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ON HYPERSURFACES IN A LOCALLY AFFINE
RIEMANNIAN BANACH MANIFOLD II

EL-SAID R. LASHIN and TAREK F. MERSAL

Received 8 March 2002

In our previous work (2002), we proved that an essential second-order hypersurface in an
infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of
constant nonzero curvature. In this note, we prove the converse; in other words, we prove
that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semi-
Riemannian Banach space is an essential hypersurface of second order.
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1. Introduction. LetM be an infinite-dimensional Banach manifold of class Ck, k≥ 1,

modelled on a Banach space E, and let
1
ḡ be a symmetric bilinear form defined on M ,

that is,
1
ḡ ∈ L2(M ;R). The metric

1
ḡ is said to be strongly nonsingular if

1
ḡ associates

a mapping
1
ḡ
∗

: x ∈ M →
1
ḡ
∗
x =

1
ḡ
∗
(x,·) ∈ L(M ;R) which is bijective [2]. Let

1

Γ̄ be the

linear connection on M . A Ck Banach manifold (M,
1

Γ̄), k ≥ 3, is called locally affine if

its curvature and torsion tensors are zero. In general, it is proved in [2] that a Banach

manifold (M,
1

Γ̄) is locally affine if and only if there exists an atlas � on M such that for

any chart c ∈�,
1
Γ ≡ 0, where

1
Γ is the model of the linear connection

1

Γ̄ . The hypersurface

N ⊂M which is defined by the equation
1
ḡx(

−
x,

−
x)= er 2, e =±1, 0≠ r ∈ R, is called an

essential hypersurface of the second order in the space M (see [2]).

2. Hypersurface of nonzero constant Riemannian curvature in a locally affine

Banach manifold. Let M be a locally affine Banach manifold and assume that
1
ḡ is a

strongly nonsingular metric on M , then the pair (M,
1
ḡ) is a Riemannian Banach mani-

fold. Denote by i : x̄ ∈ N → i(x̄) = x̄ ∈M the inclusion mapping. Let c = (U,Φ,E) be a

chart at x̄ ∈M and let d = (V ,Ψ ,F ⊆ E) be a chart at x̄ ∈ N, where the Banach spaces

E and F are the models of the manifolds M and N with respect to the charts c, and

d, respectively. Furthermore, we have that Ψ(x̄) = x is the model of the point x̄ with

respect to the chart d,z = Φ(x̄) is the model of x̄ with respect to the chart c, and i is

the model of i with respect to the charts c and d. Then we have an inclusion

i : x = Ψ(x̄)∈ Ψ(V)⊂ F �→ i(x)= z = Φ(x̄)∈ Φ(V)⊂ E (2.1)

of a hypersurface of a semi-Riemannian Banach space E.
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In this case, (2.1) is called the local equation of the submanifold N ⊂M with respect

to the charts c and d. Also N will be a Riemannian submanifold of M with induced

metric
2
ḡ, which is defined by the rule

2
ḡx
(
X̄1, X̄2

)=
1
ḡi(x)

(
Txi

(
X̄1
)
,Txi

(
X̄2
))
, (2.2)

for all x̄ ∈N and X̄1, X̄2 ∈ Tx̄N, where Tx̄i : Tx̄N → Tx̄M is the tangent mapping of i at

the point x̄ ∈N (see [1]).

Assume that
2
ḡ is a strongly nonsingular metric on N. Also we have thatM and N are

Riemannian manifolds with free-torsion connections
1

Γ̄ and
2

Γ̄ , respectively, such that
1

∇̄
1
ḡ = 0 and

2

∇̄
2
ḡ = 0 (see [3, 4]). Let X1,X2 ∈ F be the models of X̄1, X̄2 ∈ Tx̄N with

respect to the chart d on N. Then Y1 =Dix(X1) and Y2 =Dix(X2) are the models of X̄1

and X̄2 with respect to the chart c on M .

In this case, the local equation of (2.2) takes the form

2
gx
(
X1,X2

)= 1
gx
(
Dix

(
X1
)
,Dix

(
X2
))
. (2.3)

Theorem 2.1. A local hypersurface of constant nonzero Riemannian curvature in a

locally affine (flat) semi-Riemannian Banach space is an essential hypersurface of second

order.

Proof. Let N be a local hypersurface of constant curvature K0 of the Banach type in

the Riemannian manifold (M,
1
ḡ) such that dimN > 2. We know that the first differential

equation of the hypersurface N ⊂M has the form (see [5])

2∇Dix(X,Y)= eAx(X,Y)ξx, (2.4)

where ξ̄x ∈ T 1+0
0+0 (M)= T 1

0 (M) is a unit vector in M orthogonal to N at the point x̄ ∈M ,

that is,

1
ḡ
(
ξ̄x, ξ̄x

)= e,
1
ḡ
(
ξ̄x, X̄

)= 0, (2.5)

for all x̄ ∈ N ⊂ M and all X̄ ∈ TxN, and Ax is the second fundamental form for the

hypersurface N which is defined by the equality (see [5])

Ax(X,Y)= 1
gx
(
D2ix(X,Y),ξx

)=− 1
gx
(
Dix(X),Dξx(Y)

)
. (2.6)

Taking into account that Txi ∈ T 1+0
0+1 (N) is a mixed tensor of type (1+0,0+1) on the

submanifold N (see [7]), ξ̄x ∈ T 1
0 (M), and (2.6), we conclude that Ax is a symmetric

tensor of type (0,2) on N at the point x̄ ∈N.

Now let ξ : x = Ψ(x̄)∈ Ψ(V)⊂ F → ξx ∈ E be the model of the vector field

ξ̄ : x̄ ∈N �→ ξ̄x̄ ∈ Tx̄M, (2.7)
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with respect to the charts c and d at the point x̄. Then the local equations of equalities

(2.5) take the form

1
g
(
ξx,ξx

)= e, 1
g
(
Dix(X),ξx

)= 0, (2.8)

for all x ∈ Ψ(V) ⊂ F and all X ∈ F . Furthermore, the integral condition for (2.4) takes

the form

1
g
(
Dix

( 2
Rx(Y ;Z,X),Dix(S)

))
= 2
gx
( 2
Rx(Y ;Z,X),S

)
= eAx

(
Z,Y

)
Ax
(
X,S

)
. (2.9)

Remark 2.2. In formula (2.9), there exists an alternation with respect to the under-

lined vectors without division by 2. This convention will be used henceforth.

Similarly, the second differential equation of the hypersurface N ⊂M will be (see [5])

Dξx(X)=Dix
(
Hx(X)

)
, (2.10)

where Hx ∈ L(F ;F). Also by using (2.6), we find that

Ax(X,Y)=− 1
gx
(
Dix(X),Dξx(Y)

)=− 1
gx
(
Dix(X),Dix

(
Hx(Y)

))=− 2
gx
(
X,Hx(Y)

)
,

(2.11)

that is,

2
gx
(
X,Hx(Y)

)=−Ax(X,Y), (2.12)

for all x = Ψ(x̄) ∈ Ψ(V) ⊂ F and all X,Y ∈ F . Furthermore, the integral condition for

(2.10) has the form (see [5])

2∇Ax
(
X;Z,Y

)= 0, (2.13)

for all x = Ψ(x̄)∈ Ψ(V)⊂ F and all X,Y ,Z ∈ F .

Now we find that

2
gx
( 2
Rx(Y ;Z,X),S

)
= 1
gx
(
Dix

( 2
Rx(Y ;Z,X)

)
,Dix(S)

)
= eAx

(
Z,Y

)
Ax
(
X,S

)
. (2.14)

Since N is a hypersurface of constant curvature, then (2.14) takes the form (see [2])

2
gx
(
K0

2
gx(Z,Y)X,S

)
= eAx

(
Z,Y

)
Ax
(
X,S

)
, (2.15)
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where K0 ∈ R is a constant independent of the choice of the point, and is called the

curvature of the hypersurface N. Then, we obtain

Ax(Z,Y)Ax(X,S)−Ax(X,Y)Ax(Z,S)

=K
( 2
gx(Z,Y)

2
gx(X,S)−

2
gx(X,Y)

2
gx(Z,S)

)
,

(2.16)

for all x = Ψ(x̄)∈ Ψ(V)⊂ F and all X,Y ,Z,S ∈ F , where K =K0/e.
Now we prove that Ax is a weakly nonsingular form. Let X be a fixed vector and

Ax(X,Y)= 0, for all Y ∈ F . Then, from (2.16) we obtain

2
gx(Z,Y)

2
gx(X,S)−

2
gx(X,Y)

2
gx(Z,S)= 0, (2.17)

for all Y ∈ F , that is,
2
gx(Y ,

2
gx(X,S) ·Z −

2
gx(Z,S) ·X) = 0. By using that

2
gx is non-

singular, we obtain
2
gx(X,S) ·Z−

2
gx(Z,S) ·X = 0, for all x = Ψ(x̄) ∈ Ψ(V) ⊂ F and all

X,Z,S ∈ F . Since dimE > 2, then, for any S, we can choose Z which is not a multiple

of X and thus
2
gx(X,S) = 0, for all S ∈ F . But

2
gx is nonsingular, hence, X = 0 and this

proves that Ax is a weakly nonsingular form.

Now from (2.12) and (2.16), we obtain

2
gx
(
Z,Hx(Y)

) 2
gx
(
X,Hx(S)

)=K
( 2
gx
(
Z,Y

) 2
gx
(
X,S

))
, (2.18)

and then we have

2
gx
(
Z,

2
gx
(
X,Hx(S)

)·Hx(Y)− 2
gx
(
X,Hx(Y)

)·Hx(S)

−K
( 2
gx(X,S)·Y −

2
gx(X,Y)·S

))
= 0, ∀Z ∈ F.

(2.19)

Taking into account that the metric tensor
2
gx is nonsingular, we obtain

2
gx
(
X,Hx(S)

)·Hx(Y)− 2
gx
(
X,Hx(Y)

)·Hx(S)

−K 2
gx(X,S)·Y +K

2
gx(X,Y)·S = 0.

(2.20)

Furthermore, we find

2
gx
(
X,Hx(Y)

)=Ax(X,Y)=Ax(Y ,X)= 2
gx
(
Y ,Hx(X)

)= 2
gx
(
Hx(X),Y

)
, (2.21)

that is,

2
gx
(
X,Hx(Y)

)= 2
gx
(
Hx(X),Y

)
, (2.22)
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and then from (2.20) and (2.22), we obtain

2
gx
(
Hx(X),S

)·Hx(Y)− 2
gx
(
Hx(X),Y

)·Hx(S)

−K 2
gx(X,S)·Y +K

2
gx(X,Y)·S = 0,

(2.23)

for all x = Ψ(x̄)∈ Ψ(V)⊂ F and all X,Y ,S ∈ F .

Since dimF > 2, then, for every X,Y ∈ F such that
2
gx(X,Y)= 0, there exists a vector

S ∈ F orthogonal to each X and Hx(X) [2]. Using this fact in (2.23) and taking into

account (2.12), we obtainAx(X,Y)·Hx(S)= 0. By using the nonsingularity of the tensor

Ax , we conclude that Ax(X,Y)= 0. Since, for any pair of vectors X,Y ∈ F ,
2
gx(X,Y)= 0

implies that Ax(X,Y)= 0, then there exists a real number λ such that (see [2])

Ax(X,Y)= λ 2
gx(X,Y). (2.24)

Substituting (2.24) into (2.16), we obtain

λ2 2
gx
(
Z,Y

) 2
gx
(
X,S

)=K 2
gx
(
Z,Y

) 2
gx
(
X,S

)
, (2.25)

for allx = Ψ(x̄)∈ Ψ(V)⊂ F and allX,Y ,Z,S ∈ F . Taking into account the nonsingularity

of
2
gx , we obtain λ2 =K =K0/e. It is convenient to put K0 = e/r 2, where r is a nonzero

real number and e=±1, then we have λ=±1/r . We find that in our case, it is convenient

to take λ=−1/r . Substituting λ in (2.24), we obtain

Ax(X,Y)=−1
r

2
gx(X,Y), (2.26)

and in fact this equation is the unique solution, up to sign, of (2.9) and (2.13). Substi-

tuting this solution in (2.12), we have

2
gx
(
X,Hx(Y)

)= 1
r

2
gx(X,Y), ∀x ∈ Ψ(V)⊂ F, ∀X,Y ∈ F, (2.27)

which implies that Hx(Y)= (1/r)Y . Hence (2.10) will be

Dξx(X)= 1
r
Dix(X). (2.28)

Integrating this equation gives us ξx = (1/r)i(x). Then

1
g
(
i(x),i(x)

)= r 2 1
g
(
ξx,ξx

)
. (2.29)

Letting y = i(x) and using equalities (2.8), the above equation takes the form

1
g(y,y)= er 2, ∀x ∈ Ψ(V)⊂ F, e=±1. (2.30)

This last equation shows that the hypersurfaceN ⊂M of constant nonzero Riemannian

curvature will be locally an essential hypersurface of second order, and this completes

the proof.
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