ON HYPERSURFACES IN A LOCALLY AFFINE RIEMANNIAN BANACH MANIFOLD II

EL-SAID R. LASHIN and TAREK F. MERSAL

Received 8 March 2002

Abstract

In our previous work (2002), we proved that an essential second-order hypersurface in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature. In this note, we prove the converse; in other words, we prove that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semiRiemannian Banach space is an essential hypersurface of second order.

2000 Mathematics Subject Classification: 53C20, 53C40.

1. Introduction. Let M be an infinite-dimensional Banach manifold of class $C^{k}, k \geq 1$, modelled on a Banach space E, and let \bar{g} be a symmetric bilinear form defined on M, that is, $\stackrel{1}{\bar{g}} \in L_{2}(M ; \mathbb{R})$. The metric $\frac{1}{\bar{g}}$ is said to be strongly nonsingular if $\frac{1}{\bar{g}}$ associates a mapping $\stackrel{1}{\bar{g}}^{*}: x \in M \rightarrow \overline{\bar{g}}_{x}^{*}=\overline{\bar{g}}^{*}(x, \cdot) \in L(M ; \mathbb{R})$ which is bijective [2]. Let $\overline{\bar{\Gamma}}$ be the linear connection on M. A C^{k} Banach manifold $(M, \stackrel{1}{\bar{\Gamma}}), k \geq 3$, is called locally affine if its curvature and torsion tensors are zero. In general, it is proved in [2] that a Banach manifold $(M, \stackrel{1}{\bar{\Gamma}})$ is locally affine if and only if there exists an atlas \mathscr{A}_{1} on M such that for any chart $c \in \mathscr{A}, \stackrel{1}{\Gamma} \equiv 0$, where ${ }_{\Gamma}^{1}$ is the model of the linear connection $\stackrel{1}{\Gamma}$. The hypersurface $N \subset M$ which is defined by the equation $\overline{\bar{g}}_{x}(\bar{x}, \bar{x})=e r^{2}, e= \pm 1,0 \neq r \in \mathbb{R}$, is called an essential hypersurface of the second order in the space M (see [2]).

2. Hypersurface of nonzero constant Riemannian curvature in a locally affine

Banach manifold. Let M be a locally affine Banach manifold and assume that $\overline{\bar{g}}$ is a strongly nonsingular metric on M, then the pair $\left(M, \frac{1}{\bar{g}}\right)$ is a Riemannian Banach manifold. Denote by $\bar{i}: \bar{x} \in N \rightarrow \bar{i}(\bar{x})=\bar{x} \in M$ the inclusion mapping. Let $c=(U, \Phi, E)$ be a chart at $\bar{x} \in M$ and let $d=(V, \Psi, F \subseteq E)$ be a chart at $\bar{x} \in N$, where the Banach spaces E and F are the models of the manifolds M and N with respect to the charts c, and d, respectively. Furthermore, we have that $\Psi(\bar{x})=x$ is the model of the point \bar{x} with respect to the chart $d, z=\Phi(\bar{x})$ is the model of \bar{x} with respect to the chart c, and i is the model of \bar{i} with respect to the charts c and d. Then we have an inclusion

$$
\begin{equation*}
i: x=\Psi(\bar{x}) \in \Psi(V) \subset F \longrightarrow i(x)=z=\Phi(\bar{x}) \in \Phi(V) \subset E \tag{2.1}
\end{equation*}
$$

of a hypersurface of a semi-Riemannian Banach space E.

In this case, (2.1) is called the local equation of the submanifold $N \subset M$ with respect to the charts c and d. Also N will be a Riemannian submanifold of M with induced metric $\stackrel{2}{\bar{g}}$, which is defined by the rule

$$
\begin{equation*}
\stackrel{2}{\bar{g}}_{x}\left(\bar{X}_{1}, \bar{X}_{2}\right)=\stackrel{1}{\bar{g}}_{i(x)}\left(T_{x} i\left(\bar{X}_{1}\right), T_{x} i\left(\bar{X}_{2}\right)\right), \tag{2.2}
\end{equation*}
$$

for all $\bar{x} \in N$ and $\bar{X}_{1}, \bar{X}_{2} \in T_{\bar{x}} N$, where $T_{\bar{x}} \bar{i}: T_{\bar{x}} N \rightarrow T_{\bar{x}} M$ is the tangent mapping of \bar{i} at the point $\bar{x} \in N$ (see [1]).

Assume that $\stackrel{2}{\bar{g}}$ is a strongly nonsingular metric on N. Also we have that M and N are Riemannian manifolds with free-torsion connections $\frac{1}{\bar{\Gamma}}$ and $\frac{2}{\bar{\Gamma}}$, respectively, such that $\stackrel{1}{\nabla} \stackrel{1}{\bar{g}}=0$ and $\stackrel{2}{\nabla} \frac{2}{\bar{g}}=0$ (see [3, 4]). Let $X_{1}, X_{2} \in F$ be the models of $\bar{X}_{1}, \bar{X}_{2} \in T_{\bar{x}} N$ with respect to the chart d on N. Then $Y_{1}=D i_{x}\left(X_{1}\right)$ and $Y_{2}=D i_{x}\left(X_{2}\right)$ are the models of \bar{X}_{1} and \bar{X}_{2} with respect to the chart c on M.

In this case, the local equation of (2.2) takes the form

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(X_{1}, X_{2}\right)=\stackrel{1}{g}_{x}\left(D i_{x}\left(X_{1}\right), D i_{x}\left(X_{2}\right)\right) . \tag{2.3}
\end{equation*}
$$

THEOREM 2.1. A local hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semi-Riemannian Banach space is an essential hypersurface of second order.

Proof. Let N be a local hypersurface of constant curvature K_{0} of the Banach type in the Riemannian manifold $(M, \stackrel{1}{g})$ such that $\operatorname{dim} N>2$. We know that the first differential equation of the hypersurface $N \subset M$ has the form (see [5])

$$
\begin{equation*}
\stackrel{2}{\nabla} D i_{x}(X, Y)=e A_{x}(X, Y) \xi_{x} \tag{2.4}
\end{equation*}
$$

where $\bar{\xi}_{x} \in T_{0+0}^{1+0}(M)=T_{0}^{1}(M)$ is a unit vector in M orthogonal to N at the point $\bar{x} \in M$, that is,

$$
\begin{equation*}
\frac{1}{\bar{g}}\left(\bar{\xi}_{x}, \bar{\xi}_{x}\right)=e, \quad \stackrel{1}{\bar{g}}\left(\bar{\xi}_{x}, \bar{X}\right)=0 \tag{2.5}
\end{equation*}
$$

for all $\bar{x} \in N \subset M$ and all $\bar{X} \in T_{x} N$, and A_{x} is the second fundamental form for the hypersurface N which is defined by the equality (see [5])

$$
\begin{equation*}
A_{x}(X, Y)=\stackrel{1}{g}_{x}\left(D^{2} i_{x}(X, Y), \xi_{x}\right)=-\stackrel{1}{g}_{x}\left(D i_{x}(X), D \xi_{x}(Y)\right) . \tag{2.6}
\end{equation*}
$$

Taking into account that $T_{x} \bar{i} \in T_{0+1}^{1+0}(N)$ is a mixed tensor of type $(1+0,0+1)$ on the submanifold N (see [7]), $\bar{\xi}_{x} \in T_{0}^{1}(M)$, and (2.6), we conclude that A_{x} is a symmetric tensor of type $(0,2)$ on N at the point $\bar{x} \in N$.

Now let $\xi: x=\Psi(\bar{x}) \in \Psi(V) \subset F \rightarrow \xi_{x} \in E$ be the model of the vector field

$$
\begin{equation*}
\bar{\xi}: \bar{x} \in N \rightarrow \bar{\xi}_{\bar{x}} \in T_{\bar{x}} M, \tag{2.7}
\end{equation*}
$$

with respect to the charts c and d at the point \bar{x}. Then the local equations of equalities (2.5) take the form

$$
\begin{equation*}
\stackrel{1}{g}\left(\xi_{x}, \xi_{x}\right)=e, \quad \stackrel{1}{g}\left(D i_{x}(X), \xi_{x}\right)=0, \tag{2.8}
\end{equation*}
$$

for all $x \in \Psi(V) \subset F$ and all $X \in F$. Furthermore, the integral condition for (2.4) takes the form

$$
\begin{equation*}
\stackrel{1}{g}\left(D i_{x}\left(\stackrel{2}{R_{x}}(Y ; Z, X), D i_{x}(S)\right)\right)=\stackrel{2}{g}_{x}\left(\stackrel{2}{R}_{x}(Y ; Z, X), S\right)=e A_{x}(\underline{Z}, Y) A_{x}(\underline{X}, S) . \tag{2.9}
\end{equation*}
$$

REMARK 2.2. In formula (2.9), there exists an alternation with respect to the underlined vectors without division by 2 . This convention will be used henceforth.

Similarly, the second differential equation of the hypersurface $N \subset M$ will be (see [5])

$$
\begin{equation*}
D \xi_{x}(X)=D i_{x}\left(H_{x}(X)\right) \tag{2.10}
\end{equation*}
$$

where $H_{\chi} \in L(F ; F)$. Also by using (2.6), we find that

$$
\begin{equation*}
A_{x}(X, Y)=-\stackrel{1}{g}_{x}\left(D i_{x}(X), D \xi_{x}(Y)\right)=-\stackrel{1}{g}_{x}\left(D i_{x}(X), D i_{x}\left(H_{x}(Y)\right)\right)=-\stackrel{2}{g}_{x}\left(X, H_{x}(Y)\right), \tag{2.11}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(X, H_{x}(Y)\right)=-A_{x}(X, Y), \tag{2.12}
\end{equation*}
$$

for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Y \in F$. Furthermore, the integral condition for (2.10) has the form (see [5])

$$
\begin{equation*}
\stackrel{2}{\nabla} A_{x}(\underline{X} ; \underline{Z}, Y)=0, \tag{2.13}
\end{equation*}
$$

for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Y, Z \in F$.
Now we find that

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(\stackrel{2}{R}_{x}(Y ; Z, X), S\right)=\stackrel{1}{g}_{x}\left(D i_{x}\left(\stackrel{2}{R}_{x}(Y ; Z, X)\right), D i_{x}(S)\right)=e A_{x}(\underline{Z}, Y) A_{x}(\underline{X}, S) . \tag{2.14}
\end{equation*}
$$

Since N is a hypersurface of constant curvature, then (2.14) takes the form (see [2])

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(K_{0} \stackrel{2}{g}_{x}(Z, Y) X, S\right)=e A_{x}(\underline{Z}, Y) A_{x}(\underline{X}, S) \tag{2.15}
\end{equation*}
$$

where $K_{0} \in \mathbb{R}$ is a constant independent of the choice of the point, and is called the curvature of the hypersurface N. Then, we obtain

$$
\begin{align*}
& A_{x}(Z, Y) A_{x}(X, S)-A_{x}(X, Y) A_{x}(Z, S) \\
& \quad=K\left(\stackrel{2}{g}_{x}(Z, Y) \stackrel{2}{g}_{x}(X, S)-\stackrel{2}{g}_{x}(X, Y) \stackrel{2}{g}_{x}(Z, S)\right), \tag{2.16}
\end{align*}
$$

for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Y, Z, S \in F$, where $K=K_{0} / e$.
Now we prove that A_{x} is a weakly nonsingular form. Let X be a fixed vector and $A_{x}(X, Y)=0$, for all $Y \in F$. Then, from (2.16) we obtain

$$
\begin{equation*}
\stackrel{2}{g}_{x}(Z, Y) \stackrel{2}{g}_{x}(X, S)-\stackrel{2}{g}_{x}(X, Y) \stackrel{2}{g}_{x}(Z, S)=0 \tag{2.17}
\end{equation*}
$$

for all $Y \in F$, that is, $\stackrel{2}{g}_{x}\left(Y, \stackrel{2}{g}_{x}(X, S) \cdot Z-\stackrel{2}{g}_{x}(Z, S) \cdot X\right)=0$. By using that $\stackrel{2}{g}_{x}$ is nonsingular, we obtain $\stackrel{2}{g}_{x}(X, S) \cdot Z-\stackrel{2}{g}_{x}(Z, S) \cdot X=0$, for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Z, S \in F$. Since $\operatorname{dim} E>2$, then, for any S, we can choose Z which is not a multiple of X and thus $\stackrel{2}{g}_{x}(X, S)=0$, for all $S \in F$. But $\stackrel{2}{g}_{x}$ is nonsingular, hence, $X=0$ and this proves that A_{X} is a weakly nonsingular form.

Now from (2.12) and (2.16), we obtain

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(\underline{Z}, H_{x}(Y)\right) \stackrel{2}{g}_{x}\left(\underline{X}, H_{x}(S)\right)=K\left(\stackrel{2}{g}_{x}(\underline{Z}, Y) \stackrel{2}{g}_{x}(\underline{X}, S)\right) \tag{2.18}
\end{equation*}
$$

and then we have

$$
\begin{align*}
& \stackrel{2}{\boldsymbol{g}}_{x}\left(Z, \stackrel{2}{\boldsymbol{g}}_{x}\left(X, H_{x}(S)\right) \cdot H_{x}(Y)-\stackrel{2}{\boldsymbol{g}}_{x}\left(X, H_{x}(Y)\right) \cdot H_{x}(S)\right. \tag{2.19}\\
& \left.\quad-K\left(\stackrel{2}{\boldsymbol{g}}_{x}(X, S) \cdot Y-\stackrel{2}{\boldsymbol{g}}_{x}(X, Y) \cdot S\right)\right)=0, \quad \forall Z \in F
\end{align*}
$$

Taking into account that the metric tensor $\stackrel{2}{g}_{x}$ is nonsingular, we obtain

$$
\begin{gather*}
\stackrel{2}{\mathfrak{g}}_{x}\left(X, H_{x}(S)\right) \cdot H_{x}(Y)-\stackrel{2}{\mathfrak{g}}_{x}\left(X, H_{x}(Y)\right) \cdot H_{x}(S) \\
\quad-K \stackrel{2}{\mathfrak{g}}_{x}(X, S) \cdot Y+K \stackrel{2}{g}_{x}(X, Y) \cdot S=0 \tag{2.20}
\end{gather*}
$$

Furthermore, we find

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(X, H_{x}(Y)\right)=A_{x}(X, Y)=A_{x}(Y, X)=\stackrel{2}{g}_{x}\left(Y, H_{x}(X)\right)=\stackrel{2}{g}_{x}\left(H_{x}(X), Y\right), \tag{2.21}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\stackrel{2}{g}_{x}\left(X, H_{x}(Y)\right)=\stackrel{2}{g}_{x}\left(H_{x}(X), Y\right) \tag{2.22}
\end{equation*}
$$

and then from (2.20) and (2.22), we obtain

$$
\begin{gather*}
\stackrel{2}{\mathfrak{g}}_{x}\left(H_{x}(X), S\right) \cdot H_{x}(Y)-\stackrel{2}{g}_{x}\left(H_{x}(X), Y\right) \cdot H_{x}(S) \\
\quad-K \stackrel{2}{g}_{x}(X, S) \cdot Y+K \stackrel{2}{g}_{x}(X, Y) \cdot S=0, \tag{2.23}
\end{gather*}
$$

for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Y, S \in F$.
Since $\operatorname{dim} F>2$, then, for every $X, Y \in F$ such that $\stackrel{2}{g}_{x}(X, Y)=0$, there exists a vector $S \in F$ orthogonal to each X and $H_{x}(X)$ [2]. Using this fact in (2.23) and taking into account (2.12), we obtain $A_{x}(X, Y) \cdot H_{x}(S)=0$. By using the nonsingularity of the tensor A_{x}, we conclude that $A_{x}(X, Y)=0$. Since, for any pair of vectors $X, Y \in F, \stackrel{2}{g}_{x}(X, Y)=0$ implies that $A_{x}(X, Y)=0$, then there exists a real number λ such that (see [2])

$$
\begin{equation*}
A_{x}(X, Y)=\lambda \stackrel{2}{g}_{x}(X, Y) \tag{2.24}
\end{equation*}
$$

Substituting (2.24) into (2.16), we obtain

$$
\begin{equation*}
\lambda^{2} \stackrel{2}{g}_{x}(\underline{Z}, Y) \stackrel{2}{g}_{x}(\underline{X}, S)=K \stackrel{2}{g}_{x}^{2}(\underline{Z}, Y) \stackrel{2}{g}_{x}(\underline{X}, S) \tag{2.25}
\end{equation*}
$$

for all $x=\Psi(\bar{x}) \in \Psi(V) \subset F$ and all $X, Y, Z, S \in F$. Taking into account the nonsingularity of $\stackrel{2}{g}_{x}$, we obtain $\lambda^{2}=K=K_{0} / e$. It is convenient to put $K_{0}=e / r^{2}$, where r is a nonzero real number and $e= \pm 1$, then we have $\lambda= \pm 1 / r$. We find that in our case, it is convenient to take $\lambda=-1 / r$. Substituting λ in (2.24), we obtain

$$
\begin{equation*}
A_{x}(X, Y)=-\frac{1}{r} \stackrel{2}{g}_{x}(X, Y) \tag{2.26}
\end{equation*}
$$

and in fact this equation is the unique solution, up to sign, of (2.9) and (2.13). Substituting this solution in (2.12), we have

$$
\begin{equation*}
\stackrel{2}{\mathfrak{g}}_{x}\left(X, H_{x}(Y)\right)=\frac{1}{r} \stackrel{2}{g}_{x}(X, Y), \quad \forall x \in \Psi(V) \subset F, \forall X, Y \in F, \tag{2.27}
\end{equation*}
$$

which implies that $H_{x}(Y)=(1 / r) Y$. Hence (2.10) will be

$$
\begin{equation*}
D \xi_{x}(X)=\frac{1}{r} D i_{x}(X) . \tag{2.28}
\end{equation*}
$$

Integrating this equation gives us $\xi_{x}=(1 / r) i(x)$. Then

$$
\begin{equation*}
\stackrel{1}{g}(i(x), i(x))=r^{2} \stackrel{1}{g}\left(\xi_{x}, \xi_{x}\right) . \tag{2.29}
\end{equation*}
$$

Letting $y=i(x)$ and using equalities (2.8), the above equation takes the form

$$
\begin{equation*}
\stackrel{1}{g}(y, y)=e r^{2}, \quad \forall x \in \Psi(V) \subset F, e= \pm 1 . \tag{2.30}
\end{equation*}
$$

This last equation shows that the hypersurface $N \subset M$ of constant nonzero Riemannian curvature will be locally an essential hypersurface of second order, and this completes the proof.

References

[1] V. E. Fomin, Differential Geometry of Banach Manifolds. Differential Calculus. Manifolds. Linear Connection, Kazan. Gos. Univ., Kazan, 1983.
[2] , Methods and Indications to a Special Course in Differential Geometry of Banach Manifolds, Kazan. Gos. Univ., Kazan, 1986.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, John Wiley \& Sons, New York, 1963.
[4] _ Foundations of Differential Geometry. Vol. II, John Wiley \& Sons, New York, 1969.
[5] E. R. Lashin, On hypersurfaces in Banach manifolds, J. Faculty of Education, Ain-Shams Univ. 20 (1995), 257-267.
[6] E. R. Lashin and T. F. Mersal, On hypersurfaces in a locally affine Riemannian Banach manifold, Int. J. Math. Math. Sci. 31 (2002), no. 6, 375-379.
[7] T. F. Mersal, Differential geometry of Banach manifolds, Master's thesis, Faculty of Science, Menoufiya University, Minoufiya, Egypt, 1993.

El-Said R. Lashin: Department of Mathematics, Faculty of Science, Menoufiya University, Menoufiya 32511, Egypt

E-mail address: elashin@yahoo.com
Tarek F. Mersal: Department of Mathematics, Faculty of Science, Menoufiya University, Menoufiya 32511, Egypt

E-mail address: tmersa1@yahoo.com

