IJMMS 2004:2, 55-64
PIL S0161171204301511
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

INCLUSION RESULTS FOR CONVOLUTION SUBMETHODS

JEFFREY A. OSIKIEWICZ and MOHAMMAD K. KHAN

Received 30 January 2003 and in revised form 9 June 2003

If B is a summability matrix, then the submethod B, is the matrix obtained by deleting a set
of rows from the matrix B. Comparisons between Euler-Knopp submethods and the Borel
summability method are made. Also, an equivalence result for convolution submethods is
established. This result will necessarily apply to the submethods of the Euler-Knopp, Taylor,
Meyer-Konig, and Borel matrix summability methods.
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1. Introduction and notation. Let E be an infinite subset of NuU {0} and consider E as
the range of a strictly increasing sequence of nonnegative integers, say E := {A(n)};,_o-
If B:= (by k) is a summability matrix, then the submethod B, is the matrix whose nkth
entry is Ba[n,k] := bam) k- Thus, for a given sequence x, the By-transform of x is the
sequence Byx with

(Bax),, = (BX)an) i= > bagn) kXk- (1.1)
k=0

Since B, is arow submatrix of B, itis regular (i.e., limit preserving) whenever B is regular.

Row submatrices have appeared throughout the literature [5, 6, 8, 12], but they were
first studied as a class unto themselves by Goffman and Petersen [7], and later by Steele
[14]. The class of Cesaro submethods has been studied by Armitage and Maddox [1] and
Osikiewicz [11].

Let A and B be two summability matrices. If every sequence which is A-summable
is also B-summable to the same limit, then B includes A, denoted by A < B. Also, B is
called a triangle if b, = 0 for all k > n and by, # 0 for all n. The following lemma
extends [1, Theorem 1].

LEMMA 1.1. Let B be a summability matrix and let E := {A(n)} and F := {p(n)} be
infinite subsets of NuU {0}.

(1) If F\E is finite, then By < B,.

(2) If B is a triangle and B, < B,, then F\ E s finite.

(3) If B is a triangle, then B, is equivalent to B, if and only if the symmetric difference
E AF is finite.

In particular, B < By for any A.

PROOF. Assume F \ E is finite and let x be a sequence that is By-summable to L.
Then there exists an N such that {p(n) : m > N} € E. Thatis, {p(n) : nm > N} is a
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subsequence of {A(n)}. Since lim, (Bax)y = limy, (BX)am) = L, we have limy, (B,x)y, =
limn(Bx)p(m = L.
Now assume B is a triangle, and hence invertible, and F \ E is infinite. Let F\ E :=

[

{p(n(j))}j:O with p(n(j)) < p(n(j+1)). Consider the sequence 7 defined by

(-1)4, if k=p(n(j)) for some j,
Yk =

(1.2)
0, otherwise,
and let x be the sequence B~!y. Then, for every n,
(BAX),, = (BX)agm) = (B(B™'¥))a(n) = Yam) = 0. (1.3)
Hence, lim,, (Banx),, = 0. However, for every j,
(Bpx)n(j) = (BX)p(n(j)) = (B(Bfly))p(ng)) = Yoy = (-1)7. (1.4)

Thus x is not B,-summable. Therefore B, does not include Ba, which completes the
contrapositive of assertion (2). Lastly, assertion (3) follows from (1) and (2) since EAF :=
(E\F)U(F\E). O

To show the reason for the necessity of B being a triangle in assertion (2) of Lemma
1.1, consider the matrix B whose nkth entry is

0, if nevenandk +

1, ifnevenandk =
0, if n odd and n =+ k,
1, if n odd and n = k.

SIS

(1.5)

Then if A(n) :=2n and p(n) := 2n+1, F\E is infinite and By < B,.

2. Inclusion results for Euler-Knopp submethods. For r € C\ {0,1}, the Euler-
Knopp method of order # is given by the matrix E, whose nkth entry is

(:)yk(l -k ifk<mn,

E [n,k]:= (2.1)

0, if k > n.
For the case r = 1, E; is the identity matrix, and E is the matrix whose nkth entry is

1, ifk=0,n=0,1,2,...,
Eoln, k] := (2.2)

0, otherwise.

It is well known that E; is regular if and only if 0 < ¥ < 1 (see [4]).
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Let E := {A(n)} be an infinite subset of NU{0} and » € C\ {0,1}. The submethod E, »
is the matrix whose nkth entry is

0m>
Eralnkl:=1\ K
0, if k> A(n).

)rk(l —p)A=k - if k< A(n),

Then E, , is regular if and only if E, is regular.
By a direct application of Lemma 1.1, we have the following inclusion result for the
Ey » methods.

LEMMA 2.1. LetE:={A(n)} and F := {p(n)} be infinite subsets of NU {0} and v + 0.

(1) The method Ey \ < Ey , if and only if F\ E is finite.

(2) The method E, ) is equivalent to E, , if and only if the symmetric difference E A F
is finite.

We now examine the relationship between E, , and the Borel summability method.
Recall that a sequence x is Borel summable to L if

I 7t _— =
}Lrge kéoxk X L. (2.4)

THEOREM 2.2. Let E := {A(n)} be an infinite subset of NuU {0} and v > 0. Then the
Borel summability method includes Ey » if and only if S := (NU {0}) \ E is finite.

PROOF. If S is finite, then by Lemma 2.1, E, and E, » are equivalent. But the Borel
summability method includes E;, for » > 0 (see [4]). Hence, it also includes E, ». If S is
infinite, then it may be written as a strictly increasing sequence of nonnegative integers,
say S := {p(m)},_o- If M}, := maxo<k<n |Er[n, k]|, consider the sequence y defined by

e (pm) +1) My, it n=p(m), 25
" 0, otherwise, '
and let x be the sequence E;!'y; thatis, v = E,x and
lim (Ey\x),, = lim (Eyx), ) = lim yam) = 0. (2.6)
Hence, x is E, y-summable to 0. Now observe that for a given n,
n n
| Yul = [(Erx)y| = 20 | Erln k1] x| < M 3 x| 2.7)

k=0 k=0
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Thus, for n = p(m), we have

1/p(m)
(p(mn)'/Pm = ( [ S b’mm)\)

p(m)! p(m)+1  Mpum

p(m) p(m) (2.8)
|- Z | x| :
p(m)! p(m)+1
Since limsup,,, (p (m)H/PM) = o,
1 p(m) 1/p(m)
hﬁlf}ip(p(m) p(m)+1 2. | k|) = o, (2.9)

and it follows that limsup,, (|x,|/n)Y/" = c. Thus, > o(xx/k!)t* diverges for all
nonzero t and hence x is not Borel summable. O

THEOREM 2.3. There exists a sequence which is Borel summable but not E, )-sum-
mable for any A and v > 0.

PROOF. Let 7 > 0 and consider the sequence x defined by

xn::n(—l> (1—3)#1. (2.10)

v

Then it can be shown that (E, zx), = (—1)A™A(n). Hence x is not E, -summable for
any A. However,

k=0 k-1
B 71 ;. hd ( 72)]{71 tk
(- )e 20-7)
5] k k
=(—l>te‘tz<1—g> L 21D
v o v/ k!
_ (7 l)te—te(l—Z/r)t
p”
:( l)te @mt.
p
Since r > 0,
lime~ tzxktk_hm( 1)te eme Z g (2.12)
t—oo k!t ’ ’

and hence x is Borel summable to 0. |



INCLUSION RESULTS FOR CONVOLUTION SUBMETHODS 59

3. Convolution methods. Let p and g be sequences of real numbers with py > 0,
ak =0, >r oprx=1,and >;_,qkx = 1. The convolution summability method is given by
the matrix C* := (¢, k) whose nkth entry is

Ak, if n=0,

Cnk = k ) (3.1)
ch_lyjpk_j, if n>1.
Jj=0

It is clear that C* is a nonnegative matrix such that for every n, >;_,cnx = 1. Some
classical summability matrices are examples of the matrix C*. If 0 <r <1, p:= {1 -
v,7,0,0,...}, and q := {1,0,0,...}, then C* is the Euler-Knopp method of order r. If
0<r<1,p:={0,(1-7),1-1)7r,(1-r)rs,. . },andq:= {(1-7),(1-1)7r,(1-r)rs, ...},
then C* is the Taylor method of order v, denoted by T,-. If 0 <+ < 1 and p := q :=
{(1-7),(1—r)r,(1-7)7r?,...}, then C* is the Meyer-K6énig method of order 7, denoted
by S,.If p:=q:= {1/kle}, then C* is the Borel matrix method B*. Similar forms of the
convolution method are known by different names, such as the random-walk method
and Sonnenschein method. (Further information on all of these methods may be found
in [3, 4, 13].)
If C* is the convolution method formed from the sequences p and g, then let

pi= > jpi,  vi= ) jaj. (3.2)
j=0 =0

We note here that for the remainder of this work, p and g are nonnegative sequences
whose sums are 1, and p and v represent the sums in (3.2). Also, ¢y := 0 whenever
k <O0.

We next present some preliminary results concerning the convolution method.

LEMMA 3.1. The convolution method C* is regular if and only if po < 1.
PROOEF. See [9]. O

LEMMA 3.2. Ifu < oo andv < co, then for every n,
> kepg =np+v. (3.3)
k=0

PROOF. Note that for n = 0, the result holds. So assume the result holds for some
integer n > 0. Then

o0 © k ) ©
> kenag =2, k( 2. Cn.mk—j) =2 cnj > kpij
k=0 k=0 Jj=0 Jj=0 k=j

(3.4)

= ch.j(ZiPiJervi) = z“cn,j"" chn,j =m+1)u+v.
Jj=0 Jj=0 j=0

i=0 i=0

By induction, the result follows. |
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LEMMA 3.3. Let C* be the convolution method formed from the sequences p and q and
D* := (dux) the convolution method formed from the sequences p and 4 :={1,0,0,...}.
Then for nonnegative integers n, k, and j,

k

Cn+jk = Z Cnk—idji- (3.5)
i=0

The proof of this lemma is a straightforward induction argument left to the reader.

LEMMA 3.4. Let C* be the convolution method formed from the sequences p and q.
Ifu<o,v<o,0<32(j-—p?pj, and 37 j°p; < «, then

o 1
k%)|cn,k+1—cn,k| :O<ﬁ)' (3.6)

PROOF. Let D* := (d, k) be the convolution method formed from the sequences p
and ¢4 := {1,0,0,...}. We first prove that the result holds for D*.

Let ¢(t) := (v2met*/2)~L and x,x := (k —np)/o/n, where o2 := Yo —wipj.
Then

¢(Xn,k+1)

- 1
d —-d < d -—
\/ﬁk;) | n,k+1 n,k| = n,k+1 oun

1 1
. Tﬁ¢(xn,k+1)*07\/ﬁ¢(xn,k)’ (3.7)

b (xn ) —dn \ .

1
5 oyn
The first and the third terms on the right-hand side of the inequality are bounded by a
result of Bikjalis and Jasjunas [2]. For the middle term, the mean value theorem yields

1 1 <
—— b (xXnk ‘ - Z Enk (Xnk+1—Xnk)
k7

1
g md)(xn,kﬂ)_o_\/ﬁ

q

(3.8)

KJ |’ (t)|dt < oo,

S| |

where &,k € (Xnk, Xnk+1) and K > 0 is some constant. Thus, the result holds for the
convolution method D*. Then, by Lemma 3.3,

LS o | k+1
Z [Cnis1—Cnil| = z Z Ak+1-idn,i — ZQk idn,i
k=0 k=0 i=0
) k+1
= Z k+1dno + ZQk+l idn,i— ZQk idn,i
k=0 i=1 i=0
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0 o k
SPED aker+ Y. D ak-il dnyic1 —dni|
k=0 k=0 i=0

(o] o0
<pi+ > |dnivi—dnil| D ak-i
i=0 k=i

S 1
= pg+§) |dn,i+l_dn,i| = O(ﬁ)

(3.9)
O

4. Equivalence results for convolution submethods. Let E:= {A(n)} be an infinite
subset of Nu {0}. The convolution submethod C; is the matrix whose nkth entry is

Cin,k]:=C*[A(n),k]. 4.1)

LEMMA 4.1. The convolution submethod Cy is regular if and only if pg < 1.

PROOF. If po < 1, then C* is regular and hence C; is also regular. Conversely, if Cy
is regular and po = 1, then Cy[n,k] = g for all n and k. Since S r-04qk = 1, there exists
a k such that g; # 0. Then lim,, Cy [n,k] = q; # 0, which contradicts the regularity of Cy'.

O

The following theorem compares C; with C* for bounded sequences.

THEOREM 4.2. Let C* be the convolution method formed from the sequences p and q
Withpi < 0o, v < 00,0 < X7 (j—)?pj, and 37 j*pj < . Let E:= {A(n)} be an infinite
subset of Nu {0}. If

. An+1)-An)
lim O =0, 4.2)

then C* and Cy are equivalent for bounded sequences.

PROOF. ByLemma 1.1, C* c C for any A. So assume lim, (A(n+1) —A(n))//A(n) =
0 and let x be a bounded sequence that is Cy-summable to L. Consider the set § :=
{p(n)}:= (NU{0})\E.If S is finite, then Lemma 1.1 shows that C; and C* are equiva-
lent for all sequences. So assume S is infinite. Then there exists an N such that for n > N,
p(n) > A(0). Since E and S are disjoint, for n > N, there exists an integer m such that
A(m) < p(n) < A(m+1). We write p(n) := A(m) +j, where 0 < j < A(m+1) - A(m).
Then, for n > N,

3

0o

Z Cp(n)kXk — Z Ca(m),k Xk
k=0 k=0

\(C;x)n_(c;\kx)m|

(4.3)

Me

(oo}
CA(m)+j,k Xk — Z Ca(m),k Xk
0 k=0

=
Il
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By Lemma 3.3, this becomes

| (C;)kx)nf

(o) (o] [ee]
Z (Z CA(m) k—id )xk ZC/\(m),kxk

k=0

S]] (5omon]

<Xl Z Zdj,i~c)\(m),k—i_c/\(m),k|
k=01i=0

HMS

o i (4.4)
”X”oozd Z, CA(m),k—1 = CA(m) k—1-1
k=0 | 1=0
00 o i—1
<lixlle X dji 2. > [eaomy k-1 —Caomy k11|
i=0  k=01=0
Ixlo = , & =
= = > dji A(m) D | eamm) k-1 — Caom) k-1-1
Am) = 7S k=0
By Lemma 3.4, there exists an M > 0 such that
A(m) Z [ eAm) k-1 — CAm) k-1-1| < M. (4.5)
k=0
Then, by Lemma 3.2,
||x| S xleM S IxleM
Cc* - (Cc < dii< -ju. (4.6
|( px)n ( AX) g, ; A(m) izz(‘,)l i A(m) JH (4.6)
Since 0 < j<A(m+1)—-A(m),
Alm+1)—A(m)
C* —(C§ < oMU ———————— =o0(1). 4.7
Thus,
0=< |(C;‘x)n—L| < |(C;‘ (CAx m| +| CAX —L| =0(l)+0(1)=0(1). (4.8

Therefore, the sequence C*x may be partitioned into two disjoint subsequences,
namely (C{x)y = (C*Xx)amn) and (C;‘x)n = (C*x)p(n), each having the common limit L.
Thus, x must be C*-summable to L, and hence C* and Cy are equivalent for bounded
sequences. O

The following theorem is a well-known result due to Meyer-Konig (see [10, Theo-
rem 25]).

THEOREM 4.3. The methods E, (0<vr <1),S, (0<r<1), T, (0<vr <1), and the
Borel method are equivalent for bounded sequences.
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Since the Euler-Knopp methods of order 0 < » < 1, Taylor methods of order 0 <
¥ < 1, Meyer-Konig methods of order 0 < v < 1, and the Borel matrix method all have
generating sequences satisfying the conditions in Theorem 4.2, the following corollary
is immediate.

COROLLARY 4.4. Let E:= {A(n)} be an infinite subset of NU {0} and 0 <r < 1. If A
satisfies condition (4.6), then E, », Ey, Ty, Ty, Sra, Sr, By, B*, and the Borel method are
all equivalent for bounded sequences.

The next theorem presents an equivalence relationship between the Cy submethods.

THEOREM 4.5. Let C* be the convolution method formed from the sequences p and
q With i < o, v < 0, 0 < ZA‘;":O(j—u)ZpJ, and Z;’-":Oﬁpj < co. Let E := {A(n)} and
F:={p(n)} be infinite subsets of Nu {0}. If

_pm)-An) _
}lg)lo NAXCD) =0, (4.9)

then C{ and C o are equivalent for bounded sequences.

PROOF. Letx beabounded sequence and consider the sequences M (n):=max{A(n),
p(n)} and m(n) := min{A(n),p(n)}. We write M(n) := m(n) + j, where j:= M(n) —
m(n). For n > 1, we have

(Crx) = (CEX) ] = | D) CompXc— 2, Cam Xk
k=0 k=0
= Z CM(n),kXk — Z Cm(n),kXk (4.10)
k=0 k=0
= Z Cm(n)+j,kXk — Z Cmn),kXk |-
k=0 k=0
Then, as in the proof of Theorem 4.2, we have
J M(n)-m(n)
c* —(C¥ <0(1 =0(1)————-
~0(1) An) |p(n)—An)| (4.11)
m(n) VA (1)
=0(1)-0(1)-0(1) =0(1).
Then if x is Cy-summable to L,
0=< | (C:x)n_L| = | (C;X)n_ (C;\kx)n~ + | (C;\kx)n_L| (4 12)

=0(1)+o(1)=0(1).
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Similarly, if x is C ~-summable to L, then

0< |(C/ikx)n_L| = |(C:;X)n_(c/ikx)n~ +|(C;7kx)n_l‘|

=o0(1)+o0(1)=0(1). (4.13)

Thus, Cy and C & are equivalent for bounded sequences. O
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