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Viglino defined a Hausdorff topological space to be C-compact if each closed subset of the
space is anH-set in the sense of Velǐcko. In this paper, we study the class of Hausdorff spaces
characterized by the property that each closed subset is an S-set in the sense of Dickman
and Krystock. Such spaces are calledC-s-compact. Recently, the notion of strongly subclosed
relation, introduced by Joseph, has been utilized to characterize C-compact spaces as those
with the property that each function from the space to a Hausdorff space with a strongly
subclosed inverse is closed. Here, it is shown that C-s-compact spaces are characterized
by the property that each function from the space to a Hausdorff space with a strongly
sub-semiclosed inverse is a closed function. It is established that this class of spaces is the
same as the class of Hausdorff, compact, and extremally disconnected spaces. The class of
C-s-compact spaces is properly contained in the class of C-compact spaces as well as in the
class of S-closed spaces of Thompson. In general, a compact space need not be C-s-compact.
The product of two C-s-compact spaces need not be C-s-compact.
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1. Introduction. It is well known that every continuous function from a compact

space to a Hausdorff space is a closed function. In 1969, Viglino [15] introduced the

family of C-compact spaces, showing that every continuous function from a C-compact

space to a Hausdorff space is a closed function, and that this class of spaces properly

contains the class of compact spaces. A space X is C-compact if for every closed subset

A of X and for every cover of A by open subsets of X, there is a finite subfamily whose

closures in X will cover A. In 1970, Goss and Viglino [4] provided a Hausdorff space

which is not C-compact but which has the property that every continuous function

from the space to a Hausdorff space is a closed function. In 1969, Dickman and Zame

[3] introduced functionally compact spaces, a class of spaces which is characterized by

the property that every continuous function from any one of its members to a Hausdorff

space is a closed function. Since then, a number of researchers (see [1, 4, 5, 8, 10, 12]

to mention a few) have studied these classes of spaces and a great deal of effort has

been given to the problem of identifying a class of functions such that a space X is C-

compact if and only if each function in this class from the space X to a Hausdorff space

is closed. Very often, the result of such an effort was the introduction of new classes

of spaces. Throughout this paper, all spaces are assumed to be Hausdorff. Definitions

of the concepts used are given in Section 2.

In [10], the notion of strongly subclosed relation, introduced by Joseph [6], was used

to give the following solution to this problem.
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Theorem 1.1. A space X is C-compact if and only if all functions on X with strongly

subclosed inverses are closed functions.

Motivated by this discovery, in [8], Joseph et al. studied the following two classes of

spaces, each of which contains the class of countably compact spaces as well as the

class of C-compact spaces.

(1) Each continuous function from the space maps closed subsets onto sequentially

closed subsets.

(2) Each function on the space with a strongly subclosed inverse maps closed subsets

onto sequentially closed subsets.

Spaces satisfying (1) are called sequentially functionally compact and those satisfying

(2) are called sequentially C-compact. Spaces satisfying (2) also satisfy (1). The present

paper is also a study in this direction. In 1976, Thompson [13] introduced the concept

of an S-closed space while studying compact extremally disconnected Hausdorff spaces

in an H-closed model using the concept of a semiopen subset of Levine [9]. A space X
is S-closed if every cover of X with semiopen sets has a finite subfamily whose closures

cover X. This concept generated considerable interest among researchers in this field.

Parallel to the concept of an H-set, the concept of an S-set was introduced by Dickman

and Krystock [2]. A subset A of X is an S-set if every cover of A by semiopen subsets

of X has a finite subfamily whose closures in X cover A. In this paper, a space X is C-

s-compact if every cover of every closed subset A of X, by semiopen subsets of X, has

a finite subfamily whose closures in X cover A. In other words, a C-s-compact space is

a space for which every closed subset is an S-set. Here, using the concept of functions

with strongly sub-semiclosed graphs introduced by Joseph and Kwack [7], the class of

C-s-compact spaces is characterized by each of the following:

(a) each function from X to a Hausdorff space Y with a strongly sub-semiclosed

inverse is a closed function;

(b) each function from X to a Hausdorff space Y with a strongly sub-semiclosed

inverse is a semiclosed function.

In [1], Clay and Joseph proved that a Hausdorff space Y is C-compact if and only

if every strongly subclosed relation from a Hausdorff space X to Y is upper semicon-

tinuous, denoted as u.s.c. Recall that a relation R from X to Y is a subset of X ×Y ,

where the domain of R is X. A relation R from X to Y will be denoted by R ⊆X×Y . In

Theorem 3.10, we show that a space Y is C-s-compact if and only if for every space X,

every strongly sub-semiclosed relation from X to Y is u.s.c.

In [3], Dickman and Zame defined a space to be functionally compact if each open

filterbase Ω on the space satisfying adΩ =⋂Ω F converges to
⋂
Ω F . Theorem 3.2 estab-

lishes that a space X is C-s-compact if and only if each open filterbase Ω is an open-set

base for sadΩ.

In 1966, Veličko [14] introduced the concept of an H-set. A subset A of a Hausdorff

space X is anH-set if every cover of A, by open subsets of X, contains a finite subfamily

whose closures in X cover A. Since the introduction of this concept, it has been widely

used in the study of H-closed-type properties. In fact, C-compact spaces are those

spaces for which every closed subset is an H-set.

Among other characterizations, the following theorem is proved.
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Theorem 1.2. A space X is C-s-compact if and only if every nonempty proper closed

subset of X is an S-set.

In view of the above result and [2, Proposition 4.1], in the class of Hausdorff spaces,

the property of being C-s-compact is equivalent to the property of being compact and

extremally disconnected. It is known that every compact and extremally disconnected

space is homeomorphic to the Stone space of some complete Boolean algebra. Thus

a C-s-compact space is homeomorphic to the Stone space of some complete Boolean

algebra. In Section 3, characterizations of and related results for C-s-compact spaces

are obtained using covers, filterbases, relations satisfying certain graph conditions, and

S-sets. In Section 4, examples are given to distinguish the class of C-s-compact spaces

from the classes of compact spaces, S-closed spaces, and C-compact spaces. It is clear

that a C-s-compact space is C-compact as well as S-closed. Examples are given to show

that an S-closed space need not be C-s-compact. Also, a C-compact space might fail to

be C-s-compact. An example of a compact space which is not C-s-compact is provided.

Products of two C-s-compact spaces need not be C-s-compact. The basic definitions

and notations used in the paper are found in the following section.

2. Preliminaries. Let A be a subset of a space X. Closure and interior of A are de-

noted by clA and intA, respectively. The family of all open subsets of X containing A
will be denoted by Σ(A) (Σ(x), if A = {x}). A set A ⊆ X is said to be semiopen [9] if

there is an open set U ⊆ X such that U ⊆ A ⊆ clU . The family of all semiopen subsets

of X containing A is denoted by SO(A) (SO(x), if A= {x}). A point x is a semi-interior

point of A if there is a B ∈ SO(x) contained in A. The semi-interior of A is denoted by

sintA, and A is semiopen if and only if A= sintA. A point x is in the semiclosure of A if

V∩A �= ∅ for every V ∈ SO(x). The semiclosure of A is denoted by sclA, and A is semi-

closed if A = sclA. The θ-closure [14] (resp., θ-semiclosure [7]) of A, denoted as clθ A,

(resp., sclθ A) is
⋂
Σ(A) clV (resp., {x ∈X such that clV∩A �= ∅ for every V ∈ SO(x)}). A

set A⊆X is regularly open (resp., regularly closed) if A= int(clA) (resp., A= cl(intA))
or equivalently interior of a closed set (resp., closure of an open set). Since the family of

regularly closed subsets of a space X is the same as the family of closures of semiopen

subsets of X, then x ∈ sclθ F if and only if for every regularly closed set V ⊆ X con-

taining x, V ∩ F �= ∅. The θ-adherence [14] (resp., s-adherence, s-θ-adherence) of a

filterbase Ω, denoted as adθΩ (resp., sadΩ, sadθΩ) on X, is
⋂
Ω clθ F (resp.,

⋂
Ω sclF ,⋂

Ω sclθ F ). The s-θ-adherent point and s-adherent point of a filterbase are called s-
accumulation point and s∗-accumulation point in [2], respectively. It is clear that for a

set A, sclθ A⊆ clθ A, and for a filterbase Ω, every s-adherent point is an adherent point

and an s-θ-adherent point is a θ-adherent point. A filterbaseΩ is s-adherent convergent

if every neighborhood of the s-adherent set ofΩ contains a member ofΩ. LetX and Y be

topological spaces. A relation R ⊆X×Y is strongly subclosed (has a strongly subclosed

graph [6]) (resp., strongly sub-semiclosed) if adθ R(Ω)⊆ R(x) (resp., sadθ R(Ω)⊆ R(x))
for each x ∈ X and filterbase Ω on X − {x} with Ω → x. In [7], a function with a

strongly sub-semiclosed graph is called a function with θ-semi-subclosed graph. A

function g ⊆ X×Y has a strongly subclosed inverse (resp., strongly sub-semiclosed in-

verse) if g−1 ⊆ g(X)×X is strongly subclosed (resp., strongly sub-semiclosed). Clearly,
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a strongly subclosed relation R ⊆ X ×Y is strongly sub-semiclosed. It is known that

continuous, and indeed θ-continuous, functions have strongly subclosed inverses. A

relation R ⊆ X × Y is u.s.c. [1], if for each x ∈ X and W ∈ Σ(R(x)) in Y , there is a

V ∈ Σ(x) in X such that R(V) ⊆W . A function f : X → Y is said to be semiclosed [11]

if f(A) is semiclosed for each closed A ⊆ X. A space X is extremally disconnected if

the closure of every open set is open. Therefore, in an extremally disconnected space,

every regularly closed set is open. Throughout the paper, unless otherwise stated, all

operations are taken with respect to the original space.

3. C-s-compact spaces

Definition 3.1. A space (X,T) is C-s-compact if, whenever A is a closed subset

of X and Ω is a T -semiopen cover of A, there is a finite subfamily Λ of Ω such that

A⊆⋃Λ clU , closures taken in the original topology.

Equivalently, X is C-s-compact if every closed subset is S-closed, relative to X. Ob-

viously, a C-s-compact space is C-compact as well as S-closed. But as will be seen in

Section 4, an S-closed space as well as a C-compact space might fail to be C-s-compact.

Theorem 3.2. The following are equivalent for a space (X,T):
(a) X is C-s-compact;

(b) for each closed set A⊆X and each filterbase Ω on A, A∩sadθΩ �= ∅;

(c) for each closed set A⊆X and each open filterbase Ω on A, A∩sadΩ �= ∅;

(d) each open filterbase on X is s-adherent convergent;

(e) each open filterbase Ω is an open-set base for sadΩ;

(f) if A is a closed subset of X and Γ is a family of semiclosed subsets of X such that

(
⋂
Γ G)∩A=∅, then there is a finite Λ⊆ Γ such that (

⋂
Λ intG)∩A=∅;

(g) if A is a closed subset of X and Ω is an open filterbase on X whose members have

nonempty intersection with A, then there is an s-adherent point of Ω in A;

(h) given a closed subset A of X, a T -semiopen cover Γ of X−A, and an open neigh-

borhood V of A, there is a finite Λ⊆ Γ such that X = V ∪(⋃Λ clU).

Proof. The proof will follow the sequence (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(f)⇒(g)⇒(a), (g)⇒
(h)⇒(d).

(a)⇒(b). Let X be C-s-compact and let A be a closed subset of X. Let Ω be a filterbase

on A and suppose that A∩ sadθΩ = ∅. Then for each a ∈ A, there is an Fa ∈ Ω and

a �∈ sclθ Fa. Hence, for each a ∈ A, there is a Ua ∈ SO(a) such that clUa∩Fa =∅. The

family � = {Ua : a ∈ A} is a semiopen cover of A. Choose a finite B ⊆ A such that

A ⊆ ⋃B clUa. Now, choose F ∈ Ω such that F ⊆ ⋂B Fa. A contradiction of the fact that

clUa∩Fa =∅ for every a∈ B is reached since clUa∩F �= ∅ for some a∈ B and F ⊆ Fa
for every a∈ B.

(b)⇒(c). Let A be a closed subset of X and let Ω be an open filterbase on A. Suppose

that A∩sad(Ω) = ∅. Then for each a ∈ A, there is an Fa ∈ Ω and a Ua ∈ SO(a) such

that Ua∩Fa = ∅. Since Fa is open, it follows that for each a ∈ A, clUa∩Fa = ∅. This

contradicts (b).

(c)⇒(d). Let Ω be an open filterbase on X and let A be the s-adherent set of Ω. Then A
is nonempty. LetU be an open neighborhood ofA. Then {X−sclF : F ∈Ω} is a semiopen
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cover of the closed set X−U . Hence, there is a finite Λ⊆Ω such that X−U ⊆⋃Λ cl(X−
sclF)⊆⋃Λ(X−F)=X−⋂ΛF . Hence,

⋂
ΛF ⊆U . Thus, Ω is s-adherent convergent.

(d)⇒(e).The proof follows immediately.

(e)⇒(f). Let A be a closed subset of X and let Γ be a family of semiclosed subsets

of X such that (
⋂
Γ U)∩A =∅. Suppose that for every finite Λ ⊆ Γ , (⋂Λ intU)∩A �= ∅.

Then {(⋂Λ intU)∩A :Λ finite, Λ⊆ Γ} is an open filterbase onA. Hence, �= {(⋂Λ intU) :

Λ finite, Λ⊆ Γ} is an open filterbase on X. Then

sad�= B =
⋂
�

sclV =
⋂

finiteΛ⊆Γ
scl

(⋂
Λ

intU
)
⊆

⋂
finiteΛ⊆Γ

(⋂
Λ

scl(intU)
)
. (3.1)

Since each U is semiclosed and (
⋂
Γ U)∩A =∅, X−A is an open set containing B. But

no V ∈� is contained in X−A. This contradicts (e).

(f)⇒(g). Let A be a closed subset of X and let Ω be an open filterbase on X whose

members have nonempty intersection with A. Suppose that (sadΩ)∩A = ∅. Then

{sclF : F ∈ Ω} is a family of semiclosed sets such that (
⋂
Ω sclF)∩A = ∅. Hence, in

view of (f), choose a finite Λ⊆Ω such that (
⋂
Λ int(sclF))∩A=∅. Since each F is open,

this means that (
⋂
ΛF)∩A=∅. This contradicts the assumption since Ω is a filterbase

on X whose members have nonempty intersection with A.

(g)⇒(h). Let A be a closed subset of X and let V be an open neighborhood of A. Let

Γ be a semiopen cover of X−A. Then Γ is a semiopen cover of the closed set X−V .

Suppose that there is no finite Λ ⊆ Γ satisfying X −V ⊆ ⋃
Λ clU . Then � = {W : W =

(X−V)−⋃Λ⊆Γ clU, Λ finite} is an open filterbase on the closed set X−V . Therefore,

in view of (g), (sad�)∩(X−V) �= ∅. Hence, (
⋂

� sclW)∩(X−V) �= ∅. Then (
⋂
Γ scl(X−

clU))∩(X−V) �= ∅. Hence, (X−V)∩(X−⋃Γ sint(clU)) �= ∅. Since each U is semiopen,

U ⊆ sint(clU). Therefore, (X−⋃Γ U)∩(X−V) �= ∅, a contradiction to the fact that Γ is

a cover of X−V . Therefore, X = (⋃Λ clU)∪V for some finite Λ⊆ Γ .
(g)⇒(a). Let A be a closed subset of (X,T) and let � be a T -semiopen cover of A.

Assume that there is no finite � ⊆ � satisfying A ⊆ ⋃
� clU . Consider � = {V : V =⋂

�⊆�(X− clU), � finite}. Then � is an open filterbase on X and V ∩A �= ∅ for each

V ∈�. Then proceeding as in the proof of (g)⇒(h), a contradiction to the fact that � is

a cover of A is reached.

(h)⇒(d). Let Ω be an open filterbase on X and let A= sadΩ. Let U be an open neigh-

borhood of A. Then � = {X−sclF : F ∈ Ω} is a semiopen cover of X−A and hence of

X−U . Also, considering U as a neighborhood of X− (X−U), in view of (h), choose

a finite Γ ⊆ Ω such that X = U ∪ (⋃Γ cl(X− sclF)). Thus X = U ∪ (⋃Γ (X− int(sclF))).
Hence, X ⊆U∪(X−⋂Γ F). Choose an F ∈Ω such that X =U∪(X−F). Then F ⊆U and

Ω is s-adherent convergent.

As mentioned earlier, a C-compact space and a sequentially C-compact space [8]

are characterized using a family of H-sets of the space. Below, a characterization of

C-s-compact spaces is given in terms of a family of proper subsets which are S-sets.

Theorem 3.3. A spaceX is a C-s-compact space if and only if every nonempty proper

closed subset of X is an S-set.
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Proof. Assume that every nonempty proper closed subset of X is an S-set. It will

be enough to prove that X is S-closed. Let � be a semiopen cover of X. Assume that

each U ∈ � is proper, semiopen, and nonempty. Choose a U ∈ � and an open set F
in X such that F ⊆ U ⊆ clF . Now, X−F is a nonempty proper closed subset of X and

hence is an S-set. Also, � is a semiopen cover of X−F . Choose a finite �⊆� such that

X−F ⊆⋃� clU . Then X = (⋃� clU)∪U and hence, X is S-closed.

It is obvious that if X is C-s-compact, every proper closed subset is an S-set.

Corollary 3.4. A space X is C-s-compact if and only if every closed subset is an

S-set.

Corollary 3.5. A space X is C-s-compact if and only if X is compact and extremally

disconnected.

Proof. The proof follows easily from [2, Corollary 2.4 and Proposition 4.1] which

establish that every closed subset of a space X is an S-set if and only if X is compact

and extremally disconnected.

Corollary 3.6. The following are equivalent for a space X:

(a) X is C-s-compact;

(b) let A be a nonempty proper closed subset of X, then for every filterbase Ω on A,

A∩sadθΩ �= ∅;

(c) let A be a nonempty proper closed subset of X, then for every open filterbase Ω
on A, A∩sadΩ �= ∅.

Proof. The proof follows from Theorem 3.3 and [2, Proposition 2.2].

In [10], a class of functions was identified so that a space X is C-compact if and only

if a function in this class on the space X is a closed function. Here, a class of functions

is identified, which characterizes C-s-compact spaces similarly.

Theorem 3.7. The following are equivalent for a space X:

(a) X is C-s-compact;

(b) each function g from X to a space Y with a strongly sub-semiclosed inverse is a

closed function;

(c) each function g from X to a space Y with a strongly sub-semiclosed inverse is a

semiclosed function.

Proof. (a)⇒(b). Let X be C-s-compact, let A be a closed subset of X, and let g :

X → Y have a strongly sub-semiclosed inverse. Let y be a limit point of g(A). Then

Ω = {g−1(W −{y})∩A : W ∈ Σ(y)} is a filterbase on A. In view of Theorem 3.2(b),

A∩ sadθΩ �= ∅. But A∩ sadθΩ ⊆ A∩g−1(y) since g has a strongly sub-semiclosed

inverse. Thus, A∩g−1(y) �= ∅, y ∈ g(A), and g(A) is closed.

(b)⇒(c). The proof is obvious.

(c)⇒(a). Suppose that X is not C-s-compact. Appealing to Corollary 3.6, choose a

proper closed subset A of X and a filterbase Ω on A with A∩sadθΩ=∅. Let v ∈X−A.

Let Y be the set X with the topology {V ⊆ Y : v �∈ V, or F ⊆ V for some F ∈ Ω}. The

space Y is easily shown to be Hausdorff. Each B ∈ SO(v) in Y satisfies B∩F �= ∅ for
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each F ∈Ω, and consequently v ∈ sclA−A in Y . Suppose otherwise and let B ∈ SO(v)
in Y . Choose an open set U ⊆ B ⊆ clU . If v ∈ U , then U contains an F ∈ Ω. Suppose

that v �∈ U and B ∩ F = ∅ for some F ∈ Ω. For such an F , (F ∪ {v})∩U = ∅. So,

v �∈ clU , a contradiction. Hence, each B ∈ SO(v) in Y satisfies B ∩ F �= ∅ for each

F ∈ Ω. Let g : X → Y be defined as g(x) = x for x ∈ A and g(x) = v for x ∈ X−A.

Then g−1 ⊆ g(X)×X has a strongly sub-semiclosed graph for, if Λ is a filterbase on

g(X)−{y} with Λ→ y in Y , then y = v and sadθ g−1(Λ) ⊆ sadθΩ ⊆ g−1(v). So, A is

closed in X, g(A)=A, and v ∈ sclA−A in Y . Thus, g is not semiclosed.

Remark 3.8. In view of the facts that a function with a strongly subclosed graph has

a strongly sub-semiclosed graph and every closed function is semiclosed, the following

corollary is an improvement of the sufficiency of the main result of [10] which states

that a space X is C-compact if and only if each function on X with a strongly subclosed

inverse is a closed function.

Corollary 3.9. A space X is C-compact if every function on X with a strongly sub-

semiclosed inverse is semiclosed.

Proof. The proof is immediate since every C-s-compact space is C-compact.

Theorem 3.10. A space Y is C-s-compact if and only if for every space X, every

strongly sub-semiclosed relation from X to Y is u.s.c.

Proof. Suppose that Y is C-s-compact and R is a strongly sub-semiclosed relation

from a space X to Y . Let x ∈X and W ∈ Σ(R(x)) in Y . If {x} is open, then {x} ∈ Σ(x)
and R({x})⊆W . Suppose that {x} is not open. Let V ∈ Σ(x) in X. Then Ω = {V −{x} :

V ∈ Σ(x)} is a filterbase on X−{x} and Ω→ x. Suppose that R(V−{x})∩(Y −W) �= ∅
is satisfied for each V ∈ Σ(x). Then Γ = {R(V−{x})∩(Y −W) : V ∈ Σ(x)} is a filterbase

on the closed subset Y−W of the C-s-compact space Y . Hence, in view of Theorem 3.2,

(sadθ Γ)∩(Y−W) �= ∅. Since R is a strongly sub-semiclosed relation, sadθ R(V−{x})⊆
R(x) and hence, sadθ R(V −{x})∩ (Y −W) ⊆ R(x)∩ (Y −W). This is a contradiction

since R(x)⊆W . Therefore, there is a V ∈ Σ(x) such that R(V−{x})⊆W and R(x)⊆W .

Hence, there is a V ∈ Σ(x) such that R(V)⊆W . Therefore, R is a u.s.c. relation.

Conversely, suppose that Y is not C-s-compact. Relying on Corollary 3.6(b), choose a

nonempty proper closed subset A of Y and a filterbase Ω on A with A∩sadθΩ =∅. Let

v ∈ Y −A. Let X be the set Y with the topology {V ⊆ X : v �∈ V, or F ⊆ V for some F ∈
Ω}. The space X is readily seen to be Hausdorff. Define a relation R ⊆X×Y as follows:

(x,x) ∈ R if x �= v ; (v,x) ∈ R if x ∈ X−A. The relation R is strongly sub-semiclosed

for, if Γ is a filterbase on X−{x} with Γ → x in X, then x = v . Also, sadθ R(Γ)= sadθΩ ⊆
Y −A = R(v). But R is not u.s.c. since Y −A ∈ Σ(R(v)) in Y , and there is no V ∈ Σ(v)
in X such that R(V)⊆ Y −A.

4. Examples. In this section, examples are provided to distinguish the class of C-s-
compact spaces from the classes of C-compact spaces, compact spaces, and S-closed

spaces. Since there exist compact spaces which are not S-closed and S-closed spaces

which are not compact, there exist compact spaces which are not C-s-compact and

S-closed spaces which are not C-s-compact. However, such examples are pointed out

for the sake of completeness. Also, an example is given to show that the product of
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two C-s-compact spaces need not be C-s-compact. From the definitions of C-s-compact

spaces and C-compact spaces and from the fact that every open set is semiopen, it is

clear that a C-s-compact space is C-compact. The following example (see [15, Example

2]) is an example of a Hausdorf C-compact space which is not compact and hence not

C-s-compact.

Example 4.1. Let N represent the set of positive integers. Let Y denote the subset

of the plane consisting of all points of the form (1/n,1/m) and points of the form

(1/n,0) for n and m in N. Let X = Y ∪{∞}. Topologize X as follows: let each point

(1/n,1/m) be open. PartitionN into infinitely many infinite equivalence classes {Ni}∞i=1.

A neighborhood U(1/i,0) of (1/i,0) is of the form {(1/i,0)}∪{(1/i,1/m) :m ≥ k}∪
{(1/n,1/m) :m ∈Ni, n≥ k} for some k∈N. A neighborhood system for the point ∞
consists of all sets of the form X−T , where

T =
{(

1
n
,0
)

:n∈N
}
∪

 k⋃
i=1

({(
1
i
,

1
m

)
:m∈N

}
∪
{(

1
n
,

1
m

)
:m∈Ni, n∈N

})
(4.1)

for some k∈N. The space X with this topology is Hausdorff and is not compact. Hence,

it is not C-s-compact. It can also be verified that for the closed set G = {(i/n,0) :

n ∈ N} and the semiopen cover � = {Un : Un = {(1/n,1/m) : m ≥ k for some k ∈
N}∪{(1/n,0)}} of G, there is no finite �⊆� such that G ⊆⋃� clU .

The following example illustrates that, in general, a compact space need not be C-s-
compact.

Example 4.2. Let X = ⋃∞
i=0Xi, where X0 = {(0,1/n) : n ∈ N} ∪ {(0,0)} and Xi =

{(1/i,1/n) : n ∈ N}∪{(1/i,0)} for i ≥ 1. For i ≥ 1, each point of Xi, except (1/i,0), is

open. Basic open subsets

U
(

1
i
,0
)
=
{(

1
i
,0
)}
∪
{(

1
i
,

1
n

)
:n> j for some j ∈N

}
. (4.2)

Basic open subsets U(0,1/i)= {(0,1/i)}∪{(1/n,1/i) for all but finitely many n∈N}.
A basic open set containing (0,0) contains all the points on all but finitely many Xi,
i ∈ N. Then X is compact since an open set containing (0,0) contains all the points

on all but finitely many Xi’s, say Xp1,Xp2, . . . ,Xpn. For each i ∈ {1,2, . . . ,n}, U(1/Pi,0)
contains all but finitely many points on Xpi. The space X is not C-s-compact. To prove

this, consider the closed set A = {(1/n,0) : n ∈ N}∪{(0,0)}. Consider the semiopen

cover

�=
({(

1
2n
,0
)}
∪
{(

1
2n
,

1
m

)
:n,m∈N

}
∪{(0,0)}

)

∪
({(

1
(2n−1)

,0
)}
∪
{(

1
(2n−1)

,
1
m

)
:m> j

for some j ∈N :n,m∈N
})
.

(4.3)

There is no finite �⊆� such that A⊆⋃� clU . Hence, X is not C-s-compact.
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An example of an S-closed space which is not C-s-compact is given as follows.

Example 4.3. Let D be the set of positive integers with discrete topology. Then the

Katětov expansion kD is extremally disconnected and H-closed and hence is S-closed.

But it is not compact and hence not C-s-compact.

In a class of Hausdorff spaces, the following implication diagram is valid, no

implication is reversible, in general, other than the following one:

compact + ED compact

C-s-compact C-compact

S-closed.

(4.4)

The following lemma is a corollary to [13, Theorem 7].

Lemma 4.4. For a compact Hausdorff space, the following are equivalent:

(i) X is extremally disconnected;

(ii) X is projective;

(iii) X is S-closed.

The product of two C-s-compact spaces need not be C-s-compact as can be seen from

the following example.

Example 4.5. The Stone-Cech compactification βN of the set of natural numbers

is compact, Hausdorff, and extremally disconnected and hence is C-s-compact. But

βN×βN is compact, Hausdorff, and not extremally disconnected, and hence it is not

S-closed in view of the above lemma. Therefore, it is not C-s-compact.

Remark 4.6. In fact, if D is an infinite discrete space, the Stone-Cech compacti-

fication βD is compact, Hausdorff, and extremally disconnected. But βD×βD is not

extremally disconnected, but is compact and Hausdorff.
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