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We prove that the dimension of the 1-nullity distributionN(1) on a closed Sasakian manifold
M of rank l is at least equal to 2l−1 provided thatM has an isolated closed characteristic. The
result is then used to provide some examples ofK-contact manifolds which are not Sasakian.
On a closed, 2n+ 1-dimensional Sasakian manifold of positive bisectional curvature, we
show that either the dimension of N(1) is less than or equal to n+1 or N(1) is the entire
tangent bundle TM . In the latter case, the Sasakian manifoldM is isometric to a quotient of
the Euclidean sphere under a finite group of isometries. We also point out some interactions
between k-nullity, Weinstein conjecture, and minimal unit vector fields.
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1. Introduction. Contact, non-Sasakian manifolds whose characteristic vector field

lies in the k-nullity distribution have been fully classified by Boeckx [7]. One of the main

goals of the present paper is to describe the leaves of the 1-nullity distribution and the

topology of the Sasakian manifolds using the notion of “rank” of a K-contact manifold.

After collecting some preliminaries on contact metric geometry in Section 2, we define

the rank of a closed K-contact manifold in Section 3.

In Section 4, we define the k-nullity distribution of a Riemannian manifold and prove

Theorem 4.3.

Relying on a construction of Yamazaki [25], we use Theorem 4.3 in Section 5, where

we exhibit examples of five-dimensional manifolds whose K-contact structures are not

Sasakian.

Section 6 deals with Sasakian manifolds with positive bisectional curvature. Using

variational calculus techniques, we prove Theorem 6.2.

A conjecture of Weinstein asserts that any compact contact manifold should have at

least one closed characteristic. In Section 7, we point out how this conjecture holds true

in the case, where the characteristic vector field belongs to the k-nullity distribution,

and the contact metric manifold carries a nonsingular Killing vector field.

We conclude our paper by an observation relating k-nullity and the existence of min-

imal unit vector fields in Section 8. It is shown here that if the characteristic vector field

belongs to the k-nullity distribution, then one can deform the contact metric in such

a way that the same characteristic vector field becomes a critical point of the volume

functional which is defined on the space of unit vector fields.

2. Preliminaries. A contact form on a 2n+1-dimensional manifold M is a 1-form

α such that α∧ (dα)n is a volume form on M . There is always a unique vector field
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Z , the characteristic vector field of α, which is determined by the equations α(Z) = 1

and dα(Z,X)= 0 for arbitrary X. The distribution Dp = {V ∈ TpM :α(V)= 0} is called

the contact distribution of α. Clearly, D is a symplectic vector bundle with symplectic

form dα.

On a contact manifold (M,α,Z), there is also a nonunique Riemannian metric g and

a partial complex operator J adapted to α in the sense that the identities

2g(X,JY)= dα(X,Y), J2X =−X+α(X)Z, (2.1)

hold for any vector fields X, Y on M . We have adopted the convention for exterior

derivative so that

dα(X,Y)=Xα(Y)−Yα(X)−α([X,Y]). (2.2)

The tensors α, Z , J, and g are called contact metric structure tensors and the manifold

M with such a structure will be called a contact metric manifold [6]. We will use the

notation (M,α,Z,J,g) to denote a contact metric manifold M with specified structure

tensors. Assuming that (M,g) is a complete Riemannian manifold, letψt , t ∈R, denote

the 1-parameter group of diffeomorphism generated by Z . The group ψt preserves the

contact form α, that is, ψ∗t α=α. If ψt is also a 1-parameter group of isometries of g,

then the contact metric manifold is called a K-contact manifold. By ∇ we will denote

the Levi-Civita covariant derivative operator of g. On a K-contact manifold, one has the

identity

∇XZ =−JX (2.3)

valid for any tangent vector X. On a general contact metric manifold, the identity

∇XZ =−JX−JhX (2.4)

is satisfied, where hX = (1/2)LZJX. If the identity

(∇XJ)Y = g(X,Y)Z−α(Y)X (2.5)

is satisfied for any vector fields X and Y on M , then the contact metric structure

(M,α,Z,J,g) is called a Sasakian structure. A submanifold N in a contact manifold

(M,α,Z,J,g) is said to be invariant if Z is tangent to N and JX is tangent to N when-

ever X is. An invariant submanifold is a contact submanifold.

3. Rank of K-contact manifolds. On a compact K-contact metric manifold (M,α,Z,
g,J), the closure of the 1-parameter groupψt in the isometry group of (M,g) is a torus

group T l for some nonzero integer l. A K-contact manifold with the action of such a

torus T l is said to be of rank l [24]. The K-contact manifolds of rank 1 are those whose

1-parameter group ψt is periodic, that is, the integral curves of Z are all circles. It is

shown in [15] or [25] that the rank l of a K-contact manifold is at most equal to n+1

if the manifold is 2n+1 dimensional. Also, from [14], a closed K-contact manifold of

dimension 2n+1 carries at least n+1 closed characteristics, that is, n+1 closed orbits
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of the flow ψt . Each one of these closed characteristics is a 1-dimensional orbit of the

action of a circle subgroup of the torus T l, where l is the rank of theK-contact manifold.

4. k-nullity distribution. For a real number k, the k-nullity distribution of a Riemann-

ian manifold (M,g) is the subbundle N(k) defined at each point p ∈M by

Np(k)=
{
H ∈ TpM | R(X,Y)H = k(g(Y ,H)X−g(X,H)Y ); ∀X,Y ∈ TpM}, (4.1)

where R denotes the Riemann curvature tensor given by the formula

R(X,Y)H =∇X∇YH−∇Y∇XH−∇[X,Y]H, (4.2)

for arbitrary vector fields X, Y , and H on M . If H lies in N(k), then the sectional curva-

tures of all plane sections containing H are equal to k.

The interaction between rank and dimension of 1-nullity distribution of Sasakian

manifolds can be described thanks to the following simple observation.

Proposition 4.1. The k-nullity distribution of a Riemannian manifold (M,g) is left

invariant by any isometry of (M,g).

Proof. If H ∈N(k) and ϕ is an isometry of (M,g), then, for any vector fields X, Y
on M , one has

R
(
ϕ∗X,ϕ∗Y

)
ϕ∗H =ϕ∗R(X,Y)H

=ϕ∗
(
k
(
g(Y ,H)X−g(X,H)Y ))

= k[g(ϕ∗Y ,ϕ∗H
)
ϕ∗X−g

(
ϕ∗X,ϕ∗H

)
ϕ∗Y

]
.

(4.3)

Since ϕ∗ is an automorphism of the tangent bundle of M , the above identity shows

that ϕ∗H ∈N(k).
By Rk we denote the tensor field defined for arbitrary vector fields X, Y , H by

Rk(X,Y)H = R(X,Y)H−k
{
g(Y ,H)X−g(X,H)Y}. (4.4)

Rk satisfies similar identities as the curvature tensor R, mainly,

(i) g(Rk(X,Y)H,V)=−g(Rk(X,Y)V,H),
(ii) g(Rk(X,Y)H,V)= g(Rk(X,H)Y ,V),

(iii) ∇XRk(Y ,H)V +∇YRk(H,X)V +∇HRk(X,Y)V = 0.

Now, let X, Y , V be any tangent vectors at p ∈M . Extend X, Y and V into local vector

fields such that at p one has ∇X = 0 =∇Y =∇V . Let H, W be two vector fields in the

nullity distribution of Rk, that is,

Rk(X,Y)H = 0= Rk(X,Y)W, (4.5)
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for any X, Y on M . Using identity (iii), one obtains

0= g(∇HRk(X,Y)V +∇XRk(Y ,H)V +∇YRk(H,X)V,W)

= g
(
∇H

(
Rk(X,Y)V

)+∇X(Rk(Y ,H)V)+∇Y (Rk(H,X)V)

−Rk
(
Y ,∇XH

)
V −Rk

(∇YH,X)V +Others,W
)

= Zg(Rk(X,Y)V,W)−g(Rk(X,Y)V,∇HW)+Xg(Rk(Y ,H)V,W)
−g(Rk(Y ,H)V,∇XW)+Yg(Rk(H,X)V,W)−g(Rk(H,X)V,∇YW)
−g(Rk(Y ,∇XH)V,W)−g(Rk(∇YH,X)V,W)+g(Others,W).

(4.6)

“Others” stands for terms vanishing at p. Applying identities (i) and (ii), and evaluating

at p, we obtain

0= g(Rk(X,Y)∇HW,V), (4.7)

for arbitraryX, Y , and V . This means that∇HW also belongs to the k-nullity distribution

wheneverH andW do. The above argument proves thatN(k) is an integrable subbundle

with totally geodesic leaves of constant curvature k [20]. Hence, if k > 0 and dimN(k) >
1, then each leaf of N(k) is a compact manifold [13, Corollary 19.5].

On a contact metric 2n+1-dimensional manifold M , n > 1, Blair and Koufogiorgos

showed that if the characteristic vector field Z lies in N(k), then k ≤ 1. If k < 1 and

k≠ 0, then the dimension of N(k) is equal to 1 [1]. The corresponding result for n= 1

is due to Sharma [19]. If k = 0, then M is locally En+1×Sn(4) and Z is tangent to the

Euclidean factor giving that the dimension of N(0) is equal to n+1 [5]. If k = 1, the

contact metric structure is Sasakian and we wish to investigate the dimension of N(1)
on a Sasakian manifold. Contact, non-Sasakian manifolds whose characteristic vector

field lies in the k-nullity distribution have been fully classified by Boeckx in [7]. First,

we will describe the leaves of the 1-nullity distribution on a Sasakian manifold.

Proposition 4.2. Let (M,α,Z,J,g) be a closed Sasakian manifold. If the dimension

of N(1) is bigger than 1, then each leaf of N(1) is a closed Sasakian submanifold which

is isometric to a quotient of a Euclidean sphere under a finite group of isometries.

Proof. Let N be such a leaf of N(1). Since the leaf is a totally geodesic submanifold

and Z is tangent to it, one has that JX =−∇XZ is tangent to the leaf for anyX tangent to

it. So, N is an invariant contact submanifold of the Sasakian manifold M and therefore

it is also Sasakian. Since N is complete of constant curvature 1, it is isometric to a

quotient of a Euclidean sphere under a finite group of Euclidean isometries [23].

To simplify notations, we will denote the dimension of N(k) by dimN(k). As a con-

sequence of Proposition 4.2 and the work in [14], we obtain the following theorem.

Theorem 4.3. Let M be a closed Sasakian 2n+ 1-dimensional manifold of rank l,
with structure tensors α, Z , J, and g. The following hold.

(1) If dimN(1) > 1 andM has an isolated closed characteristic, then dimN(1)≥ 2l−1.

In particular, if l=n+1, then dimN(1)= 2n+1 andM is isometric to the quotient

of a Euclidean 2n+1-sphere under a finite group of Euclidean isometries.
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(2) If M has a finite number of closed characteristics, then again dimN(1) = 2n+1,

andM is isometric to the quotient of a Euclidean 2n+1-sphere under a finite group

of Euclidean isometries.

Proof. Under the hypothesis, one has l ≥ 2. There is then a torus T l acting on

M by isometric strict contact diffeomorphisms. Let Z1, . . . ,Zl be a basis of periodic

Killing vector fields for the Lie algebra of T l. Any isolated closed characteristic of α
is a common orbit of all the Zi and Z (see [14]). Let N be a leaf of N(1) containing

an isolated closed characteristic, then, since by Proposition 4.1, each Zi preserves the

foliation by leaves of N(1), one sees that each of Zi preserves the leaf N. Therefore,

each Zi is tangent to N. It follows that dimN(1)≥ 2l−1 since JZi is also tangent to N
for each i and at most l−1 of the JZ′i s can be linearly independent.

In the case l = n+ 1, N(1) has only one leaf, the manifold M itself. In the case

M has a finite number S of closed characteristics, then N(1) cannot have more than

S leaves because, being a closed Sasakian manifold, each leaf of N(1) must contain

at least one closed characteristic. It follows again that there is only one leaf which

must be the manifold M itself. In any of the above two cases, M is a closed manifold

of constant curvature 1 and it is well known that any compact, constant curvature-

1 manifold is isometric to a quotient of a Euclidean sphere under a finite group of

Euclidean isometries.

5. K-Contact, non-Sasakian manifolds. In dimension 3, a K-contact manifold is au-

tomatically Sasakian, not so in higher dimensions. We will provide 5-dimensional ex-

amples documenting the existence of K-contact structures which are not Sasakian. One

well-known way of obtaining K-contact structures which are not Sasakian is as follows.

Let S be a closed manifold admitting a symplectic form but not Kähler form. Examples

of such manifolds may be found for instance in [21] or [12]. Letω be a symplectic form

on S whose cohomology class [ω] lies in H2(S,Z), and let π : E → S be the Boothby-

Wang fibration associated with ω [8]. If g and J are a metric and an almost complex

operator adapted toω, then E carries aK-contact structure whose tensors (α,Z,J∗,g∗)
are naturally derived from (ω,J,g). The contact form α is just the connection 1-form

of the S1-bundle, dα = π∗ω, π∗J∗ = Jπ∗, and g∗ = π∗g +α⊗α. The characteris-

tic vector field Z is, up to a sign, the unit tangent vector field along the fibers of π .

That the above K-contact manifold E is not Sasakian follows from the well-known re-

sult of Hatakeyama which states that a regular contact manifold with structure tensors

(α,Z,J,g) is Sasakian if and only if the space of orbits of Z is a Kähler manifold with

projected tensors [10]. As a consequence of Theorem 4.3, we derive other examples

of K-contact structures which are not Sasakian. These come as simply connected, 5-

dimensional K-contact manifolds of maximum rank 3.

In [25], closed simply connected K-contact manifolds of dimension 5 and rank 3 have

been classified. Let M denote S2×S3 and N denote the nontrivial oriented S3 bundle

over S2. Let r be an integer, r > 3. In [25], Yamazaki showed that the connected sum

Q = #r−3M of r −3 copies of M carries a K-contact structure of rank 3 with exactly

r closed characteristics. Also, he showed that the connected sum W = N#r−4M of N
with r −4 copies of M carries a K-contact structure of rank 3 with exactly r closed
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characteristics. None of the manifolds Q and W above is homeomorphic to S5, there-

fore, As an immediate consequence of Theorem 4.3 in this note, none of the K-contact

structures on Q and W is Sasakian.

6. Sasakian manifolds of positive bisectional curvature. On compact Sasakian

manifolds, one has the following lemma due to Binh and Tamássy [4].

Lemma 6.1. Let (M,α,Z,J,g) be a closed 2n+1-dimensional Sasakian manifold and

N ⊂M , a 2r+1-dimensional invariant submanifold. Let γ(t) be a normal geodesic issu-

ing from γ(0)= x ∈N in a direction perpendicular to N. Then, there exist orthonormal

vectors Ei ∈ TxN, i= 1,2, . . . ,r , such that their parallel translated Ei(t) along γ(t) com-

pleted with JEi(t) form a vector system which is orthonormal and parallel along γ(t).

Proof. Let E1, . . . ,Er be an orthonormal system of vectors in TxN such that Z,E1,
Je1, . . . ,Er ,JEr is an orthonormal system of vectors tangent to N at x. We translate Ei
parallel along γ(t) to obtain Ei(t), Ei(0)= Ei. We claim that JEi(t) is also parallel along

γ(t). Indeed, denoting γ̇ by V and applying identity (2.5), one obtains

∇V
(
JEi(t)

)= (∇VJ)Ei(t)=−g(Z,Ei(t))V. (6.1)

Hence, JEi(t) will be parallel along γ if and only if fi(t) = g(Z,Ei(t)) = 0 for all t.
We will show that fi(t) satisfies the linear differential equations

f ′′i (t)=−fi(t),
f ′i (t)= Vg

(
Ei,Z

)=−g(Ei(t),JV),
f ′′i (t)=−Vg

(
Ei(t),JV

)=−g(Ei(t),Z)=−fi(t).
(6.2)

Moreover, fi(0) = g(Ei,Z) = 0 and f ′i (0) = −g(Ei,JV) = 0, because N is invariant and

so is the normal bundle of N in M . The initial value problem

f ′′i +fi = 0, fi(0)= 0, f ′i (0)= 0 (6.3)

has the unique solution fi(t)= 0 for all t.

Given two unit tangent vectors X and Y such that α(X) = 0 = α(Y) on a contact

2n+1-dimensional manifold (M,α,Z,J,g), the bisectional curvature H(X∧Y) of the

plane spanned by X and Y is defined by

H(X∧Y)= g(R(X,Y)Y ,X)+g(R(X,JY)JY ,X). (6.4)

The J-sectional curvature is by definition the sectional curvature of a plane spanned by

X and JX.

For closed, Sasakian manifolds of constant J-sectional curvature, Sharma [19] has

shown that the dimension ofN(1) is either 1 or 2n+1. Assuming only that the manifold

has positive bisectional curvature, we prove the following result.

Theorem 6.2. Let (M,α,Z,J,g) be a closed 2n+1-dimensional Sasakian manifold

of positive bisectional curvature. Then dimN(1)≤n+1 or dimN(1)= 2n+1.
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Proof. Suppose that N1 and N2 are two distinct 2l−1-dimensional leaves of N(1),
where 2l−1> 1. Denoting by T the distance between N1 and N2, there exists a minimal

geodesic c(t), t ∈ [0,T ], from N1 to N2 such that c(0) ∈ N1, c(T) ∈ N2, and c(t) is

the shortest such curve. Let V(t) be the unit tangent vector to the geodesic c(t). Then

V(0) is orthogonal to N1 and V(T) is orthogonal to N2. Let Ei, JEi, i= 1,2, . . . , l−1, be

an orthonormal basis for the contact distribution at c(0) ∈ N1 (recall N1 is a contact

submanifold). Let Ei(t) denote the parallel translation of Ei from c(0) to c(t). Then

Ei(t), JEi(t), i = 1,2, . . . , l−1, is a parallel orthonormal frame field along c(t) as was

shown in Lemma 6.1 (see also [4]). Suppose now that 2l− 1 > n+ 1. Then the span

of Ei, JEi, i = 1,2, . . . , l− 1, has dimension 2l− 2 which is bigger than 2n− (2l− 2),
the fiber dimension of the normal bundle of N2. Consequently, one can find a unit

vector F ∈ Tc(0)N1 which is a linear combination of the Ei(0), JEi(0), i = 1,2, . . . , l−1,

such that its parallel translated F(T) ∈ Tc(T)N2. Since N1 and N2 are invariant contact

submanifolds, one has also JF(T) ∈ Tc(T)N2. The vector fields F(t) and JF(t) along

c(t) provide variations cs(t) of the geodesic c(t) with endpoints in N1 and N2. Let

Vs(t) denote the tangent vector to the curves in such a variation. Then the arclength

functional L(s) is given by

L(s)=
∫ T

0

∥∥Vs(t)∥∥dt. (6.5)

One has L′(0)= 0 because c(t) is a minimal geodesic. Furthermore, by Singe formula

for the second variation [9], one has

L′′F (0)= σN2(F,F)(T)−σN1(F,F)(0)−
∫ T

0
g
(
R(F,V)V,F

)
(t)dt, (6.6)

where σNi is the second fundamental form of the submanifold Ni and g(R(F,V)V,F)
is the sectional curvature of the plane spanned by F and V . Similarly,

L′′JF (0)= σN2(JF,JF)(T)−σN1(JF,JF)(0)−
∫ T

0
g
(
R(JF,V)V,JF

)
(t)dt. (6.7)

Adding the two second variations and recalling that Ni, i= 1,2, is totally geodesic and

the bisectional sectional curvature H(V ∧ F) is positive by assumption, one has that

σN1(F,F)(0)= 0= σN2(F,F)(T) and

L′′F (0)+L′′JF (0)=−
∫ T

0
H(V ∧F)(t)dt < 0. (6.8)

Therefore, at least one of the second variations at c(t) is strictly negative, contradicting

the minimality of the geodesic c(t). Thus, we have established that if dimN(1) > n+1,

then N(1) has only one leaf, which has to be the manifold M itself.

7. Weinstein conjecture. Let (M,α,Z,J,g) be a closed contact manifold. Weinstein

conjecture [22] asserts that the characteristic vector field Z of α should have at least

one closed orbit. If Z belongs to the 1-nullity distribution N(1), then (M,α,Z,J,g)
is Sasakian, and Weinstein conjecture has been settled in that case [15]. In the non-

Sasakian case, one has the following.
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Theorem 7.1. Let (M,α,Z,J,g) be a closed contact metric structure such that Z
belongs to the k-nullity distribution N(k), 0< k< 1. Suppose that there is a nonsingular,

Killing vector field on (M,g). Then Z has at least two closed characteristics.

Proof. Since 0 < k < 1, dimN(k) = 1. Let C be a nonsingular Killing vector field

on M ; we may assume C to be a periodic vector field. Since C preserves the k-nullity

distribution N(k), one has

[C,Z]= fZ (7.1)

for some smooth function f on M . But also, using identity (2.4), one obtains the fol-

lowing:

α
(
[C,Z]

)= g(Z,[C,Z])=−g(Z,JC+JhC)−g(Z,∇ZC). (7.2)

But since C is Killing, g(Z,∇ZC)=−g(∇ZC,Z), thus g(∇ZC,Z)= 0 and

f =α([C,Z])= g(∇ZC,Z)= 0, (7.3)

from which follows the identity

[C,Z]= 0. (7.4)

Moreover, for an arbitrary vector field X on M ,

LCα(X)= Cα(X)−α
(
[C,X]

)
= Cg(Z,X)−g(Z,[C,X])
= g([C,Z],X)
= 0.

(7.5)

Therefore, one has

LCα= 0. (7.6)

As in [3], one defines a smooth function S on M by

S = iCα. (7.7)

S is a basic function relative to Z , indeed,

dS(Z)= iZdiCα= iZ
(
LCα−iCdα

)= 0. (7.8)

The differential of S is given by

dS = diCα= LCα−iCdα=−iCdα. (7.9)

A point p ∈ M is a critical point of S if and only if C(p) is proportional to Z(p).
Moreover, since S is basic relative to Z and [C,Z]= 0, any C orbit containing a critical

point p is itself a critical manifold and coincides with the Z orbit containing p. Thus,

it is a closed orbit of Z . Since S must have at least two critical points on two distinct Z
orbits, we conclude that Z must have at least two closed orbits.
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8. Minimal unit vector fields. Given a contact metric manifold (M,α,Z,J,g), one

can look at Z as an embedding

Z :M �→ T 1M, (8.1)

where T 1M is the unit tangent sphere bundle endowed with the Sasaki metric. One can

then ask when is Z a minimal unit vector field, that is, when is Z a critical point for the

volume functional defined on the space of unit vector fields on M .

The manifold T 1M is also equipped with a natural contact metric structure whose

characteristic vector field generates the well-known geodesic flow of M [17]. If Z(M)⊂
T 1M is a contact metric submanifold, then it is a minimal unit vector field [11]. Some

examples of minimal unit vector fields whose images in T 1M are also contact subman-

ifolds have been presented in [16]. Here, we prove the following.

Theorem 8.1. Let (M,α,Z,J,g) be a closed contact metric manifold with Z belonging

to the k-nullity distribution, k < 1. Let gl denote the deformation of g given by

gl = lg+(1−l)α⊗α, (8.2)

with

l= 1√
2−k (8.3)

and let T 1M be endowed with the Sasaki metric induced by gl. Then Z :M → T 1M is a

minimal unit vector field and Z(M)⊂ T 1M is a contact submanifold.

Proof. Since Z belongs to the k-nullity distribution, the operator h2 restricted to

the contact distribution acts as multiplication by λ2 = (1−k) [2]. The condition on l
then implies that λ2 = 1/l2−1, and by [18, Theorem 4.1], Z is a minimal unit vector

field whose image Z(M)⊂ T 1M is a contact submanifold.
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