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We use Nadler’s theorem and the resolvent operator technique form-accretive mappings to
suggest an iterative algorithm for solving generalized nonlinear variational inclusions with
relaxed strongly accretive mappings in Banach spaces. We prove the existence of solutions
for our inclusions without compactness assumption and the convergence of the iterative
sequences generated by the algorithm in real Banach spaces. Some special cases are also
discussed.
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1. Introduction. Variational inequality theory provides us with a unified framework

for dealing with a wide class of problems arising in elasticity, structural analysis, eco-

nomics, physical and engineering sciences, and so forth, see, for example, [2, 6, 13, 14]

and references therein. A useful and important generalization of variational inequalities

is a mixed type variational inequality containing nonlinear term. Due to the presence of

the nonlinear term, the projection method cannot be used to study the existence and al-

gorithm of solutions for the mixed type variational inequalities. In 1994, Hassouni and

Moudafi [14] used the resolvent operator technique for maximal monotone mappings to

study a class of mixed type variational inequalities with single-valued mappings called

variational inclusion and developed a perturbed algorithm for finding approximate so-

lutions to the mixed variational inequalities. Adly [1], Ahmad and Ansari [2], Ahmad

et al. [3], Chang et. al. [9], Ding [11, 12], and Huang [15, 16, 17] studied some important

generalizations of variational inclusions in different directions. Very recently, Chang

[8], Chang et al. [10], and Huang [17] introduced and studied some classes of set-valued

variational inclusions in real Banach spaces. Also, Alber and Yao [5] introduced a new

class of generalized multivalued covariational inequalities in Banach spaces.

Inspired and motivated by the recent research work going on in this field, we con-

sider in this paper the generalized nonlinear variational inclusions in Banach spaces. An

iterative algorithm is defined for solving generalized nonlinear variational inclusions

in Banach spaces by using Nadler’s theorem and the resolvent operator technique. Us-

ing the characterization of the resolvent operator, we have shown that the generalized

nonlinear variational inclusions in Banach spaces are equivalent to some kinds of fixed

point problems. We also establish that the approximate solutions obtained by our algo-

rithm converge to the exact solution of the generalized nonlinear variational inclusion

problem in Banach spaces.
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2. Preliminaries and formulations. Throughout this paper, we assume that E is a

real Banach space whose norm is denoted by ‖·‖, E∗ is the topological dual of E, CB(E)
is the family of all nonempty, closed, and bounded subsets of E,D(·,·) is the Hausdorff

metric on CB(E) defined by

D(A,B)=max
{

sup
x∈A

d(x,B),sup
y∈B

d(A,y)
}
, (2.1)

where d(x,B) = infy∈B d(x,y), d(A,y) = infx∈Ad(x,y), d is the metric on E induced

by the norm ‖·‖, 〈·,·〉 is the duality pairing between E and E∗, D(T) is the domain of

T , and J : E→ 2E
∗

is the normalized duality mapping defined by

J(x)= {f ∈ E∗ : 〈x,f 〉 = ‖x‖·‖f‖, ‖f‖ = ‖x‖}, x ∈ E. (2.2)

We recall that the uniform convexity [5] of the space E means that for any given ε > 0,

there exists δ > 0 such that for all x,y ∈ E, ‖x‖ ≤ 1, ‖y‖< 1, and ‖x−y‖ = ε, we have

‖x+y‖ ≤ 2(1−δ). (2.3)

The function

δB(ε)= inf
{

1− ‖x+y‖
2

: ‖x‖ = 1, ‖y‖ = 1, ‖x−y‖ = ε
}

(2.4)

is called the modulus of the convexity of the space E.

The uniform smoothness of the space E means that for any given ε > 0, there exists

δ > 0 such that

‖x+y‖+‖x−y‖
2

−1≤ ε‖y‖ (2.5)

holds. The function

ρB(t)= sup
{‖x+y‖+‖x−y‖

2
−1 : ‖x‖ = 1, ‖y‖ = t

}
(2.6)

is called the modulus of the smoothness of the space E.

We observe that the space E is uniformly convex if and only if δB(ε) > 0 for all ε > 0,

and it is uniformly smooth if and only if limt→0 t−1ρB(t)= 0. The following inequalities

will be used for the proof of our main result.

Proposition 2.1 [4]. Let E be a uniformly smooth Banach space and let J : E → 2E
∗

be the normalized duality mapping. Then for any x,y ∈ E,

(i) ‖x+y‖2 ≤ ‖x‖2+2〈y,j(x+y)〉, for all j(x+y)∈ J(x+y);
(ii) 〈x−y,j(x)−j(y)〉 ≤ 2c2ρB(4‖x−y‖/c), where c =

√
(‖x‖2+‖y‖2)/2.

Definition 2.2 [5]. Let J : E→ 2E
∗

be the normalized duality mapping. The mapping

f : E→ E is said to be

(1) strongly accretive if there exists a constant α> 0 such that

〈
f(x)−f(y),j(x−y)〉≥α‖x−y‖2, ∀x,y ∈ E, j(x−y)∈ J(x−y); (2.7)
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(2) relaxed strongly accretive with respect to the set-valued mapping T : E→ CB(E)
if there exists a constant ν ≥ 0 such that

〈
f(u)−f(v),j(x−y)〉≤−ν‖x−y‖2, (2.8)

for all x,y ∈ E, u∈ T(x), v ∈ T(y), and j(x−y)∈ J(x−y).
Remark 2.3. If E =H is a Hilbert space, then the notion of relaxed strongly accretive

coincides with that of relaxed Lipschitz (see [19]).

Definition 2.4 [17]. Let J : E → 2E
∗

be the normalized duality mapping. The set-

valued mapping A :D(A)⊂ E→ 2E is said to be

(1) accretive if for any x,y ∈ D(A), there exists j(x−y) ∈ J(x−y) such that for

all u∈A(x), v ∈A(y),

〈
u−v,j(x−y)〉≥ 0; (2.9)

(2) strongly accretive, k ∈ (0,1), if for any x,y ∈ D(A), there exists j(x −y) ∈
J(x−y) such that for all u∈A(x), v ∈A(y),

〈
u−v,j(x−y)〉≥ k‖x−y‖2; (2.10)

(3) m-accretive if A is accretive and (I+ρA)(D(A))= E for every (equivalently, for

some) ρ > 0, where I is the identity mapping (equivalently, if A is accretive and

(I+A)(D(A))= E).

Remark 2.5 [9]. If E =H is a Hilbert space, thenA :D(A)⊂H → 2H is anm-accretive

mapping if and only if A :D(A)⊂H → 2H is a maximal monotone mapping.

Lemma 2.6 [17]. Let g : E → E be a continuous and k-strongly accretive mapping.

Then g maps E onto E.

For a given set-valued mapping T : E → CB(E), single-valued mappings f ,g : E → E,

and m-accretive mapping A : E→ 2E , we consider the following problem:

(i) GNVIP: find x ∈ E,w ∈ T(x) such that 0∈ g(x)−f(w)+A(g(x)).
It is called the generalized nonlinear variational inclusion problem (GNVIP) in Banach

spaces.

Now we present some particular cases of the GNVIP which show that our GNVIP is a

more general and unified problem.

Special cases. (1) If E = H is a Hilbert space and A = ∂ϕ, where ϕ : H → R ∪
{+∞} is a proper convex lower semicontinuous function on H and ∂ϕ denotes the

subdifferential of function ϕ, then GNVIP is equivalent to finding x ∈H and w ∈ T(x)
such that g(x)∩dom(∂ϕ) �= ∅ and

〈
g(x)−f(w),y−g(x)〉≥ϕ(g(x))−ϕ(y), ∀y ∈H, (2.11)
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which was introduced and studied by Ahmad and Ansari [2]. If ϕ(x) = IK(x), the indi-

cator function of a closed convex set K in H defined by

IK(x) =

0, x ∈K,
+∞, otherwise,

(2.12)

then problem (2.11) reduces to a problem considered by Verma [19].

(2) If E =H is a Hilbert space and A :H → 2H is a maximal monotone mapping, then

by Remark 2.5, A is also anm-accretive mapping. Thus problem GNVIP is equivalent to

finding x ∈H and w ∈ T(x) such that

0∈ g(x)−f(w)+A(g(x)), (2.13)

which is a variant form of the problem considered by Huang [16].

(3) If g(x)−f(w)=w, then GNVIP is equivalent to finding x ∈H andw ∈ T(x) such

that

0∈w+A(g(x)), (2.14)

which was studied and introduced by Huang [15].

3. Iterative algorithms

Definition 3.1 [7]. LetA :D(A)⊂ E→ 2E be anm-accretive mapping. For any ρ > 0,

the mapping RAρ : E→D(A) associated with A defined by

RAρ (u)= (I+ρA)−1(u), u∈ E, (3.1)

is called the resolvent operator.

Definition 3.2. The resolvent operator RAρ is said to be a retraction on D(A) if

(I+ρA)−1 ◦(I+ρA)−1 = (I+ρA)−1.

Remark 3.3. It is well known that RAρ is a single-valued and nonexpansive mapping

(see [8]).

To propose the algorithm for computing the approximate solution of GNVIP, we

convert GNVIP into a fixed point problem.

Lemma 3.4. The pair (x,w) with x ∈ E and w ∈ T(x) is a solution of GNVIP if and

only if (x,w) satisfies the following relation:

g(x)= RAρ
[
g(x)−ρ(g(x)−f(w))], (3.2)

where ρ > 0 is a constant, RAρ = (I+ρA)−1 is the resolvent operator associated with A,

and I is the identity operator on E.
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Proof. From the definition of the resolvent operator RAρ associated with A and re-

lation (3.2), we have

g(x)= RAρ
[
g(x)−ρ(g(x)−f(w))]

= (I+ρA)−1[g(x)−ρ(g(x)−f(w))], (3.3)

and therefore

g(x)−ρ(g(x)−f(w))∈ g(x)+ρA(g(x)). (3.4)

The above relations hold if and only if x ∈ E and w ∈ T(x) such that

0∈ g(x)−f(w)+A(g(x)). (3.5)

We now invoke Lemmas 3.4 and 2.6 and Nadler’s theorem [18] to suggest the follow-

ing algorithm for solving GNVIP in the setting of real Banach spaces.

Algorithm 3.5. Suppose that g : E → E is a continuous and k-strongly accretive

mapping. For any given x0 ∈ E, we take w0 ∈ T(x0) and we let

x1 = x0−g
(
x0
)+RAρ [g(x0

)−ρ(g(x0
)−f (w0

))]
. (3.6)

Since w0 ∈ T(x0)∈ CB(E), by Nadler [18], there exists w1 ∈ T(x1) such that

∥∥w0−w1

∥∥≤ (1+1)D
(
T
(
x0
)
,T
(
x1
))
. (3.7)

Let

x2 = x1−g
(
x1
)+RAρ [g(x1

)−ρ(g(x1
)−f (w1

))]
. (3.8)

Again by Nadler [18], there exists w2 ∈ T(x2) such that

∥∥w1−w2

∥∥≤ (1+ 1
2

)
D
(
T
(
x1
)
,T
(
x2
))
. (3.9)

Continuing the above process inductively, we can obtain the sequences {xn} and {wn}
such that

xn+1 = xn−g
(
xn
)+RAρ [g(xn)−ρ(g(xn)−f (wn

))]
,

wn ∈ T
(
xn
)
,
∥∥wn−wn+1

∥∥≤ (1+ 1
n+1

)
D
(
T
(
xn
)
,T
(
xn+1

))
,

(3.10)

where n= 0,1,2, . . . and ρ > 0 is a constant.

If g(x)−f(w) =w, then from Algorithm 3.5, we derive the following algorithm to

find the approximate solution for problem (2.14) proposed by Huang [17].
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Algorithm 3.6. Suppose that g : E → E is a continuous and a k-strongly accretive

mapping. For any given x0 ∈ E, compute the sequence {xn} and {wn} by iterative

scheme such that

g
(
xn+1

)= RAρ [g(xn)−ρwn
]
,

wn ∈ T
(
xn
)
,
∥∥wn−wn+1

∥∥≤ (1+ 1
n+1

)
D
(
T
(
xn
)
,T
(
xn+1

))
,

(3.11)

where n= 0,1,2, . . . .

4. Existence and convergence results. In this section, we prove the existence of a so-

lution for GNVIP and the convergence of iterative sequences generated by Algorithm 3.5.

Definition 4.1. The mapping g : E → E is said to be Lipschitz continuous if there

exists a constant δ > 0 such that

∥∥g(x)−g(y)∥∥≤ δ‖x−y‖, ∀x,y ∈ E. (4.1)

Definition 4.2. The set-valued mapping T : E → CB(E) is said to be D-Lipschitz

continuous if there exists a constant η > 0 such that

D
(
T(x),T(y)

)≤ η‖x−y‖, ∀x,y ∈ E. (4.2)

Theorem 4.3. Let E be a real Banach space with the module of smoothness τB(t) ≤ Ct2

for someC > 0. LetA : E→ 2E be anm-accretive mapping, let g,f : E→ E be single-valued

mappings, and let T : E → CB(E) be a set-valued mapping. Suppose that the following

conditions are satisfied:

(i) g is both k-strongly accretive and Lipschitz continuous with constant δ > 0;

(ii) f is both relaxed strongly accretive with respect to T with constant ν ≥ 0 and

Lipschitz continuous with constant λ > 0;

(iii) T is D-Lipschitz continuous with constant η > 0.

If (I+ρA)−1 ◦(I+ρA)−1 = (I+ρA)−1 and

∣∣∣∣ρ− 1+ν+P(1−2P)
1+2ν+64Cλ2η2−P2

∣∣∣∣

<

√[
(ν+1)+P(2P−1)

]2−4P(1−P)(1+2ν+64Cλ2η2−P2
)

1+2ν+64Cλ2η2−P2
,

1+ν > P(2P−1)+
√

4P(1−P)(1+2ν+64Cλ2η2−P2
)
,

1+2ν+64Cλ2η2 > P2 for P =
√

1−2K+64Cλ2 <
1
2
,

(4.3)

then there exists a solution (x,w) of GNVIP, and the iterative sequences {xn} and {wn}
generated by Algorithm 3.5 converge strongly to x and w in E, respectively.
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Proof. From Algorithm 3.5, we have

∥∥xn+1−xn
∥∥= ∥∥xn−xn−1−

(
g
(
xn
)−g(xn−1

))+RAρ (z(xn))−RAρ (z(xn−1
))∥∥, (4.4)

where z(xn) = g(xn)−ρ(g(xn)−f(wn)). Since the resolvent operator RAρ is nonex-

pansive, we have

∥∥RAρ (z(xn))−RAρ (z(xn−1
))∥∥

≤ ∥∥z(xn)−z(xn−1
)∥∥

= ∥∥(1−ρ)(g(xn)−g(xn−1
))+ρ(f (wn

)−f (wn−1
))∥∥

≤ (1−ρ)∥∥xn−xn−1−
(
g
(
xn
)−g(xn−1

))∥∥
+∥∥(1−ρ)(xn−xn−1

)+ρ(f (wn
)−f (wn−1

))∥∥.

(4.5)

From (4.4) and (4.5), we have

∥∥xn+1−xn
∥∥≤ ∥∥xn−xn−1−

(
g
(
xn
)−g(xn−1

))∥∥+∥∥RAρ (z(xn))−RAρ (z(xn−1
))∥∥

≤ ∥∥xn−xn−1−
(
g
(
xn
)−g(xn−1

))∥∥
+(1−ρ)∥∥xn−xn−1−

(
g
(
xn
)−g(xn−1

))∥∥
+∥∥(1−ρ)(xn−xn−1

)+ρ(f (wn
)−f (wn−1

))∥∥
= (2−ρ)∥∥xn−xn−1−

(
g
(
xn
)−g(xn−1

))∥∥
+∥∥(1−ρ)(xn−xn−1

)+ρ(f (wn
)−f (wn−1

))∥∥.

(4.6)

Since g is k-strongly accretive and Lipschitz continuous with constant δ > 0, and by

Proposition 2.1, we have

∥∥xn−xn−1−
(
g
(
xn
)−g(xn−1

))∥∥2

≤ ∥∥xn−xn−1

∥∥2+2
〈−(g(xn)−g(xn−1

))
,j
(
xn−xn−1−

(
g
(
xn
)−g(xn−1

))〉
= ∥∥xn−xn−1

∥∥2+2
〈−(g(xn)−g(xn−1

))
,j
(
xn−xn−1

))〉
+2

〈−(g(xn)−g(xn−1
))
,j
(
xn−xn−1−

(
g
(
xn
)−g(xn−1

)))−j(xn−xn−1
)〉

(4.7)

≤ ∥∥xn−xn−1

∥∥2−2k
∥∥xn−xn−1

∥∥2+4d2ρB
(

4
∥∥g(xn)−g(xn−1

)∥∥
d

)

≤ ∥∥xn−xn−1

∥∥2−2k
∥∥xn−xn−1

∥∥2+64C
∥∥g(xn)−g(xn−1

)∥∥2

≤ (1−2k+64Cδ2)∥∥xn−xn−1

∥∥2.

(4.8)
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Since f is relaxed strongly accretive with respect to T and with constant ν > 0, and Lip-

schitz continuous with constant λ > 0, and T is D-Lipschitz continuous with constant

η > 0, and by Proposition 2.1, we obtain

∥∥(1−ρ)(xn−xn−1
)+ρ(f (wn

)−f (wn−1
))∥∥2

≤ (1−ρ)2∥∥xn−xn−1

∥∥2

+2
〈
ρ
(
f
(
wn

)−f (wn−1
))
,j
(
(1−ρ)(xn−xn−1

)+ρ(f (wn
)−f (wn−1

)))〉

= (1−ρ)2∥∥xn−xn−1

∥∥2

+2
〈
ρ
(
f
(
wn

)−f (wn−1
))
,j
(
(1−ρ)(xn−xn−1

)+ρ(f (wn
)−f (wn−1

)))
−j((1−ρ)(xn−xn−1

))〉
+2

〈
ρ
(
f
(
wn

)−f (wn−1
))
,j
(
(1−ρ)(xn−xn−1

))〉

= (1−ρ)2∥∥xn−xn−1

∥∥2+4d2ρB
(

4
d
|ρ|∥∥f (wn

)−f (wn−1
)∥∥)

+2ρ(1−ρ)〈f (wn
)−f (wn−1

)
,j
(
xn−xn−1

)〉

≤ (1−ρ)2∥∥xn−xn−1

∥∥2−2ρ(1−ρ)ν∥∥xn−xn−1

∥∥2

+64Cρ2
∥∥f (wn

)−f (wn−1
)∥∥2

≤ [(1−ρ)2−2ρ(1−ρ)ν]∥∥xn−xn−1

∥∥2

+64Cρ2λ2
(

1+ 1
n

)2

D2(T(xn),T(xn−1
))

≤
[
(1−ρ)2−2ρ(1−ρ)ν+64Cρ2λ2

(
1+ 1

n

)2

η2

]∥∥xn−xn−1

∥∥2.

(4.9)

From (4.6), (4.7), and (4.8), it follows that

∥∥xn+1−xn
∥∥≤ θn∥∥xn−xn−1

∥∥, (4.10)

where

θn = (2−ρ)
[
1−2k+64Cδ2]1/2

+
[
(1−ρ)2−2ρ(1−ρ)ν+64Cρ2λ2

(
1+ 1

n

)2

η2

]1/2

.
(4.11)

Letting

θ = (2−ρ)[1−2k+64Cδ2]1/2+[(1−ρ)2−2ρ(1−ρ)ν+64Cρ2λ2η2]1/2, (4.12)
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we know that θn→ θ as n→∞. From condition (4.3), it follows that θ < 1. Hence θn < 1

for n sufficiently large. Consequently, {xn} is a Cauchy sequence, and thus, converges

to some x ∈ E. By Algorithm 3.5 and the D-Lipschitz continuity of T , it follows that

∥∥wn−wn−1

∥∥≤ (1+ 1
n+1

)
D
(
T
(
xn
)
,T
(
xn−1

))

≤
(

1+ 1
n

)
η
∥∥xn−xn−1

∥∥, (4.13)

and hence {wn} is also a Cauchy sequence in E. Therefore, there existsw ∈ E such that

wn→w as n→∞. Since g, f , and RAρ are continuous in E, we have

x = x−g(x)+RAρ
(
g(x)−ρ(g(x)−f(w))). (4.14)

Finally, we prove that w ∈ T(x). In fact, since wn ∈ T(xn) and

d
(
wn,T(x)

)≤max

{
d
(
wn,T(x)

)
, sup
v∈T(x)

d
(
T
(
xn
)
,v
)}

≤max

{
sup

y∈T(xn)
d
(
y,T(x)

)
, sup
v∈T(x)

d
(
T
(
xn
)
,v
)}

=D(T(xn),T (x)),
(4.15)

we have

d
(
w,T(x)

)≤ ∥∥w−wn
∥∥+d(wn,T(x)

)
≤ ∥∥w−wn

∥∥+D(T(xn),T (x))
≤ ∥∥w−wn

∥∥+η∥∥xn−x∥∥ �→ 0 (n �→∞),
(4.16)

which implies that d(w,T(x))= 0. Since T(x)∈ CB(E), it follows thatw ∈ T(x). Then

by Lemma 3.4, we get the conclusion.

Remark 4.4. Huang [17] studied a particular case of our problem (GNVIP) in the

setting of real Banach spaces using the resolvent operator technique for m-acceretive

mapping. By defining the resolvent operator to be a retraction mapping, we proved the

existence of a solution of a more general problem than that considered by Huang [17].

The following result weakens the conditions of f in Theorem 4.3.

Theorem 4.5. Let E be a real Banach space with the module of smoothness τB(t) ≤ Ct2

for someC > 0. LetA : E→ 2E be anm-accretive mapping, let g,f : E→ E be single-valued

mappings, and let T : E → CB(E) be a set-valued mapping. Suppose that the following

conditions are satisfied:

(1) g is both k-strongly accretive and Lipschitz continuous with constant δ > 0;

(2) f is Lipschitz continuous with constant λ > 0;

(3) T is D-Lipschitz continuous with constant η > 0;

(4) 0< (1−2K+64Cδ2)1/2+(1−ρ)δ+ρλη < 1.
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Then there exists a solution (x,w) of GNVIP and the iterative sequences {xn} and {wn}
generated by Algorithm 3.5 converge strongly to x, w in E, respectively.

Proof. From Algorithm 3.5 and using the fact that the resolvent operator is nonex-

pansive, we have

∥∥xn+1−xn
∥∥

= ∥∥xn−g(xn)+RAρ {g(xn)−ρ(g(xn)−f (wn
))}

−[xn−1−g
(
xn−1

)+RAρ {g(xn−1
)−ρ(g(xn−1

)−f (wn−1
))}]∥∥

≤ ∥∥xn−xn−1−
(
g
(
xn
)−g(xn−1

))∥∥
+∥∥(1−ρ)(g(xn)−g(xn−1

))+ρ(f (wn
)−f (wn−1

))∥∥
≤ ∥∥xn−xn−1−

(
g
(
xn
)−g(xn−1

))∥∥+(1−ρ)∥∥g(xn)−g(xn−1
)∥∥

+ρ∥∥f (wn
)−f (wn−1

)∥∥.

(4.17)

It follows from (4.8) that

∥∥xn−xn−1−
(
g
(
xn
)−g(xn−1

))2 ≤ (1−2k+64Cδ2)∥∥xn−xn−1

∥∥2. (4.18)

Also, it follows from the Lipschitz property of the corresponding functions that

∥∥g(xn)−g(xn−1
)∥∥= δ∥∥xn−xn−1

∥∥,
∥∥f(wn)−f

(
wn−1

)∥∥= λ∥∥wn−wn−1

∥∥
≤ λ

(
1+ 1

n

)
D
(
T
(
xn
)
,T
(
xn−1

))

≤ λ
(

1+ 1
n

)
η
∥∥xn−xn−1

∥∥
= λη∥∥xn−xn−1

∥∥ (as n �→∞).

(4.19)

From (4.8), (4.17), and (4.19), we have the following inequality:

∥∥xn+1−xn
∥∥≤ q∥∥xn−xn−1

∥∥, (4.20)

where q = (1− 2k+ 64Cδ2)1/2(1−ρ)δ+ρλη and 0 < q < 1 by condition (4). Conse-

quently, {xn} is a Cauchy sequence in E. Then the result follows by using the same

arguments of Theorem 4.3.
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