choice from a finite number of possible initial data (because of their finite informa-

tion content); likewise, the end data and the experimental result, respectively. If the

initial data are represented as numbers which are not all equal to 0, we can get an infi-

nite number of possible results if we can combine them by infinitely many elementary
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combinations. But, a priori, we know that in case of a physical experiment (i.e., after

predefined maximal time for the experiment), only a finite number of different possibil-

ities of experimental results and only a finite number of equivalent arithmetical results

are possible. So, for a mathematical calculation which is conformal to physical reality,

there is an upper bound ñ∈N for the count n of used elementary combinations to get

the result. Particularly, all numbers representing experimental results are values of ra-

tional functions of the initial data. Since the initial data are also results of experiments

with finite duration, we can start out the assumption that the numbers which represent

these data are rational if their units are chosen in a simple way, which we will assume

subsequently. (This means that the definition is done without analytical models and no

irrational number factors are contained in them. We, otherwise, have to admit numbers

from a finite field extension of Q.)

So, mathematical calculations which have an equivalent in physical reality can in-

clude only rational (finitely many elementary) combinations of rational numbers. At

this, we know, because of quantum physical results, that, as a rule, the end data are

not determined by the initial data, that is, they do not contain enough information for

determination. So, the result of the calculation will be a probability distribution of pos-

sible results. Each of them is calculated from the initial data by a finite sequence of

elementary combinations. The choice of a certain sequence is done during the experi-

ment by a finite number of decisions so that the probability for a certain sequence is

also a rational number. We summarize this in the following theorem.

Theorem 1.3. Let x ∈Ql denote the l-dimensional vector of the initial data of a phys-

ical experiment (with a given finite duration). There are only finitely many different possi-

bilities for the experimental result. If yj , j ∈ {1,2, . . . ,n}, are the possiblem-dimensional

result vectors with the probabilities pj , both yj and pj result from x by a finite number

of elementary combinations. Particularly, they are results of rational functions of x.

So, one way to a better understanding of the physical nature is the study of rational

functions; for example, finite partial sums of power series whose results lie close to the

results of analytical functions which are frequently used in the mathematical physics.

The next section shows an example of this.

2. A discrete and finite approach to past proper time. The function γ(x)=1/
√

1−x2

plays an important role in the mathematical physics, for example, as a factor for rel-

ativistic time dilation in case of x = β with β = v/c or β = pc/E. Due to the above

considerations, it is reasonable to study the power series expansion of γ(x). In this

section, its relationship with the binomial distribution is shown, especially the fact

that the summands of the power series correspond to the return probabilities to the

starting point (local coordinates, configuration, or state) of a Bernoulli random walk.

So, γ(x), and with that also proper time, is proportional to the sum of the return prob-

abilities of a Bernoulli random walk. In case of x = 1 or v = c, the random walk is

symmetric. Random walks with absorbing barriers are introduced in the appendix. In

Section 2, which contains large parts of [29], essentially the basic mathematical facts

are shown and references are given, most interpretation is left to the reader.
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2.1. Motivation. From Section 1, we know that the (measurable) result data vector

of a physical experiment (with finite duration) can be calculated from the (measurable)

initial data vector by combining a finite number of basic arithmetic operations. This

does not contradict the fact that many analytical functions with infinite power series

expansions can successfully predict (approximative) experimental results: they are only

successful in the case of convergence, that is, in the case of convergence of the partial

sum sequence of the corresponding power series expansion. We can choose an arbitrary

long but finite partial sum, calculating it by finitely many basic arithmetic operations

and the result is arbitrarily near to the value of the infinite power series (which is

the value of the corresponding function). So there can always be an exact partial sum

and an approximative function result without a chance for experimental distinction.

However, the study of partial sums is the possibility to learn more about the nature of

the underlying (finite) physical process—even in the case of missing convergence. Here,

we study the function

γ :]−1,1[ �→R, γ(x)= 1√
1−x2

, (2.1)

which is frequently used in the mathematical physics, for example, as a factor for rel-

ativistic time dilation in case of x = β with β = v/c or β = pc/E. We investigate the

power series representation of γ(x) and show its relationship with the binomial dis-

tribution, which plays an important role in nature, often in a complex way, compare

[1, 2, 3, 9, 10, 12, 21, 22, 25, 27, 28, 33, 35]. Recall the close connection between rela-

tivistic mass increase and time dilation, especially when reading [3], in which concrete

physical relevance of finite partial sums (of the power series expansion of 1/
√

1− x̂) is

shown. In the appendix, we also consider 1/γ(x).

2.2. The connection of proper time and return probabilities

2.2.1. The binomial series. In case α∈ Z∗ = {j ∈ Z | j ≥ 0}, the function

f̂α : C �→ C, f̂α(z)= (1+z)α, (2.2)

has a finite power series expansion of the form

f̂α(z)= 1+
(
α
1

)
zl+

(
α
2

)
z2+···+

(
α
α

)
zα =

α∑
l=0

(
α
l

)
zl, (2.3)

in which
(
α
l

)
are the binomial coefficients which are defined by

(
α
0

)
= 1,

(
α
l

)
= α(α−1)(α−2)···(α−l+1)

l!
for l∈ Z∗\{0}. (2.4)

In case α ∈ C\Z∗ and |z| < 1, we can develop the function f̂α(z) = (1+ z)α into a

convergent MacLaurin series [11, 20, 23, 24]. If fα(z) denotes the principal value of

f̂α(z), which is equal to 1 at z = 0, we obtain

fα(0)= 1, f ′α(0)=α, f ′′α (0)=α(α−1), . . . ,f (l)α =
(
α
l

)
l!, (2.5)
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from which the representation of fα(z) as binomial series: follows

fα(z)=
∞∑
l=0

(
α
l

)
zl. (2.6)

2.2.2. The power series of γ(x)= 1/
√

1−x2. Since 1/
√

1+z = f−1/2(z), we get with

(2.4) and (2.6),

1√
1+z =

∞∑
l=0


−

1
2
l


zl

= 1+ −1/2
1
z1+ (−1/2)·(−3/2)

1·2 z2+ (−1/2)·(−3/2)·(−5/2)
1·2·3 z3

+ (−1/2)·(−3/2)·(−5/2)·(−7/2)
1·2·3·4 z4+···

= 1− 1
21 ·1!

z1+ 1·3
22 ·2!

z2− 1·3·5
23 ·3!

z3+ 1·3·5·7
24 ·4!

z4−···

= 1− 2!(
21 ·1!

)2 z
1+ 4!(

22 ·2!
)2 z

2− 6!(
23 ·3!

)2 z
3+ 8!(

24 ·4!
)2 z

4−···

=
∞∑
l=0

(−1)l
(2l)!(
2l ·l!)2 z

l

=
∞∑
l=0

(
2l
l

)(
− z

4

)l
,

(2.7)

and after the substitution of z by −x2,

γ(x)= 1√
1−x2

=
∞∑
l=0

(
2l
l

)(
x
2

)2l
. (2.8)

2.2.3. Bernoulli random walk. A Bernoulli random walk is a stochastic process gen-

erated by a sequence of Bernoulli trials, that is, independent trials, each of which can

have only two results; for example, “positive” (with probability p) or “negative” (with

probability 1−p) [6, 7, 34]. It can be interpreted as a model for the movement of a par-

ticle in a one-dimensional discrete state space and may be described in the following

terms: the particle moves “randomly” along a line over a lattice of equidistant points

(states), which are indexed by an integer coordinate k. With every trial, the particle

makes a step from point k to point k+1 with a given probability p (positive direction)

or a step from point k to point k−1 with a probability 1−p (negative direction).

For n ∈ {1,2,3, . . .}, we denote by Q0P(n,k,p) the probability that the particle is at

point k after the nth step, and byQ0P(0,k,p) the same probability but before the first

step. We assume the starting point of the movement at k = 0, so Q0P(0,0,p) = 1 and

Q0P(0,k,p)= 0 for k≠ 0, and furthermore,

Q0P(n+1,k,p)= pQ0P(n,k−1,p)+(1−p)Q0P(n,k+1,p). (2.9)
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When making n trials, only the point k is within reach if n−k and n+k are nonneg-

ative even numbers. We will presuppose this subsequently. There are exactly
(

n
(n+k/2)

)
ways with n+k/2 steps in positive direction and n−k/2 steps in negative direction,

which lead to point k after the nth step. They, respectively, have the probability (1−
p)(n−k)/2p(n+k)/2. So the chaining of these Bernoulli trials results in the binomial dis-

tribution

Q0P(n,k,p)=

 n
n+k

2


p(n+k)/2(1−p)(n−k)/2. (2.10)

We now look at the probabilities of returning to the starting point. Because the move-

ment started at k= 0, these probabilities correspond to

Q0P(2n,0,p)=
(

2n
n

)
(1−p)npn, (2.11)

that is, Q0P(2n,0,p) is the return probability after the 2nth step (return is only pos-

sible after an even number of steps). Substitution of p by (1−√1−x2)/2 or (1+√
1−x2)/2 yields

Q0P
(

2n,0,
1−√1−x2

2

)
=Q0P

(
2n,0,

1+√1−x2

2

)

=
(

2n
n

)(
1−√1−x2

2
1+√1−x2

2

)n

=
(

2n
n

)(
x2

4

)n
=
(

2n
n

)(
x
2

)2n
,

(2.12)

and by (2.8), we obtain

γ(x)= 1√
1−x2

=
∞∑
n=0

Q0P
(

2n,0,
1−√1−x2

2

)

=
∞∑
n=0

Q0P
(

2n,0,
1+√1−x2

2

)
.

(2.13)

Note that the condition

p ∈
{

1−√1−x2

2
,
1+√1−x2

2

}
(2.14)

is equivalent to

4p(1−p)= x2. (2.15)

Before we continue, we should remember that the function γ(x) cannot have an

exact equivalent in physical (past) reality because the sums in (2.13) are not finite.

Furthermore, the values Q0P(2n,0,p) are probabilities, and every expectation value
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calculated from a probability has only an average, approximative meaning. Therefore,

we presuppose that the random walk contains a sufficiently large number of steps, so

that there can be an equivalent to finite partial sums of both sums in (2.13) sufficiently

close to γ(x), so that the reliability of the expectation value calculated from it is so

great that the difference between the individual (discrete) measurement result and the

calculated value is not significant.

We can summarize the proportionality of proper time to the sum of the return prob-

abilities in the following theorem.

Theorem 2.1. Let γ(x)= 1/
√

1−x2 represent the (approximative) time dilation fac-

tor of reference system A relative to reference system B (it can be assumed that x = v/c
if B is moving with velocity v relative to A in flat space-time). Then proper time of A

relative to B is (approximatively) proportional to the sum of the return probabilities to

the starting point of a Bernoulli random walk, in which each step is directed from point

k to k+1 with probability p and from point k to k−1 with probability 1−p. At this

4p(1−p)= x2 holds.

Every point can represent a state in a one-dimensional discrete state space and k can

represent the integer index to it. The reversal of the order of the index is possible and

has the same effect as exchanging the probabilities p and 1−p.

2.2.4. Case x = 1, respectively, v = c. In many physical situations, x = 1, especially

if x = v/c and v = c, is the velocity of light, respectively, photons. (Because v = c
is the maximal speed of information transport, this case is also important from the

information-theoretic point of view). So the case x = 1 is extremely frequent. We are

now able to give an explanation for this.

Equation (2.15) shows that x = 1 corresponds to p = 1−p = 1/2, that is, the proba-

bilities p and 1−p of positive and negative step directions are equal. Now, the reason

for x = 1, respectively, v = c, for photons becomes clear. Only in case v = c, both

directions have the same chance. Nature a priori makes no preferences.

Symmetric random walk. In case x = 1, because p = 1−p = 1/2, the random

walk is symmetric. The accompanying probabilities are

Q0(n,k) :=Q0P
(
n,k,

1
2

)
=

 n
n+k

2



(

1
2

)n
. (2.16)

The first values of Q0(n,k) are shown in Table 2.1.

Finite random walk—finite partial sum γ2n(x) of γ(x). Now we again con-

sider γ(x). In case x = 1, the series (2.13) does not converge, that is, the infinite sum

does not even have an approximative result. But, anyway, we know that an infinite sum

cannot have an equivalent in physical reality. So, it is only consequent to consider the

finite partial sums

γ2n(x) :=
n∑
m=0

Q0P
(

2m,0,
1+√1−x2

2

)
(2.17)
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Table 2.1. The first values of Q0(n,k). The representation is chosen in a
way that the well-known Pascal triangle gets visible. The number in row n
and column k represents the number of ways which lead to point k after the
nth step. Multiplication by the factor 2−n yields Q0(n,k). The last column
contains these factors. In every row n the number of ways which lead back to
the origin after n steps is underlined. Multiplication by 2−n yields the return
probability Q0(n,0).

k
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

n

0 1 ·20

1 1 1 ·2−1

2 1 2 1 ·2−2

3 1 3 3 1 ·2−3

4 1 4 6 4 1 ·2−4

5 1 5 10 10 5 1 ·2−5

6 1 6 15 20 15 6 1 ·2−6

...

of (2.13). By definition γ∞(x)= γ(x), additionally for every (finite) integer n,

γ2n(1)= γn(−1)=
n∑
m=0

Q0P
(

2m,0,
1
2

)
=

n∑
m=0

Q0(2m,0) (2.18)

also exists. It is not difficult to find a closed form for the last sum in (2.18). From

(2n−1)Q0(2n−2,0)+Q0(2n,0)

= (2n−1)
(2n−2)!

22n−2(n−1)!2
+ (2n)!

22nn!2

= 2n(2n)!
(2n)222n−2(n−1)!2

+ (2n)!
22nn!2

= 2n(2n)!
n222n(n−1)!2

+ (2n)!
22nn!2

= 2n(2n)!
22nn!2

+ (2n)!
22nn!2

= (2n+1)
(2n)!

22nn!2

= (2n+1)Q0(2n,0),

(2.19)

it follows, by induction, that

n∑
m=0

Q0(2m,0)= (2n+1)Q0(2n,0), (2.20)
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and by (2.18),

γ2n(1)= (2n+1)Q0(2n,0)

= (2n+1)
(

2n
n

)(
1
2

)2n
= (2n+1)

(2n)!
22nn!2

.
(2.21)

In the case of large n, we can use the Stirling formula n ≈ nne−n√2πn and obtain

Q0(2n,0) ≈ 1/
√
πn and γ2n(1) ≈

√
4n/π . So we have got a closed form for the sum

(2.18) of the return probabilities. The results are finite even in the case ofx = 1 (orv = c)
because we assumed only a finite number 2n of steps. Obviously, this assumption is

adequate for all natural processes with finite duration.

Comment. The model of a one-dimensional random walk has only limited validity.

Extensive considerations should take into account the interactions between different

reference systems and changes of the observer’s reference system. Up to now, we do not

know enough about the exact ways of information between different reference systems

and the long-term relation of their proper time. (Example: squared values like γ2n(1)2 ≈
4n/π or ζ2n(1)2 ≈ 1/πn (cf. (C.5)) can appear because of bidirectional information

exchange during observation. We have seen in Section 1 that the familiar macroscopic

geometrical appearance is not a primary thing, it is only a consequence of a discrete

law. The above considerations suggest an information-theoretic approach to this law.)

Further research, especially combinatorial and graph-theoretic research (considering,

e.g., branching loops), is necessary. The appendix demonstrates an example for possible

connections of multiple random walks and [30] contains an example which starts out

from the vacuum Maxwell equations.

Appendix

We now introduce the absorbing barriers which are drains and can be sources of new

random walks with steps in another orthogonal direction. Then we show that in the

case of an absorbing barrier in the origin after the start of the walk (and, otherwise,

under the same basic conditions as in Theorem 2.1), the probability of nonabsorption is

equivalent to 1/γ(x)=√1−x2. At last, we investigate finite symmetric random walks

with absorbing barriers.

A. Absorbing barriers. A Bernoulli random walk can have absorbing barriers. If

there is an absorbing barrier at a point a and the walking particle reaches it, the particle

is absorbed. So the point a is only a drain but is not a (direct) source for further walks

within the same dimension (it can be a source of a walk in another dimension). We can

get the resulting probability distribution by the subtraction of a “shifted” distribution

from (2.10): we assume an absorbing barrier at a> 0. We define

Pa(n,k,p) :=Q0P(n,k,p)−
(
p

1−p
)a
Q0P(n,k−2a,p), (A.1)
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from which

Pa(n+1,k,p)= pPa(n,k−1,p)+(1−p)Pa(n,k+1,p) (A.2)

follows, that is, the inductive law (2.9) of a Bernoulli random walk holds. Additionally,

the boundary condition Pa(n,a,p) = 0 is fulfilled so that the point a is only a drain

but not a source. Therefore, Pa(n,k,p) represents in case k≤ a the probability that the

particle passes point k and continues moving. The points k > a are not within reach

for the particle starting at k < a.

In case k > a, Pa(n,k,p) is negative. In the case of a simultaneous walk of two parti-

cles with starting points 0 and 2a, in which the particle starting at 2a is the annihilating

counterpart of the other starting at 0, for k > a, the absolute value |Pa(n,k,p)| can be

interpreted as probability that the annihilating counterpart passes point k if both par-

ticles make simultaneous steps in opposite directions. If this is not guaranteed, there

is a chance that a particle passes the barrier.

Random walk with delayed absorbing barrier at k = 0. The starting coor-

dinate k = 0 plays a special role and it is reasonable to assume an absorbing barrier

there also because of symmetry. But if this barrier is active from the beginning, the par-

ticle is absorbed at once so that the walk cannot begin and (A.1) has the meaningless

result P0(n,k,p) =Q0P(n,k,p)−Q0P(n,k,p) = 0. However, if there is an absorption

at k= 0 after the walk has already started, we get a distribution which is worth further

consideration. So we assume a delayed absorbing barrier at k = 0 which is activated

after the completion of the first step of the walk. The resulting probability distribution

is given by the absolute values of

Q1P(n,k,p) := (1−p)Q0P(n−1,k+1,p)−pQ0P(n−1,k−1,p) (A.3)

which is a modification of (A.1) because Q1P(n,k,p) = (1−p)P1(n−1,k+1,p). An

absorbing barrier at a = 1 is within reach and therefore active only from the second

step on. The function Q1P(n,k,p) is so defined that its symmetry center k = 0 lies in

this barrier. It fulfills the boundary conditions

∣∣Q1P(0,0,p)
∣∣= 1, Q1P(2n,0,p)= 0 for n≥ 1, (A.4)

and the same inductive law asQ0P in (2.9). Forn≥ 1, a more compact form ofQ1P(n,k,
p) is

Q1P(n,k,p)= −k
n
Q0P(n,k,p) (A.5)
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because

Q1P(n,k,p)

= (1−p)Q0P(n−1,k+1,p)−pQ0P(n−1,k−1,p)

= p
(n+k)/2(1−p)(n−k)/2(n−1)!(
(n+k)/2)!((n−k)/2−1

)
!
− p

(n+k)/2(1−p)(n−k)/2(n−1)!(
(n+k)/2−1

)
!
(
(n−k)/2)!

=
(
n−k
2n

)
p(n+k)/2(1−p)(n−k)/2n!(
(n+k)/2)!((n−k)/2)! −

(
n+k
2n

)
p(n+k)/2(1−p)(n−k)/2n!(
(n+k)/2)!((n−k)/2)!

=
(−k
n

)
p(n+k)/2(1−p)(n−k)/2n!(
(n+k)/2)!((n−k)/2)! =

−k
n
Q0P(n,k,p).

(A.6)

Past differences. Equation (A.3) has a similarity to a finite difference along k.

It represents the probability difference of the two ways coming from past. Therefore,

we will call the accompanying operator past difference and use the symbol ∆̂ for it.

If ψ is a function of the variables n, k, and p, defined at least at (n−1,k+1,p) and

(n−1,k−1,p), its past difference is

∆̂ψ(n,k,p)= (1−p)ψ(n−1,k+1,p)−pψ(n−1,k−1,p). (A.7)

Similar to the usual finite differences, we can form higher-order past differences; for

example, the second-order past difference

Q2P(n,k,p) := ∆̂2Q0P(n,k,p)= ∆̂∆̂Q0P(n,k,p)

= (1−p)∆̂Q0P(n−1,k+1,p)−p∆̂Q0P(n−1,k−1,p)

= (1−p)2Q0P(n−2,k+2,p)+p2Q0P(n−2,k−2,p)

−2p(1−p)Q0P(n−2,k,p).

(A.8)

For n≥ 2, we obtain

∆̂2Q0P(n,k,p)

= ∆̂∆̂Q0P(n,k,p)

= ∆̂Q1P(n,k,p)= ∆̂
(−k
n
Q0P(n,k,p)

)

= (1−p)
(−k−1
n−1

)
Q0P(n−1,k+1,p)−p

(
1−k
n−1

)
Q0P(n−1,k−1,p)

=
(−k−1
n−1

)(
(1−p)Q0P(n−1,k+1,p)−pQ0P(n−1,k−1,p)

)

−p
(

2
n−1

)
Q0P(n−1,k−1,p)
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=
(−k−1
n−1

)
Q1P(n,k,p)−

(
2

n−1

)(
n+k
2n

)
Q0P(n,k,p)

=
(
k(k+1)
n(n−1)

)
Q0P(n,k,p)−

(
n+k
n(n−1)

)
Q0P(n,k,p)

= k2−n
n(n−1)

Q0P(n,k,p).

(A.9)

The central second-order past differences

Q2P(2n,0,p)= −1
2n−1

Q0P(2n,0,p)= −1
2n−1

(
2n
n

)
(1−p)npn (A.10)

have a special meaning: because of

∣∣Q2P(2n,0,p)
∣∣= ∣∣∆̂Q1P(2n,0,p)

∣∣
= ∣∣(1−p)Q1P(2n−1,1,p)−pQ1P(2n−1,−1,p)

∣∣
= (1−p)∣∣Q1P(2n−1,1,p)

∣∣+p∣∣Q1P(2n−1,−1,p)
∣∣,

(A.11)

the absolute values

∣∣Q2P(2n,0,p)
∣∣= Q0P(2n,0,p)

2n−1
(A.12)

correspond for n≥ 1 to the probability of absorption after the 2nth step of the random

walk specified in Appendix A.

Because in important physical equations (e.g., Schrödinger equation) the second de-

rivative along location is related to the first derivative along time, it is worth mentioning

that the second-order past difference (along k) is equivalent to a weighted first-order

difference along n:

Q2P(n,k,p)=Q0P(n,k,p)−4p(1−p)Q0P(n−2,k,p). (A.13)

This follows from (A.8) and

Q0P(n,k,p)= (1−p)2Q0P(n−2,k+2,p)+p2Q0P(n−2,k−2,p)

+2p(1−p)Q0P(n−2,k,p).
(A.14)

B. The power series of 1/γ(x)=√1−x2. Just like in Section 2.2.2, we now consider

the power series of

ζ : [−1,1] �→R, ζ(x)=
√

1−x2. (B.1)
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So, ζ(x) = 1/γ(x) for |x| < 1 and ζ(−1) = ζ(1) = 0. Because of
√

1+z = f1/2(z), we

get analogously to (2.7),

√
1+z =

∞∑
l=0

(
1
2

l

)
zl

= 1+ 1/2
1
z1+ (1/2)·(−1/2)

1·2 z2+ (1/2)·(−1/2)·(−3/2)
1·2·3 z3

+ (1/2)·(−1/2)·(−3/2)·(−5/2)
1·2·3·4 z4+···

= 1+ 1
21 ·1!

z1− 1·1
22 ·2!

z2+ 1·1·3
23 ·3!

z3− 1·1·3·5
24 ·4!

z4+···

= 1−
∞∑
l=1

1
2l−1

(
2l
l

)(−z
4

)l
,

(B.2)

from which

ζ(x)=
√

1−x2 = 1−
∞∑
l=1

1
2l−1

(
2l
l

)(
x
2

)2l
(B.3)

follows. So, in case 4p(1−p)= x2, we obtain, by (2.12), (2.15), and (A.10),

ζ(x)=
√

1−x2 = 1−
∞∑
n=1

1
2n−1

Q0P(2n,0,p)

= 1+
∞∑
n=1

Q2P(2n,0,p)= 1−
∞∑
n=1

∣∣Q2P(2n,0,p)
∣∣.

(B.4)

Because |Q2P(2n,0,p)| is the probability of absorption after the 2nth step,∑∞
n=1 |Q2P(2n,0,p)| is the total probability of absorption. Therefore,

√
1−x2 is the

probability of nonabsorption, respectively, nonreturn (of “escape”). We summarize this

in the following theorem.

Theorem B.1. If a particle makes a Bernoulli random walk, in which each step is

directed from point k to k+1 with probability p and from point k to k−1 with probability

1−p, and the particle is absorbed if it returns to the starting point, and x2 = 4p(1−p),
then the probability of nonabsorption (of “escape”) is ζ(x)=√1−x2.

Remark B.2. More concrete formulations of this theorem are possible. Due to ex-

perimental results, we know that the energy of a photon can be distributed. If E is the

energy of the photon, its frequency ν is given by ν = E/h, in which h is Planck’s con-

stant (h≈ 6.626·10−34 Js). At this, a reduction of the photon’s frequency is equivalent

to a dilation of its time period. So, we can regard the energy of a received photon as

the nonreturning (escaping) part of its initial energy and we can state the following

theorem.
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Theorem B.3. Let γ(x)= 1/
√

1−x2 represent the (approximative) time dilation fac-

tor of reference system A relative to reference system B as in Theorem 2.1. If a photon is

emitted in B with energy Ee = hνe and is absorbed in A, the maximal absorption energy

Ea = hνa in system A is given by Ea = Ee
√

1−x2. So the quotient Ea/Ee = νa/νe (i.e.,

the part of the photon’s energy which can escape and arrive in A in comparison with

initial energy of the photon) is (approximatively) equivalent to the probability (i.e., the

expectation value of the frequency of nonreturning (escaping) walks in comparison with

the total frequency or total number of walks) that there is no return to the starting point

during a Bernoulli random walk, in which each step is directed from point k to k+1 with

probability p and from point k to k−1 with probability 1−p, where 4p(1−p)= x2.

C. Case x = 1, respectively, v = c, with absorbing barrier

Symmetry. In Section 2.2.4, we have seen that in case x = 1, respectively v = c, a

symmetric random walk results. In case x = 1 or v = c, also the random walk with

absorbing barrier, described in Appendix A, becomes symmetric, because p = 1−p =
1/2 with (2.15) and the barrier (which is active from the second step on) is located in

the starting point k = 0. The probability that after the nth step the point k is reached

and the walk continues is given by the absolute value of

Q1(n,k) :=Q1P
(
n,k,

1
2

)
. (C.1)

The first values of Q1(n,k) are shown in Table C.1.

Finite random walk. By Appendix B, in case x = 1, the probability of absorption

(or return to the starting point) is 1 if the number of steps in the walk has no upper

limit. Because in physical reality within finite time only a finite number of steps are

possible, we consider the finite partial sums

ζ2n(x) := 1+
n∑
m=1

Q2P
(

2m,0,
1+√1−x2

2

)
(C.2)

of the power series of ζ(x). Similarly, as in Section 2.2.4 for γ2n(1), we can find a closed

form for ζ2n(1). For n> 0, we get, by (A.13),

Q0P
(
n−2,0,

1
2

)
+Q2P

(
n,0,

1
2

)
=Q0P

(
n,0,

1
2

)
(C.3)

so that with Q0P(0,0,1/2)= 1, by induction, it follows that

ζ2n(1)= 1+
n∑
m=1

Q2P
(

2m,0,
1
2

)
=Q0P

(
2n,0,

1
2

)
= (2n)!

22n(n!)2
. (C.4)

In the case of large n, we can use the Stirling formula to obtain

ζ2n(1)≈ 1√
πn

, (C.5)
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Table C.1. The first values ofQ1(n,k)=Q1(n,k,1/2). The absolute value of
the number in row n and column k represents the number of ways which lead
without absorption to point k after thenth steps. Multiplication of the number
by the factor 2−n yields Q1(n,k). The last column contains these factors.
Multiplication of the underlined number in row n by 2−n yields Q1(2n−
1,−1)= |Q1(2n−1,−1)−Q1(2n−1,−1)|/2= |Q2P(2n,0,1/2)| which is the
probability of absorption after 2n steps. It is visible that the numbers result
from the addition of two Pascal triangles with opposite sign, one starting
at (n,k) = (1,−1) and the other starting at (n,k) = (1,1), so that at k = 0
annihilation occurs.

k
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

n

1 1 −1 ·2−1

2 1 0 −1 ·2−2

3 1 1 −1 −1 ·2−3

4 1 2 0 −2 −1 ·2−4

5 1 3 2 −2 −3 −1 ·2−5

6 1 4 5 0 −5 −4 −1 ·2−6

...

where 1−ζ2n(1) is the probability of absorption in case x = 1 or p = 1−p = 1/2 when

making at most 2n steps. The probability of absorption (A.12) after the 2nth step is

given by the negative second-order past difference along k:

−Q2P
(

2n,0,
1
2

)
=−∆̂2Q0P

(
2n,0,

1
2

)
= 1

2n−1
Q0P

(
2n,0,

1
2

)
≈ 1√

4πn3
, (C.6)

and because of the Schrödinger equation, it is remarkable that, with (A.13), this is equiv-

alent to the negative (first-order) finite difference along n:

−Q2P
(

2n,0,
1
2

)
=Q0P

(
2n−2,0,

1
2

)
−Q0P

(
2n,0,

1
2

)
. (C.7)

We have seen that the discrete differentiation, which is defined in Appendix A, leads

to a probability distribution with absorbing barrier. Separation (and distinction) of the

ways on both sides of the barrier is connected with this. We should recall that, in phys-

ical experiments (e.g., double-slit experiment), such separation is also connected with

absorption (and emission) of photons at systems with rest mass.
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