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The linear stability of a horizontal layer of fluid heated from below and above is consid-
ered. In addition to a steady temperature difference between the walls of the fluid layer, a
time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal
disturbances are considered. Numerical results for the critical Rayleigh number are obtained
at various Prandtl numbers and for various values of the frequency. Some comparisons have
been made with the known results.
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1. Introduction. This paper deals with the stability of a fluid layer confined between

two horizontal planes and heated from below and above periodically with time. Con-

siderable attention has been given to this problem during the last thirty years. Chan-

drasekhar [6] has given a comprehensive review of this stability problem with steady

heating.

Since the problem of Taylor stability and Benard stability are very similar, Venezian

[18] investigated the thermal analogue of Donnelly’s experiment [7], using free-free sur-

faces, and compared his results with the results of Donnelly. Venezian’s theory does

not find any such finite frequency, as obtained by Donnelly, but finds that for the case

of modulation only at the lower surface, the modulation would be stabilizing with maxi-

mum stabilization occurring as the frequency goes to zero. However, in his explanation,

it was suggested by Venezian that linear stability theory ceases to be applicable when

the frequency of modulation is sufficiently small.

Rosenblat and Herbert [15] have investigated the linear stability problem for free-free

surfaces using low-frequency modulation and found an asymptotic solution. Periodic-

ity and amplitude criteria were employed to calculate the critical Rayleigh number.

Rosenblat and Tanaka [16] have used Galerkin procedure to solve the linear problem

for more realistic boundary conditions, that is, rigid walls. A similar problem has been

considered earlier by Gershuni and Zhukhovitskii [9] for a temperature profile obeying

rectangular law. Yih and Li [19] have investigated the formation of convective cells in

a fluid between two horizontal rigid boundaries with time-periodic temperature dis-

tribution using Floquet theory. They found that the disturbances (or convection cells)

oscillate either synchronously or with half frequency.

Gresho and Sani [10] have treated the case of linear stability problem with rigid

boundaries and found that gravitational modulation can significantly affect the stability

limits of the system. Finucane and Kelly [8] have carried out an analytical experimental
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Figure 2.1. Benard configuration.

investigation to confirm the results of Rosenblat and Herbert. Besides investigating the

linear stability, Roppo et al. [14] have also carried out the weakly nonlinear analysis

of the problem. Aniss et al. [1] have worked out a linear problem of the convection

parametric instability in the case of a Newtonian fluid confined in a Hele-Shaw cell

and subjected to the vertical periodic motion. In their asymptotic analysis, they have

investigated the influence of the gravitational modulation on the instability threshold.

Recently, Bhatia and Bhadauria [3, 4] Bhadauria and Bhatia [2] have studied the linear

stability problem for sawtooth, step-function, and day-night profiles.

The object of the present study is to find the critical conditions under which ther-

mal convection starts. To modulate the wall temperatures, sinusoidal profile has been

considered. The temperature modulation between the plates is out of phase. Only even

solutions have been considered. The results have their relevance with convective flows

in the terrestrial atmosphere.

2. Formulation. Consider a fluid layer of a viscous, incompressible fluid confined

between two parallel horizontal walls, one at z = −d/2 and the other at z = d/2. The

walls are infinitely extended and rigid. The configuration is shown in Figure 2.1.

The governing equations in the Boussinesq approximation are

∂V

∂t
+V·∇V=− 1

ρm
∇p+[1−α(T −Tm)]X+ν∇2V,

∇·V= 0,

∂T
∂t
+V·∇T = κ∇2T ,

(2.1)

where ρm, Tm are (constants) reference density and temperature, respectively, X =
(0,0,−g) or g is the acceleration due to gravity, ν is the kinematic viscosity, κ is the

thermal diffusivity, α is the coefficient of volume expansion, V = (u,v,w), p, and T
are, respectively, the fluid velocity, pressure, and temperature fields, while t is the time.

The relation between ρm and Tm is given by

ρ = ρm
[
1−α(T −Tm)]. (2.2)

To modulate the wall temperatures, the boundary conditions are

T(t)= βd(1+εcosωt) at z =−d
2
,

T (t)=−βdεcosωt at z = d
2
.

(2.3)
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Here ω is the modulating frequency, 2π/ω is the period of oscillation, ε represents

the amplitude of modulation, and β (=∆T/d) is the thermal gradient. Equations (2.1),

(2.2), and (2.3) admit an equilibrium solution in which

V= (u,v,w)= 0, T = T(z,t), p = p(z,t). (2.4)

The equation for pressure p(z,t), which balances the buoyancy force, is not required

explicitly; however, the temperature T(z,t) can be given by the diffusion equation

∂T
∂t
= κ ∂

2T
∂z2

. (2.5)

The differential equation (2.5) can be solved with the help of the boundary conditions

(2.3). We write

T(z,t)= TS(z)+εT1(z,t), (2.6)

where TS(z) is the steady temperature field and T1(z,t) is the oscillating part. Then the

solution can be given by

TS(z)=∆T
(

1
2
− z
d

)
,

T1(z,t)=−∆T Re
{

F(z,t)
sinh(λ/2)

}
,

(2.7)

where

F(z,t)= sinh
(
λz
d

)
eiωt,

λ2 = iωd
2

κ
.

(2.8)

Here the objective is to examine the behaviour of infinitesimal disturbances to the

basic solution (2.4). With this in view, substitute

V= (u,v,w), T = T(z,t)+θ, p = p(z,t)+p1 (2.9)

into (2.1) and linearize with respect to the perturbation quantities V, θ, and p1. These

quantities are Fourier analyzed with respect to their variations in the xy-plane; we

write

w =w(z,t)exp
[
i
(
axx+ayy

)]
,

θ = θ(z,t)exp
[
i
(
axx+ayy

)]
.

(2.10)

Here a = (a2
x +a2

y)1/2 is the horizontal wavenumber. The variables have been nondi-

mensionalized according to

r= dr′, t = t′/ω, T = βdT0, θ = βdθ′, a2
x+a2

y = d2a′2

V= (αgβd3a2/ν
)
V′, p1 =

(
αgβκd2ρm/ν

)
p′;

(2.11)
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then the nondimensionalized linear governing equations are, dropping the primes,

a2ω∗ ∂V

∂t
+∇p = Pθk̂+a2P∇2V, (2.12)

∇·V= 0, (2.13)

ω∗ ∂θ
∂t
+Ra2

(
∂T0

∂z

)
w =∇2θ, (2.14)

where R =αg∆Td3/νκ is the Rayleigh number, P = ν/κ is the Prandtl number, k̂ is the

vertical unit vector in the positive z direction, and ω∗ =ωd2/κ is the nondimensional

frequency, which is a measure of the thickness of the thermal boundary layer at the

planes.

The temperature gradient ∂T0/∂z obtained from the dimensionless form of (2.6) is

∂T0

∂z
=−1−εRe

[
F ′(z,t)

sinh(λ/2)

]
, (2.15)

where

F ′(z,t)= λcos(λz)eit, (2.16)

λ2 = iω∗. (2.17)

Henceforth, the asterisk will be dropped and ω will be considered as the nondimen-

sional frequency. For convenience, the entire problem has been expressed in terms of

w and θ. Now taking the curl of (2.12) twice and using (2.10), the system of equations

reduces to

ω
(
∂2

∂z2
−a2

)
∂w
∂t

=−Pθ+P
(
∂2

∂z2
−a2

)2

w,

ω
∂θ
∂t
=
(
∂2

∂z2
−a2

)
θ−Ra2

(
∂T0

∂z

)
w.

(2.18)

The boundary conditions on w and θ are

w = ∂w
∂z

= 0 at z =±1
2
,

θ = 0 at z =±1
2
.

(2.19)

3. Method. From the expression (2.16), it is clear that F ′(z,t) is an even function of

z. By carefully analyzing (2.18) and the boundary conditions (2.19), one can see that

the proper solution of (2.18) can be divided into two noncombining groups of even and

odd solutions. Previous investigations (see [12, 13]) on thermal convection have shown

that disturbances corresponding to even solutions are most unstable; therefore, here

the stability of the disturbances corresponding to the even eigenfunctions have been

considered.
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Now since θ vanishes at z =±1/2, therefore, it is expanded in a series of cos[(2n+
1)πz]. Also w is written in a series of φn so that

(
∂2

∂z2
−a2

)2

φn = cos
[
(2n+1)πz

]
, (3.1)

where

φn = ∂φn∂z = 0 at z =±1
2
. (3.2)

Then the general solution of (3.1) is given by (Chandrasekhar [6, page 56])

φn = Pn coshaz+Qnzsinhaz+γ2
n cos

[
(2n+1)πz

]
, (3.3)

where

Pn =−(−1)n
(2n+1)πγ2

n
a+sinha

sinh
a
2
,

Qn = (−1)n
2(2n+1)πγ2

n
a+sinha

cosh
a
2
,

γn = 1
(2n+1)2π2+a2

.

(3.4)

The expansions for w and θ can be written as

w(z,t)=
∞∑
n=0

An(t)φn(z),

θ(z,t)=
∞∑
n=0

Bn(t)cos
[
(2n+1)πz

]
.

(3.5)

Now substitute (3.5) into (2.18) and multiply by cos[(2m+1)π]. The resulting equations

are then integrated with respect to z in the interval (−1/2,1/2). The outcome is a system

of ordinary differential equations for the unknown coefficients An(t) and Bn(t):

ω
∞∑
n=0

[
Knm−a2Pnm

]dAn
dt

=−P
2
Bm+P

∞∑
n=0

[
Lnm−2a2Knm+a4Pnm

]
An, (3.6)

ω
2
dBm
dt

=−1
2

[
(2m+1)2π2+a2]Bm

+Ra2
∞∑
n=0

[
Pnm+εRe

{
Gnmeit

}]
An (m= 0,1,2, . . .).

(3.7)
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The other coefficients which occur in (3.6) and (3.7) are

Pnm =
∫ 1/2

−1/2
φn(z)cos

[
(2m+1)πz

]
dz, (3.8)

Knm =
∫ 1/2

−1/2
D2φn(z)cos

[
(2m+1)πz

]
dz, (3.9)

Lnm =
∫ 1/2

−1/2
D4φn(z)cos

[
(2m+1)πz

]
dz, (3.10)

Gnm =
∫ 1/2

−1/2
φn(z)cosh(λz)cos

[
(2m+1)πz

]
dz. (3.11)

Here the values of the integrals (3.8), (3.9), and (3.10) have been obtained in their closed

forms; however, (3.11) has been calculated numerically, using Simpson’s one-third rule

(see [17, page 125]). Thus

Pnm = 1
2
γ2
nδnm

+(−1)m(2m+1)πγm
[

2Pn cosh
a
2

+Qn
{

sinh
a
2
−4aγm cosh

a
2

}]
,

Knm =−1
2
γ2
n(2n+1)2π2δnm

+(−1)m(2m+1)πγm
[

2
(
a2Pn+2aQn

)
cosh

a
2

+a2Qn
{

sinh
a
2
−4aγm cosh

a
2

}]
,

Lnm = 1
2
γ2
n(2n+1)4π4δnm

+(−1)m(2m+1)πγm
[

2a4Pn cosh
a
2

+Qn
{

4a3(2−a2γm
)
cosh

a
2
+a4 sinh

a
2

}]
,

(3.12)

where δnm is the Kronecker delta. It is convenient for computational purpose to take

m = 0,1,2, . . . ,N − 1, that is, total 2N equations, and then rearrange them. For this,

first multiply (3.6) by the inverse of the matrix (Knm−a2Pnm) and then introduce the

notations x1 = A0, x2 = B0, x3 = A1, x4 = B1, . . . . Now combine (3.6) and (3.7) to the

form

dxi
dt

=Hi1x1+Hi2x2+···+HiLxL (i= 1,2,3, . . . ,2N, L= 2N), (3.13)

where Hij(t) is the matrix of the coefficients in (3.6) and (3.7). Since the coefficients

Hij(t) are periodic in t with period 2π , therefore we can discuss the stability of the

solution of (3.13) on the basis of the classical Floquet theory (see [5, page 55]). Let

xn(t)= xin(t)= col
[
x1n(t),x2n(t), . . . ,xLn(t)

]
(n= 1,2,3, . . . ,2N) (3.14)
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be the solutions of (3.13) which satisfy the initial conditions

xin(0)= δin. (3.15)

The solutions (3.14) with the conditions (3.15) form 2N linearly independent solu-

tions of (3.13). Once these solutions are found, one can get the values of xin(2π) and

then arrange them in the constant matrix

C = [xin(2π)]. (3.16)

The eigenvalues λ1,λ2,λ3, . . . ,λL of the matrix C are also called the characteristic

multipliers of system (3.13) and the numbers µr , defined by the relations

λr = exp
(
2πµr

)
, r = 1,2,3, . . . ,2N, (3.17)

are the characteristic exponents.

The values of the characteristic exponents determine the stability of the system. We

assume that the µr are ordered so that

Re
(
µ1
)≥ Re

(
µ2
)≥ ··· ≥ Re

(
µL
)
. (3.18)

Then the system is stable if Re(µ1) < 0, while Re(µ1) = 0 corresponds to one periodic

solution and represents a stability boundary. This periodic disturbance is the only dis-

turbance which will manifest itself at a marginal stability.

To obtain the matrix C , we have integrated system (3.13) using Runge-Kutta-Gill Pro-

cedure (see [17, page 217]). The eigenvalues λ1,λ2,λ3, . . . ,λL of the matrix C are found

with the help of Rutishauser method (see [11, page 116]).

4. Results and discussion. The first approximation to the critical Rayleigh number

in the absence of modulation (ε = 0) is found by setting n = 0 and m = 0 in (3.6) and

(3.7). This corresponds to cosπz, a trial function for θ. The corresponding value for R
is

R =
(
π2+a2

)3

a2
[
1−16aπ2 cosh2(a/2)/

{(
π2+a2

)2(sinha+a)}] . (4.1)

This gives R = 1715.08 for a= 3.117, while the exact value of R is 1707.76 at the same

wavenumber. By including more terms in the expansion of w and θ, one can achieve a

higher degree of accuracy. The second approximation to the Rayleigh number is found

to be 1707.93756 at a= 3.116846, which is obtained by setting m,n= 0 and 1. These

values are same, as they should, as the Chandrasekhar values [6].

When ε ≠ 0, we calculate the modified value of Rc, with variation in other parame-

ters. We also check the critical value of the wavenumber a. Here the results have been

obtained by solving (3.13) for x1, x2, x3, and x4. The results are calculated for mod-

erate values of ε as we are interested only in the modulating effect of the oscillation;

there seems to be no reason why this theory cannot be applied for large values of the

parameters.
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Figure 4.1. Variation of Rc with ω: P = 0.1, ε = 0.1, and a= 3.1168.
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Figure 4.2. Variation of Rc with ω: P = 0.73, ε = 0.1, and a= 3.1168.

One can see that the effect of the unsteady part of the primary temperature is one

of stabilization, decreasing with increasing frequency ω (Figures 4.1, 4.2, and 4.3). The

stabilization is greatest nearω= 0 and disappears altogether when the frequencyω is

sufficiently large. This agrees with the results of Venezian [18], Rosenblat and Tanaka

[16], Bhatia and Bhadauria [3], and Bhadauria and Bhatia [2]. This also agrees with the

results of Yih and Li [19], who found while studying the instability of unsteady flows that

the effect of modulation is stabilizing. Similarly the results also agree with Donnelly’s

findings [7] for the related problem of Taylor vortices that oscillation of one cylinder

can only stabilize the Couette flow.

When the modulating frequency is small, the convective wave propagates across the

fluid layer, thereby inhibiting the instability, and so the convection occurs at higher

Rayleigh number than that predicted by the linear theory for steady temperature gradi-

ent. Here Figures 4.1, 4.2, and 4.3 present the variation of the critical Rayleigh number
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Figure 4.3. Variation of Rc with ω: P = 1.0, ε = 0.1, and a= 3.1168.
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Figure 4.4. Variation of Rc with ε: P = 0.1, ω= 50.0, and a= 3.1168.

with respect to the modulating frequency for different Prandtl numbers. These figures

are similar in every respect except that the values of the critical Rayleigh number are

higher at higher Prandtl number. One of the reasons for this may be that for high vis-

cous fluid, higher temperature gradient is required for thermal convection to occur.

The results agree with that of Rosenblat and Tanaka [16] who found that the critical

Rayleigh number increases as the Prandtl number increases and approaches to one,

and beyond this value, the Rayleigh number decreases.

Figure 4.4 shows the variation of Rc with the amplitude of modulation. It is found

here that as the amplitude of modulation increases, Rc also increases, showing the

stabilizing effect.

Finally in Figure 4.5, the variation of Rc with the wavenumber a has been depicted.

It is very clear from the figure that the critical value of the wavenumber a is found to

be near 3.11.
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Figure 4.5. Variation of Rc with a: P = 0.1, ω= 50.0, and ε = 0.1.
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