INCLUSION RESULTS FOR CONVOLUTION SUBMETHODS

JEFFREY A. OSIKIEWICZ and MOHAMMAD K. KHAN

Received 30 January 2003 and in revised form 9 June 2003

If *B* is a summability matrix, then the submethod B_{λ} is the matrix obtained by deleting a set of rows from the matrix *B*. Comparisons between Euler-Knopp submethods and the Borel summability method are made. Also, an equivalence result for convolution submethods is established. This result will necessarily apply to the submethods of the Euler-Knopp, Taylor, Meyer-König, and Borel matrix summability methods.

2000 Mathematics Subject Classification: 40C05, 40D25, 40G05, 40G10.

1. Introduction and notation. Let *E* be an infinite subset of $\mathbb{N} \cup \{0\}$ and consider *E* as the range of a strictly increasing sequence of nonnegative integers, say $E := \{\lambda(n)\}_{n=0}^{\infty}$. If $B := (b_{n,k})$ is a summability matrix, then the submethod B_{λ} is the matrix whose *nk*th entry is $B_{\lambda}[n,k] := b_{\lambda(n),k}$. Thus, for a given sequence *x*, the B_{λ} -transform of *x* is the sequence $B_{\lambda}x$ with

$$(B_{\lambda}x)_n = (Bx)_{\lambda(n)} := \sum_{k=0}^{\infty} b_{\lambda(n),k} x_k.$$

$$(1.1)$$

Since B_{λ} is a row submatrix of *B*, it is regular (i.e., limit preserving) whenever *B* is regular.

Row submatrices have appeared throughout the literature [5, 6, 8, 12], but they were first studied as a class unto themselves by Goffman and Petersen [7], and later by Steele [14]. The class of Cesàro submethods has been studied by Armitage and Maddox [1] and Osikiewicz [11].

Let *A* and *B* be two summability matrices. If every sequence which is *A*-summable is also *B*-summable to the same limit, then *B* includes *A*, denoted by $A \subseteq B$. Also, *B* is called a triangle if $b_{n,k} = 0$ for all k > n and $b_{n,n} \neq 0$ for all *n*. The following lemma extends [1, Theorem 1].

LEMMA 1.1. Let *B* be a summability matrix and let $E := \{\lambda(n)\}$ and $F := \{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup \{0\}$.

(1) If $F \setminus E$ is finite, then $B_{\lambda} \subseteq B_{\rho}$.

(2) If *B* is a triangle and $B_{\lambda} \subseteq B_{\rho}$, then $F \setminus E$ is finite.

(3) If *B* is a triangle, then B_{λ} is equivalent to B_{ρ} if and only if the symmetric difference $E \bigtriangleup F$ is finite.

In particular, $B \subseteq B_{\lambda}$ for any λ .

PROOF. Assume $F \setminus E$ is finite and let x be a sequence that is B_{λ} -summable to L. Then there exists an N such that $\{\rho(n) : n \ge N\} \subseteq E$. That is, $\{\rho(n) : n \ge N\}$ is a subsequence of $\{\lambda(n)\}$. Since $\lim_{n \to \infty} (B_{\lambda}x)_n = \lim_{n \to \infty} (Bx)_{\lambda(n)} = L$, we have $\lim_{n \to \infty} (B_{\rho}x)_n = \lim_{n \to \infty} (Bx)_{\rho(n)} = L$.

Now assume *B* is a triangle, and hence invertible, and $F \setminus E$ is infinite. Let $F \setminus E := \{\rho(n(j))\}_{i=0}^{\infty}$ with $\rho(n(j)) < \rho(n(j+1))$. Consider the sequence γ defined by

$$y_k := \begin{cases} (-1)^j, & \text{if } k = \rho(n(j)) \text{ for some } j, \\ 0, & \text{otherwise,} \end{cases}$$
(1.2)

and let *x* be the sequence $B^{-1}y$. Then, for every *n*,

$$(B_{\lambda}x)_{n} = (Bx)_{\lambda(n)} = (B(B^{-1}y))_{\lambda(n)} = y_{\lambda(n)} = 0.$$

$$(1.3)$$

Hence, $\lim_{n \to \infty} (B_{\lambda} x)_n = 0$. However, for every *j*,

$$(B_{\rho}x)_{n(j)} = (Bx)_{\rho(n(j))} = (B(B^{-1}y))_{\rho(n(j))} = y_{\rho(n(j))} = (-1)^{j}.$$
 (1.4)

Thus *x* is not B_{ρ} -summable. Therefore B_{ρ} does not include B_{λ} , which completes the contrapositive of assertion (2). Lastly, assertion (3) follows from (1) and (2) since $E \bigtriangleup F := (E \setminus F) \cup (F \setminus E)$.

To show the reason for the necessity of *B* being a triangle in assertion (2) of Lemma 1.1, consider the matrix *B* whose *nk*th entry is

$$B[n,k] := \begin{cases} 0, & \text{if } n \text{ even and } k \neq \frac{n}{2}, \\ 1, & \text{if } n \text{ even and } k = \frac{n}{2}, \\ 0, & \text{if } n \text{ odd and } n \neq k, \\ 1, & \text{if } n \text{ odd and } n = k. \end{cases}$$
(1.5)

Then if $\lambda(n) := 2n$ and $\rho(n) := 2n + 1$, $F \setminus E$ is infinite and $B_{\lambda} \subseteq B_{\rho}$.

2. Inclusion results for Euler-Knopp submethods. For $r \in \mathbb{C} \setminus \{0,1\}$, the Euler-Knopp method of order r is given by the matrix E_r whose nkth entry is

$$E_{r}[n,k] := \begin{cases} \binom{n}{k} r^{k} (1-r)^{n-k}, & \text{if } k \le n, \\ 0, & \text{if } k > n. \end{cases}$$
(2.1)

For the case r = 1, E_1 is the identity matrix, and E_0 is the matrix whose *nk*th entry is

$$E_0[n,k] := \begin{cases} 1, & \text{if } k = 0, n = 0, 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$
(2.2)

It is well known that E_r is regular if and only if $0 < r \le 1$ (see [4]).

Let $E := \{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup \{0\}$ and $r \in \mathbb{C} \setminus \{0, 1\}$. The submethod $E_{r,\lambda}$ is the matrix whose *nk*th entry is

$$E_{r,\lambda}[n,k] := \begin{cases} \binom{\lambda(n)}{k} r^k (1-r)^{\lambda(n)-k}, & \text{if } k \le \lambda(n), \\ 0, & \text{if } k > \lambda(n). \end{cases}$$
(2.3)

Then $E_{r,\lambda}$ is regular if and only if E_r is regular.

By a direct application of Lemma 1.1, we have the following inclusion result for the $E_{r,\lambda}$ methods.

LEMMA 2.1. Let $E := \{\lambda(n)\}$ and $F := \{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup \{0\}$ and $r \neq 0$. (1) The method $E_{r,\lambda} \subseteq E_{r,\rho}$ if and only if $F \setminus E$ is finite.

(2) The method $E_{r,\lambda}$ is equivalent to $E_{r,\rho}$ if and only if the symmetric difference $E \triangle F$ is finite.

We now examine the relationship between $E_{r,\lambda}$ and the Borel summability method. Recall that a sequence x is Borel summable to L if

$$\lim_{t \to \infty} e^{-t} \sum_{k=0}^{\infty} x_k \frac{t^k}{k!} = L.$$
 (2.4)

THEOREM 2.2. Let $E := \{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup \{0\}$ and r > 0. Then the Borel summability method includes $E_{r,\lambda}$ if and only if $S := (\mathbb{N} \cup \{0\}) \setminus E$ is finite.

PROOF. If *S* is finite, then by Lemma 2.1, E_r and $E_{r,\lambda}$ are equivalent. But the Borel summability method includes E_r for r > 0 (see [4]). Hence, it also includes $E_{r,\lambda}$. If *S* is infinite, then it may be written as a strictly increasing sequence of nonnegative integers, say $S := \{\rho(m)\}_{m=0}^{\infty}$. If $M_n := \max_{0 \le k \le n} |E_r[n,k]|$, consider the sequence γ defined by

$$y_{n} := \begin{cases} (\rho(m)!)^{2} (\rho(m)+1) M_{\rho(m)}, & \text{if } n = \rho(m), \\ 0, & \text{otherwise,} \end{cases}$$
(2.5)

and let *x* be the sequence $E_r^{-1}y$; that is, $y = E_r x$ and

$$\lim_{n \to \infty} (E_{r,\lambda} x)_n = \lim_{n \to \infty} (E_r x)_{\lambda(n)} = \lim_{n \to \infty} y_{\lambda(n)} = 0.$$
(2.6)

Hence, *x* is $E_{r,\lambda}$ -summable to 0. Now observe that for a given *n*,

$$|y_n| = |(E_r x)_n| \le \sum_{k=0}^n |E_r[n,k]| |x_k| \le M_n \sum_{k=0}^n |x_k|.$$
 (2.7)

Thus, for $n = \rho(m)$, we have

$$(\rho(m)!)^{1/\rho(m)} = \left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m)+1} \cdot \frac{|\mathcal{Y}_{\rho(m)}|}{M_{\rho(m)}}\right)^{1/\rho(m)} \\ \leq \left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m)+1} \sum_{k=0}^{\rho(m)} |x_k|\right)^{1/\rho(m)}.$$
(2.8)

Since $\limsup_m (\rho(m)!)^{1/\rho(m)} = \infty$,

$$\limsup_{m \to \infty} \left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m) + 1} \sum_{k=0}^{\rho(m)} |x_k| \right)^{1/\rho(m)} = \infty,$$
(2.9)

and it follows that $\limsup_{n \in \mathbb{N}} (|x_n|/n!)^{1/n} = \infty$. Thus, $\sum_{k=0}^{\infty} (x_k/k!)t^k$ diverges for all nonzero *t* and hence *x* is not Borel summable.

THEOREM 2.3. There exists a sequence which is Borel summable but not $E_{r,\lambda}$ -summable for any λ and r > 0.

PROOF. Let r > 0 and consider the sequence *x* defined by

$$x_n := n \left(-\frac{1}{r} \right) \left(1 - \frac{2}{r} \right)^{n-1}.$$
 (2.10)

Then it can be shown that $(E_{r,\lambda}x)_n = (-1)^{\lambda(n)}\lambda(n)$. Hence x is not $E_{r,\lambda}$ -summable for any λ . However,

$$e^{-t} \sum_{k=0}^{\infty} x_k \frac{t^k}{k!} = e^{-t} \sum_{k=1}^{\infty} \left[k \left(-\frac{1}{r} \right) \left(1 - \frac{2}{r} \right)^{k-1} \right] \frac{t^k}{k!}$$

$$= \left(-\frac{1}{r} \right) e^{-t} \sum_{k=1}^{\infty} \left(1 - \frac{2}{r} \right)^{k-1} \frac{t^k}{(k-1)!}$$

$$= \left(-\frac{1}{r} \right) t e^{-t} \sum_{k=0}^{\infty} \left(1 - \frac{2}{r} \right)^k \frac{t^k}{k!}$$

$$= \left(-\frac{1}{r} \right) t e^{-t} e^{(1-2/r)t}$$

$$= \left(-\frac{1}{r} \right) t e^{-(2/r)t}.$$

(2.11)

Since r > 0,

$$\lim_{t \to \infty} e^{-t} \sum_{k=0}^{\infty} x_k \frac{t^k}{k!} = \lim_{t \to \infty} \left(-\frac{1}{r} \right) t e^{-(2/r)t} = 0,$$
(2.12)

and hence x is Borel summable to 0.

58

3. Convolution methods. Let p and q be sequences of real numbers with $p_k \ge 0$, $q_k \ge 0$, $\sum_{k=0}^{\infty} p_k = 1$, and $\sum_{k=0}^{\infty} q_k = 1$. The convolution summability method is given by the matrix $C^* := (c_{n,k})$ whose nkth entry is

$$c_{n,k} := \begin{cases} q_k, & \text{if } n = 0, \\ \sum_{j=0}^k c_{n-1,j} p_{k-j}, & \text{if } n \ge 1. \end{cases}$$
(3.1)

It is clear that C^* is a nonnegative matrix such that for every n, $\sum_{k=0}^{\infty} c_{n,k} = 1$. Some classical summability matrices are examples of the matrix C^* . If $0 \le r \le 1$, $p := \{1 - r, r, 0, 0, ...\}$, and $q := \{1, 0, 0, ...\}$, then C^* is the Euler-Knopp method of order r. If $0 \le r < 1$, $p := \{0, (1-r), (1-r)r, (1-r)r^2, ...\}$, and $q := \{(1-r), (1-r)r, (1-r)r^2, ...\}$, then C^* is the Taylor method of order r, denoted by T_r . If 0 < r < 1 and $p := q := \{(1-r), (1-r)r, (1-r)r^2, ...\}$, then C^* is the Meyer-König method of order r, denoted by S_r . If $p := q := \{1/k!e\}$, then C^* is the Borel matrix method B^* . Similar forms of the convolution method are known by different names, such as the random-walk method and Sonnenschein method. (Further information on all of these methods may be found in [3, 4, 13].)

If C^* is the convolution method formed from the sequences p and q, then let

$$\mu := \sum_{j=0}^{\infty} jp_j, \qquad \nu := \sum_{j=0}^{\infty} jq_j. \tag{3.2}$$

We note here that for the remainder of this work, p and q are nonnegative sequences whose sums are 1, and μ and ν represent the sums in (3.2). Also, $c_{n,k} := 0$ whenever k < 0.

We next present some preliminary results concerning the convolution method.

LEMMA 3.1. The convolution method C^* is regular if and only if $p_0 < 1$.

PROOF. See [9].

LEMMA 3.2. If $\mu < \infty$ and $\nu < \infty$, then for every n,

$$\sum_{k=0}^{\infty} kc_{n,k} = n\mu + \nu.$$
(3.3)

PROOF. Note that for n = 0, the result holds. So assume the result holds for some integer n > 0. Then

$$\sum_{k=0}^{\infty} k c_{n+1,k} = \sum_{k=0}^{\infty} k \left(\sum_{j=0}^{k} c_{n,j} p_{k-j} \right) = \sum_{j=0}^{\infty} c_{n,j} \sum_{k=j}^{\infty} k p_{k-j}$$

$$= \sum_{j=0}^{\infty} c_{n,j} \left(\sum_{i=0}^{\infty} i p_i + j \sum_{i=0}^{\infty} p_i \right) = \sum_{j=0}^{\infty} \mu c_{n,j} + \sum_{j=0}^{\infty} j c_{n,j} = (n+1)\mu + \nu.$$
(3.4)

By induction, the result follows.

LEMMA 3.3. Let C^* be the convolution method formed from the sequences p and q and $D^* := (d_{n,k})$ the convolution method formed from the sequences p and $\tilde{q} := \{1, 0, 0, ...\}$. Then for nonnegative integers n, k, and j,

$$c_{n+j,k} = \sum_{i=0}^{k} c_{n,k-i} d_{j,i}.$$
(3.5)

The proof of this lemma is a straightforward induction argument left to the reader.

LEMMA 3.4. Let C^* be the convolution method formed from the sequences p and q. If $\mu < \infty$, $\nu < \infty$, $0 < \sum_{j=0}^{\infty} (j-\mu)^2 p_j$, and $\sum_{j=0}^{\infty} j^3 p_j < \infty$, then

$$\sum_{k=0}^{\infty} |c_{n,k+1} - c_{n,k}| = O\left(\frac{1}{\sqrt{n}}\right).$$
(3.6)

PROOF. Let $D^* := (d_{n,k})$ be the convolution method formed from the sequences p and $\tilde{q} := \{1, 0, 0, ...\}$. We first prove that the result holds for D^* .

Let $\phi(t) := (\sqrt{2\pi}e^{t^2/2})^{-1}$ and $x_{n,k} := (k - n\mu)/\sigma\sqrt{n}$, where $\sigma^2 := \sum_{j=0}^{\infty} (j - \mu)^2 p_j$. Then

$$\begin{split} \sqrt{n} \sum_{k=0}^{\infty} \left| d_{n,k+1} - d_{n,k} \right| &\leq \sqrt{n} \sum_{k=0}^{\infty} \left| d_{n,k+1} - \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k+1}) \right| \\ &+ \sqrt{n} \sum_{k=0}^{\infty} \left| \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k+1}) - \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k}) \right| \\ &+ \sqrt{n} \sum_{k=0}^{\infty} \left| \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k}) - d_{n,k} \right|. \end{split}$$
(3.7)

The first and the third terms on the right-hand side of the inequality are bounded by a result of Bikjalis and Jasjunas [2]. For the middle term, the mean value theorem yields

$$\sqrt{n}\sum_{k=0}^{\infty} \left| \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k+1}) - \frac{1}{\sigma\sqrt{n}} \phi(x_{n,k}) \right| = \frac{1}{\sigma} \sum_{k=0}^{\infty} |\phi'(\xi_{n,k})| (x_{n,k+1} - x_{n,k})
< \frac{K}{\sigma} \int_{\mathbb{R}} |\phi'(t)| dt < \infty,$$
(3.8)

where $\xi_{n,k} \in (x_{n,k}, x_{n,k+1})$ and K > 0 is some constant. Thus, the result holds for the convolution method D^* . Then, by Lemma 3.3,

$$\sum_{k=0}^{\infty} |c_{n,k+1} - c_{n,k}| = \sum_{k=0}^{\infty} \left| \sum_{i=0}^{k+1} q_{k+1-i} d_{n,i} - \sum_{i=0}^{k} q_{k-i} d_{n,i} \right|$$
$$= \sum_{k=0}^{\infty} \left| q_{k+1} d_{n,0} + \sum_{i=1}^{k+1} q_{k+1-i} d_{n,i} - \sum_{i=0}^{k} q_{k-i} d_{n,i} \right|$$

$$\leq p_{0}^{n} \sum_{k=0}^{\infty} q_{k+1} + \sum_{k=0}^{\infty} \sum_{i=0}^{k} q_{k-i} |d_{n,i+1} - d_{n,i}|$$

$$\leq p_{0}^{n} + \sum_{i=0}^{\infty} |d_{n,i+1} - d_{n,i}| \sum_{k=i}^{\infty} q_{k-i}$$

$$= p_{0}^{n} + \sum_{i=0}^{\infty} |d_{n,i+1} - d_{n,i}| = O\left(\frac{1}{\sqrt{n}}\right).$$
(3.9)

4. Equivalence results for convolution submethods. Let $E := \{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup \{0\}$. The convolution submethod C_{λ}^* is the matrix whose *nk*th entry is

$$C_{\lambda}^{*}[n,k] := C^{*}[\lambda(n),k].$$

$$(4.1)$$

LEMMA 4.1. The convolution submethod C_{λ}^* is regular if and only if $p_0 < 1$.

PROOF. If $p_0 < 1$, then C^* is regular and hence C^*_{λ} is also regular. Conversely, if C^*_{λ} is regular and $p_0 = 1$, then $C^*_{\lambda}[n,k] = q_k$ for all n and k. Since $\sum_{k=0}^{\infty} q_k = 1$, there exists a \hat{k} such that $q_{\hat{k}} \neq 0$. Then $\lim_n C^*_{\lambda}[n,\hat{k}] = q_{\hat{k}} \neq 0$, which contradicts the regularity of C^*_{λ} .

The following theorem compares C^*_{λ} with C^* for bounded sequences.

THEOREM 4.2. Let C^* be the convolution method formed from the sequences p and q with $\mu < \infty$, $\nu < \infty$, $0 < \sum_{j=0}^{\infty} (j-\mu)^2 p_j$, and $\sum_{j=0}^{\infty} j^3 p_j < \infty$. Let $E := \{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup \{0\}$. If

$$\lim_{n \to \infty} \frac{\lambda(n+1) - \lambda(n)}{\sqrt{\lambda(n)}} = 0, \tag{4.2}$$

then C^* and C^*_{λ} are equivalent for bounded sequences.

PROOF. By Lemma 1.1, $C^* \subseteq C^*_{\lambda}$ for any λ . So assume $\lim_n (\lambda(n+1) - \lambda(n)) / \sqrt{\lambda(n)} = 0$ and let x be a bounded sequence that is C^*_{λ} -summable to L. Consider the set $S := \{\rho(n)\} := (\mathbb{N} \cup \{0\}) \setminus E$. If S is finite, then Lemma 1.1 shows that C^*_{λ} and C^* are equivalent for all sequences. So assume S is infinite. Then there exists an N such that for $n \ge N$, $\rho(n) > \lambda(0)$. Since E and S are disjoint, for $n \ge N$, there exists an integer m such that $\lambda(m) < \rho(n) < \lambda(m+1)$. We write $\rho(n) := \lambda(m) + j$, where $0 < j < \lambda(m+1) - \lambda(m)$. Then, for $n \ge N$,

$$\left| (C_{\rho}^{*} x)_{n} - (C_{\lambda}^{*} x)_{m} \right| = \left| \sum_{k=0}^{\infty} c_{\rho(n),k} x_{k} - \sum_{k=0}^{\infty} c_{\lambda(m),k} x_{k} \right|$$

$$= \left| \sum_{k=0}^{\infty} c_{\lambda(m)+j,k} x_{k} - \sum_{k=0}^{\infty} c_{\lambda(m),k} x_{k} \right|.$$
(4.3)

By Lemma 3.3, this becomes

$$\left| \left(C_{\rho}^{*} x \right)_{n} - \left(C_{\lambda}^{*} x \right)_{m} \right| = \left| \sum_{k=0}^{\infty} \left(\sum_{i=0}^{\infty} c_{\lambda(m),k-i} d_{j,i} \right) x_{k} - \sum_{k=0}^{\infty} c_{\lambda(m),k} x_{k} \right|$$

$$= \left| \sum_{k=0}^{\infty} x_{k} \left[\left(\sum_{i=0}^{\infty} c_{\lambda(m),k-i} d_{j,i} \right) - \left(\sum_{i=0}^{\infty} c_{\lambda(m),k} d_{j,i} \right) \right] \right|$$

$$\leq \left\| x \right\|_{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} d_{j,i} \left| c_{\lambda(m),k-i} - c_{\lambda(m),k} \right|$$

$$= \left\| x \right\|_{\infty} \sum_{i=0}^{\infty} d_{j,i} \sum_{k=0}^{\infty} \left| \sum_{l=0}^{i-1} c_{\lambda(m),k-l} - c_{\lambda(m),k-l-1} \right|$$

$$\leq \left\| x \right\|_{\infty} \sum_{i=0}^{\infty} d_{j,i} \sum_{k=0}^{\infty} \sum_{l=0}^{i-1} \left| c_{\lambda(m),k-l} - c_{\lambda(m),k-l-1} \right|$$

$$= \frac{\left\| x \right\|_{\infty}}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} d_{j,i} \sum_{l=0}^{i-1} \sqrt{\lambda(m)} \sum_{k=0}^{\infty} \left| c_{\lambda(m),k-l} - c_{\lambda(m),k-l-1} \right| .$$

$$(4.4)$$

By Lemma 3.4, there exists an M > 0 such that

$$\sqrt{\lambda(m)} \sum_{k=0}^{\infty} \left| c_{\lambda(m),k-l} - c_{\lambda(m),k-l-1} \right| < M.$$
(4.5)

Then, by Lemma 3.2,

$$\left| \left(C_{\rho}^{*} x \right)_{n} - \left(C_{\lambda}^{*} x \right)_{m} \right| \leq \frac{\|x\|_{\infty}}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} d_{j,i} \sum_{l=0}^{i-1} M = \frac{\|x\|_{\infty} M}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} i d_{j,i} \leq \frac{\|x\|_{\infty} M}{\sqrt{\lambda(m)}} \cdot j\mu.$$
(4.6)

Since $0 < j < \lambda(m+1) - \lambda(m)$,

$$\left| \left(C_{\rho}^{*} x \right)_{n} - \left(C_{\lambda}^{*} x \right)_{m} \right| < \|x\|_{\infty} M \mu \cdot \frac{\lambda(m+1) - \lambda(m)}{\sqrt{\lambda(m)}} = o(1).$$
(4.7)

Thus,

$$0 \le |(C_{\rho}^* x)_n - L| \le |(C_{\rho}^* x)_n - (C_{\lambda}^* x)_m| + |(C_{\lambda}^* x)_m - L| = o(1) + o(1) = o(1).$$
(4.8)

Therefore, the sequence C^*x may be partitioned into two disjoint subsequences, namely $(C^*_{\lambda}x)_n = (C^*x)_{\lambda(n)}$ and $(C^*_{\rho}x)_n = (C^*x)_{\rho(n)}$, each having the common limit *L*. Thus, *x* must be *C**-summable to *L*, and hence *C** and C^*_{λ} are equivalent for bounded sequences.

The following theorem is a well-known result due to Meyer-König (see [10, Theorem 25]).

THEOREM 4.3. The methods E_r (0 < r < 1), S_r (0 < r < 1), T_r (0 < r < 1), and the Borel method are equivalent for bounded sequences.

Since the Euler-Knopp methods of order 0 < r < 1, Taylor methods of order 0 < r < 1, Meyer-König methods of order 0 < r < 1, and the Borel matrix method all have generating sequences satisfying the conditions in Theorem 4.2, the following corollary is immediate.

COROLLARY 4.4. Let $E := \{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup \{0\}$ and 0 < r < 1. If λ satisfies condition (4.6), then $E_{r,\lambda}$, E_r , $T_{r,\lambda}$, T_r , $S_{r,\lambda}$, S_r , B^*_{λ} , B^* , and the Borel method are all equivalent for bounded sequences.

The next theorem presents an equivalence relationship between the C^*_{λ} submethods.

THEOREM 4.5. Let C^* be the convolution method formed from the sequences p and q with $\mu < \infty$, $\nu < \infty$, $0 < \sum_{j=0}^{\infty} (j - \mu)^2 p_j$, and $\sum_{j=0}^{\infty} j^3 p_j < \infty$. Let $E := \{\lambda(n)\}$ and $F := \{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup \{0\}$. If

$$\lim_{n \to \infty} \frac{\rho(n) - \lambda(n)}{\sqrt{\lambda(n)}} = 0, \tag{4.9}$$

then C^*_{λ} and C^*_{ρ} are equivalent for bounded sequences.

PROOF. Let *x* be a bounded sequence and consider the sequences $M(n) := \max\{\lambda(n), \rho(n)\}$ and $m(n) := \min\{\lambda(n), \rho(n)\}$. We write M(n) := m(n) + j, where j := M(n) - m(n). For $n \ge 1$, we have

$$|(C_{\rho}^{*}x)_{n} - (C_{\lambda}^{*}x)_{n}| = \left|\sum_{k=0}^{\infty} c_{\rho(n),k}x_{k} - \sum_{k=0}^{\infty} c_{\lambda(n),k}x_{k}\right|$$

$$= \left|\sum_{k=0}^{\infty} c_{M(n),k}x_{k} - \sum_{k=0}^{\infty} c_{m(n),k}x_{k}\right|$$

$$= \left|\sum_{k=0}^{\infty} c_{m(n)+j,k}x_{k} - \sum_{k=0}^{\infty} c_{m(n),k}x_{k}\right|.$$
(4.10)

Then, as in the proof of Theorem 4.2, we have

$$\begin{split} |(C_{\rho}^{*}x)_{n} - (C_{\lambda}^{*}x)_{n}| &\leq O(1)\frac{j}{\sqrt{m(n)}} = O(1)\frac{M(n) - m(n)}{\sqrt{m(n)}} \\ &= O(1)\sqrt{\frac{\lambda(n)}{m(n)}}\frac{|\rho(n) - \lambda(n)|}{\sqrt{\lambda(n)}} \\ &= O(1) \cdot O(1) \cdot o(1) = o(1). \end{split}$$
(4.11)

Then if *x* is C_{λ}^* -summable to *L*,

$$0 \le |(C_{\rho}^* x)_n - L| \le |(C_{\rho}^* x)_n - (C_{\lambda}^* x)_n| + |(C_{\lambda}^* x)_n - L|$$

= $o(1) + o(1) = o(1).$ (4.12)

Similarly, if *x* is C_{ρ}^* -summable to *L*, then

$$0 \le |(C_{\lambda}^* x)_n - L| \le |(C_{\rho}^* x)_n - (C_{\lambda}^* x)_n| + |(C_{\rho}^* x)_n - L|$$

= o(1) + o(1) = o(1). (4.13)

Thus, C^*_{λ} and C^*_{ρ} are equivalent for bounded sequences.

ACKNOWLEDGMENT. The authors would like to thank the referee for several helpful suggestions that have improved the exposition of this work.

REFERENCES

- D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis 9 (1989), no. 1-2, 195-206.
- [2] A. Bikjalis and G. Jasjunas, *Limit theorems in the metric of the spaces* L_1 *and* l_1 , Litovsk. Mat. Sb. **7** (1967), 195–218.
- [3] N. H. Bingham, *Tauberian theorems and the central limit theorem*, Ann. Probab. 9 (1981), no. 2, 221–231.
- [4] J. Boos, *Classical and Modern Methods in Summability*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
- [5] R. G. Cooke, *Infinite Matrices and Sequence Spaces*, Macmillan, London, 1950.
- [6] J. A. Fridy, Submatrices of summability matrices, Int. J. Math. Math. Sci. 1 (1978), no. 4, 519-524.
- [7] C. Goffman and G. M. Petersen, Submethods of regular matrix summability methods, Canad. J. Math. 8 (1956), 40–46.
- [8] J. D. Hill, Some properties of summability. II, Bull. Amer. Math. Soc. 50 (1944), 227-230.
- [9] M. K. Khan, Statistical methods in analysis. I. Some Tauberian theorems for absolute summability, Pakistan J. Statist. 7 (1991), no. 1, 21–32.
- W. Meyer-König, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z. 52 (1949), 257–304 (German).
- J. A. Osikiewicz, Equivalence results for Cesàro submethods, Analysis (Münich) 20 (2000), no. 1, 35-43.
- [12] G. M. Petersen, Inclusion between limitation methods, Math. Z. 65 (1956), 494-496.
- [13] B. Shawyer and B. Watson, *Borel's Methods of Summability*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994.
- [14] W. F. Steele, Summability of infinite sequences by submatrix methods, Ph.D. Dissertation, University of Pittsburgh, Pennsylvania, 1961.

Jeffrey A. Osikiewicz: Department of Mathematical Sciences, Kent State University, Tuscarawas Campus, 330 University Dr. NE, New Philadelphia, OH 44663-9403, USA *E-mail address*: josikiewicz@tusc.kent.edu

Mohammad K. Khan: Department of Mathematical Sciences, Kent State University, Kent, OH 44242-0001, USA

E-mail address: kazim@math.kent.edu

64