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TRAVELLING WAVE SOLUTIONS TO SOME PDEs
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Nonlinear operations such as multiplication of distributions are not allowed in the classical
theory of distributions. As a result, some ambiguities arise when we want to solve nonlinear
partial differential equations such as differential equations of elasticity and multifluid flows,
or some new cosmological models such as signature changing space-times. Colombeau’s
new theory of generalized functions can be used to remove these ambiguities. In this paper,
we first consider a simplified model of elasticity and multifluid flows in the framework of
Colombeau’s theory and show how one can handle such problems, investigate their jump
conditions, and resolve their ambiguities. Then we consider as a new proposal the case of
cosmological models with signature change and use Colombeau’s theory to solve Einstein
equation for the beginning of the Universe.
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1. Introduction. Classical theory of distributions, based on Schwartz-Sobolev theory

of distributions, does not allow nonlinear operations of distributions [4]. In Colom-

beau’s theory, a mathematically consistent way of multiplying distributions is pro-

posed. Colombeau’s motivation is the inconsistency in multiplication and differenti-

ation of distributions. Take, as it is given in the classical theory of distributions,

θn = θ ∀n= 2,3, . . . , (1.1)

where θ is the Heaviside step function. Differentiation of (1.1) gives

nθn−1θ′ = θ′. (1.2)

Taking n= 2, we obtain 2θθ′ = θ′. Multiplication by θ gives 2θ2θ′ = θθ′. Using (1.2), it

follows that

2
3
θ′ = 1

2
θ′ (1.3)

which is unacceptable because θ′ �= 0. The trouble arises at the origin being the unique

singular point of θ and θ′. If one accepts to consider θn �= θ for n= 2,3, . . . , the incon-

sistency can be removed. The difference θn−θ, being infinitesimal, is the essence of

Colombeau’s theory of generalized functions. Colombeau considers θ(t) as a function

with “microscopic structure” at t = 0, making θ not to be a sharp step function, but

having a width ε. θ(t) can cross the normal axis at any value of τ where 0 < τ < 1. It

is interesting to note that the behavior of θn(t) around t = 0 is not the same as θ(t),

http://dx.doi.org/10.1155/S0161171204108028
http://dx.doi.org/10.1155/S0161171204108028
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


1106 K. NOZARI AND G. A. AFROUZI

that is, θn(t) �= θ(t) around t = 0 [8]. In the following we give a short formulation of

Colombeau’s theory.

2. New generalized functions: Colombeau’s algebra. Suppose that Φ ∈D(Rn) with

D(Rn) the space of smooth (i.e., C∞) C-valued test functions on Rn. For f :Rn→ C , not

necessarily continuous, we define the smoothing process for f as one of the convolu-

tions

f̃ (x) :=
∫
f(y)Φ(y−x)dny, (2.1)

or

f̃ε(x) :=
∫
f(y)

1
εn
Φ
(
y−x
ε

)
dny. (2.2)

This smoothing procedure is valid for distributions too. Take the distribution R, then

by smoothing of R we mean one of the two convolutions (2.1) or (2.2), with f replaced

by R. Now we can perform the product Rf of the distribution R with the discontinuous

function f through the action of the product on a test function Ψ as follows

(Rf ,Ψ)= lim
ε→0

∫
R̃ε(x)f̃ε(x)Ψ(x)dnx. (2.3)

The multiplication so defined does not coincide with the ordinary multiplication even

for continuous functions. To resolve this difficulty consider one-parameter families (fε)
of C∞ functions used to construct the algebra

�M
(
Rn
)= {(fε) | fε ∈ C∞(Rn) ∀K ⊂Rn compact,

∀α∈Nn ∃N ∈N, ∃η > 0, ∃c > 0:sup
x∈K

∣∣Dαfε(x)∣∣≤ cε−N ∀0< ε < η
}
,

(2.4)

where

Dα = ∂|α|(
∂x1

)α1 ···(∂xn)αn , (2.5)

|α| =α1+α2+···+αn. (2.6)

Accordingly, C∞-functions are embedded into �M (Rn) as constant sequences. Now, we

have to identify different embeddings of C∞ functions.

Take a suitable ideal �(Rn) defined as

�
(
Rn
)= {(fε) | (fε)∈ �M

(
Rn
) ∀KRn compact,

∀α∈Nn, ∀N ∈N ∃η > 0, ∃c > 0:sup
x∈K

∣∣Dαfε(x)∣∣≤ c ∈N ∀0< ε < η
}
,

(2.7)
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containing negligible functions such as

f(x)−
∫
dny

1
εn
ϕ
(
y−x
ε

)
f(y). (2.8)

Now, the Colombeau’s algebra �(Rn) is defined as

�
(
Rn
)= �M

(
Rn
)

�
(
Rn
) . (2.9)

A Colombeau’s generalized function is thus a moderate family (fε(x)) of C∞ func-

tions modulo negligible families. Two Colombeau’s objects (fε) and (gε) are said to be

associate (written as (gε)≈ (fε)) if

lim
ε→0

∫
dnx

(
fε(x)−gε(x)

)
ϕ(x)= 0 ∀ϕ ∈D(Rn). (2.10)

For example, if ϕ(x) =ϕ(−x), then δθ ≈ (1/2)δ, where δ is Dirac delta function and

θ is Heaviside step function. Moreover, we have in this algebra θn ≈ θ and not θn = θ.

For an extensive introduction to Colombeau’s theory, see [1, 2, 3, 6, 7, 8, 9].

3. Theory of elasticity and Colombeau’s algebra. In this section, we consider a

simplified model of elasticity to apply new generalized functions for investigating jump

conditions of nonlinear PDEs arising in this theory. Jump conditions are important in

elasticity since these conditions contain information about the behavior of the system

on the boundary and wavefront. On the other hand, a part of the structural properties

about the medium are contained in these jump conditions. In the system of elasticity,

Hooke’s law in terms of the stress σ can be expressed as (d/dt)σ = k2ux where d/dt =
∂/∂t+u(∂/∂x) and lowercase indices show derivatives with respect to these indices.

Now the equations of system of elasticity are

ρt+(ρu)x ≈ 0 balance of mass,

(ρu)t+
(
ρu2)

x ≈ σx balance of momentum,

σt+uσx ≈ k2ux Hooke’s law,

(3.1)

where ρ = density, u= velocity, and k2 = constant. Equations (3.1) are stated with three

associations since we know this statement is a faithful generalization of the concept of

weak solutions of systems in conservative form.

3.1. Jump conditions. Now we want to consider jump conditions for this model of

elasticity. For this end we seek travelling waves solutions for (3.1) of the form

u(x,t)= (∆u)H(x−ct)+ul,
σ(x,t)= (∆σ)K(x−ct)+σl,
ρ(x,t)= (∆ρ)L(x−ct)+ρl,

(3.2)
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with H, K, and L three Heaviside generalized functions and ∆u, ∆σ , and ∆ρ the dif-

ferences between two values of the velocity, stress, and density in two different sides

of jump surface (wavefront). Also ul, σl, and ρl are the values of the corresponding

quantities in the left side of the jump surface. Putting (3.2) into the first equation of

(3.1), we get (assuming that ∆ρ ≠ 0)

c−ul =∆u+ρl∆u∆ρ , (3.3)

where c is the speed of shock wave in the medium. The second equation of (3.1) gives

(
c−ul−∆u

)(
ul∆ρ+ρl∆u+∆ρ∆u

)=ulρl∆u−∆σ. (3.4)

These two equations are exactly the classical Rankine-Hugoniot jump conditions [5],

since these equations are in conservative form. Putting (3.2) into the last equation of

(3.1), we get

c−ul =A∆u−k2 ∆u
∆σ

, (3.5)

HK′ ≈Aδ, (3.6)

where A is a real number. In derivation of (3.5) we have used the fact that Dirac δ-

function and Heaviside step functions are linearly independent so the terms containing

delta function in two different sides of equation must be equal. Now (3.3), (3.4), and

(3.5) can be rewritten as

c =ul+A∆u−k2 ∆u
∆σ

,

k2 ∆u
∆σ

− 1
2

[
1
ρl
+ 1
ρr

]
∆u
∆σ

=
[
A− 1

2

]
∆u,

ρlρr (∆u)2 =−∆σ∆ρ.

(3.7)

In these equations ρr and ρl are the values of ρ in the right and left-hand side of

the wavefront and [F] is the jump of any quantity F . As usual, we find that the jump

conditions of (3.1) depend on an arbitrary parameter, the real number A. Since A is an

arbitrary parameter, we encounter infinite number of possible jump conditions, each

of which gives a different physical interpretation. But physical phenomena must have

single interpretation, so we must remove this ambiguity and it is interesting that this

ambiguity arises because of difficulties inherent in the classical theory of distributions.

3.2. Resolution of the ambiguities. Now according to Colombeau’s theory we can

state (3.1) in more precise form

ρt+(ρu)x = 0, (ρu)t+
(
ρu2)

x = σx, σt+uσx ≈ k2ux. (3.8)
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The first two equations of (3.8) are equivalent to

ρt+(ρu)x = 0, ut+uux = 1
ρ
σx, (3.9)

since ρ ≠ 0. It is convenient to set v = 1/ρ, where v is called the specific volume. Then

(3.9) takes the form

vt+uvx−vux = 0,

ut+uux−vσx = 0.
(3.10)

Now we can restate (3.2) in the following form:

u(x,t)= (∆u)H(x−ct)+ul,
σ(x,t)= (∆σ)K(x−ct)+σl,
v(x,t)= (∆v)M(x−ct)+vl,

(3.11)

with H,K,M ≈ θ, the Heaviside function. The first equation in (3.10) gives

(
c−ul−∆uH

)
M′ +∆uH′M+∆u vl

∆v
H′ = 0. (3.12)

In this relation the prime denotes usual differentiation with respect to the argument of

the functions. The jump condition for the first equation of (3.8) is

c−ul
∆u

= ρr
∆ρ

with ρr =∆ρ+ρl, (3.13)

which can be written as

c−ul
∆u

=− vl
∆v

. (3.14)

Then (3.12) gives

[
vl
∆v

+H
]
M′ =

[
vl
∆v

+M
]
H′. (3.15)

Putting (3.11) into the second equation of (3.10), we can obtain

c−ul
∆u

H′ −HH′ +(∆vM+vl) ∆σ∆u2
K′ = 0. (3.16)

The jump condition of the second equation in (3.8) gives

∆v = (∆u)
2

∆σ
. (3.17)

Now we can consider (3.14), (3.16), and (3.17) together to find

[
vl
∆v

+H
]
H′ =

[
vl
∆v

+M
]
K′. (3.18)
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Setting α= vl/∆v > 0, then (3.15) and (3.18) are the system

(α+H)M′ = (α+M)H′,

(α+H)H′ = (α+M)K′. (3.19)

Now these equation can be rewritten as

(α+H)M′ −H′H−αH′ = 0,

K′ = α+H
α+MH

′.
(3.20)

Since H and M are null on (−∞,0[ and identical to 1 on ]0,+∞), an application of the

classical formula for the solution of ordinary differential equation

a(x)y ′ +b(x)y+c(x)= 0 (3.21)

allows to compute M as a function of H from the first equation of (3.20). One finds

M =H sinceα is a constant. This method relies upon the extension to � for the classical

study of ordinary differential equations of the above kind. One can check that in this

case the classical formula makes sense and provides a unique solution in the sense of

equality in �. This approach can be considered as a particular case of a much deeper

study of linear hyperbolic systems with coefficients in �. There, one can prove the

uniqueness of the solutions of the Cauchy problem; this argument of uniqueness gives

at once the result that M =H. Then the second equation in (3.19) gives K =H. Now we

have resolved the ambiguities

HK′ =HH′ = 1
2
δ (3.22)

and therefore A= 1/2.

As a conclusion to the above argument we can state the following theorem.

Theorem 3.1. The system of two equations and three unknowns

ρt+(ρu)x = 0,

(ρu)t+
(
ρu2)

x−σx = 0,
(3.23)

is equivalent to the system (v = 1/ρ),

vt+uvx−vux = 0,

ut+uux−vσx = 0.
(3.24)

Further, travelling waves of the form

w(x,t)= (∆w)Hw(x−ct)+wl, (3.25)

with w = v,u,σ successively (∆w,c,wl ∈ R and Hw a Heaviside generalized function),

are solution of (3.18) if and only if Hv = Hu = Hσ plus the classical jump condition of

(3.18).
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4. Theory of multifluid flows

4.1. Equations of multifluid flows. Consider a mixture of two fluids. Let p denote

the pressure of the mixture, and ρi, ui with i = 1,2 denote the respective density and

velocity of the fluid number i at each point (x,t), let α denote the volumic proportion

of the fluid number 1 in the mixture where 0≤α≤ 1. Now equations of the system are

(
αρ1

)
t+
(
αρ1u1

)
x = 0 balance of mass for fluid 1,(

(1−α)ρ2
)
t+
(
(1−α)ρ2u2

)
x = 0 balance of mass for fluid 2,(

αρ1u1
)
t+
(
αρ1u2

1

)
x+αpx = 0 balance of momentum for fluid 1,(

(1−α)ρ2u2
)
t+
(
(1−α)ρ2u2

2

)
x+(1−α)px = 0 balance of momentum for fluid 2,

ρ1 ≈ ρ1(p), ρ2 ≈ ρ2(p) equations of state of fluids 1 and 2,
(4.1)

where the terms αpx and (1−α)px show multiplications of distributions of the form

θδ in the case of shock waves. Now we must state the four first equations with equality

in �. This means that we assume that their relevance in space-time volumes are smaller

than the width of shock waves. Consider the following change of variables:

r1(x,t)=α(x,t)ρ1(x,t),

r2(x,t)=
(
1−α(x,t))ρ2(x,t),

(4.2)

then the first four equations in (4.1) become

(
r1
)
t+
(
r1u1

)
x = 0,(

r2
)
t+
(
r2u2

)
x = 0,(

r1u1
)
t+
(
r1u2

1

)
x+αpx = 0,(

r2u2
)
t+
(
r2u2

2

)
x+(1−α)px = 0.

(4.3)

The first and third equations of (4.3) give

r1
(
u1
)
t+r1

(
u2

1

)
x+αpx = 0, (4.4)

and assuming that α is nowhere vanishing, we can define

v1 = 1
r1
= 1
αρ1

,

v2 = 1
r2
= 1
(1−α)ρ2

.
(4.5)

Therefore (4.3) can be written as
(
v1
)
t+u1

(
v1
)
x−v1

(
u1
)
x = 0,(

v2
)
t+u2

(
v2
)
x−v2

(
u2
)
x = 0,(

u1
)
t+u1

(
u1
)
x+αv1px = 0,(

u2
)
t+u2

(
u2
)
x+(1−α)v2px = 0.

(4.6)
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4.2. Jump conditions. We want to consider travelling wave solutions for the set of

nonlinear partial differential equations and investigate their jump conditions in the

framework of Colombeau’s theory. Let the solutions to these equations be of the forms:

ui(x,t)=∆uiHi(x−ct)+uil, i= 1,2,

vi(x,t)=∆viMi(x−ct)+vil, i= 1,2,

p(x,t)=∆pK(x−ct)+pl,
α(x,t)=∆αL(x−ct)+αl,

(4.7)

where c, ∆ui, ∆vi, ∆p, ∆α, uil, pil, and αl are real numbers and Hi,Mi,K,L ∈ �(Rn)
are Heaviside generalized functions.

From the first equation of (4.7) we have

M′
1−

H′
1

a+H1
M1− aH′

1

a+H1
= 0 if a= v1l

∆v1
, ∆v1 ≠ 0, (4.8)

where one deduces M1 = H1. Similarly, the second equation of (4.7) yields M1 = H1.

Therefore the two first equations of (4.6) can be written respectively as

M1 =H1, c−u1l =−v1l
∆u1

∆v1
,

M2 =H2, c−u2l =−v2l
∆u2

∆v2
.

(4.9)

Now the third and fourth equations of (4.1) according to (4.7) and (4.9) become

(
∆αL+αl

)
K′ = −

(
∆u1

)2

∆p∆v1
H′

1,

(
1−∆αL−αl

)
K′ = −

(
∆u2

)2

∆p∆v2
H′

2.

(4.10)

Adding the two equations of (4.10) and after integration, one obtains the relation

K =−
(
∆u1

)2

∆p∆v1
H1+

(
∆u2

)2

∆p∆v2
H2, (4.11)

which implies the jump relation

(
∆u1

)2

∆v1
+
(
∆u2

)2

∆v2
=−∆p. (4.12)

As a result we can consider the following theorem.
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4.3. Theorem. Equation (4.7) is a solution of (4.6) if and only if the following relations

hold

M1 =H1, c−u1l =−v1l
∆u1

∆v1
,

M2 =H2, c−u2l =−v2l
∆u2

∆v2
,

K =−
(
∆u1

)2

∆p∆v1
H1+

(
∆u2

)2

∆p∆v2
H2,

(
∆αL+αl

)
K′ = −

(
∆u1

)2

∆p∆v1
H′

1.

(4.13)

The last equation of (4.13) has the product LK′ which yields an ambiguity in the frame-

work of classical theory of distributions, but now in the framework of Colombeau’s

algebra we have

LK′ =Aδ, (4.14)

whereA is a real number and therefore there is not any ambiguity in this new framework.

5. Cosmological models with signature change

5.1. Einstein equations for singular hypersurfaces. Assume two space-times man-

ifolds M+ and M− with space-like or time-like boundaries Σ+ and Σ−. We want to glue

these two space-time manifolds together. Coordinates on the two space-time manifolds

are defined independently as xµ+ and xµ−, and the metrics are denoted by g+αβ(x
µ
+) and

g−αβ(x
µ
−). The induced metrics on the boundaries are called g+ij(ξk+) and g−ij(ξk−), where

ξk± are intrinsic coordinates on Σ±, respectively. Now to paste the manifolds together,

we demand that the boundaries be isometric, having the same coordinates ξk− = ξk+ = ξk.
The identification Σ− = Σ+ =: Σ gives the single-glued manifoldM =M+

⋃
M−. There are

two methods of handling singular hypersurface Σ in general relativity. The most used

method of Darmois-Israel, based on the Gauss-Codazzi decomposition of space-time, is

handicapped through the junction conditions which make the formalism unhandy. For

our purposes the distributional approach is the most suitable one [7]. In this formalism

the whole space-time manifold, including the singular hypersurface, is treated with a

unified metric without bothering about the junction conditions along the hypersurface.

These conditions are shown to be automatically fulfilled as part of the field equations.

In the distributional approach one chooses special coordinates which are continuous

along the singular hypersurface to avoid nonlinear operations of distributions. Here,

using Colombeau’s algebra, which allows for nonlinear operations of distributions, we

generalize the distributional method to the special case of signature changing cosmo-

logical models.

Consider as a simple model universe a space-time with the following Friedmann-

Robertson-Walker FRW metric containing a step-like lapse function

ds2 =−f(t)dt2+a2(t)
(
dr 2

1−kr 2
+r 2dθ2+r 2 sin2θdϕ2

)
, (5.1)



1114 K. NOZARI AND G. A. AFROUZI

where

f(t)= θ(t)−θ(−t), (5.2)

a2(t)= a2
+(t)θ(t)+a2

−(t)θ(−t). (5.3)

We assume [a] = a+ −a− = 0 to achieve continuity of the metric on the surface of

signature change. Note that we have assumed for simplicity k+ = k− = k. This metric

describes a signature changing space-time with the singular surface t = 0. It describes

a Riemannian space for t < 0 and a Lorentzian space-time for t > 0. We choose

θ(t)|t=0 = τ with τ >
1
2
. (5.4)

Since θ(−t)= 1−θ(t), we have θ(−t)= 1−τ and

f(t)
∣∣
t=0 = 2τ−1. (5.5)

This value gives us the correct change of sign in going from t < 0 to t > 0. This “reg-

ularization” of f(t) at t = 0 allows us to use operations such as f(t)−1, f 2(t), and

|f(t)|−1.

In what follows we consider f(t) to be the regularized function f̃ε, defined according

to Colombeau’s algebra. Now, we are prepared to calculate the dynamics of the signature

changing hypersurface in the line of distributional procedure [7]. First we calculate the

relevant components of the Einstein tensor for the metric (5.1):

Gtt =−−3kf 3

f 2a2
− 3f 2

(
ȧ2
)

f 2a4
, (5.6)

Grr = 1
1−kr 2

(
2aäf
f 2

− aȧḟ
f 2

+ f(aȧ)
2

a2f 2
+ kf

2

f 2

)
, (5.7)

Gθθ = r 2

(
2aäf
f 2

− aȧḟ
f 2

+ f(aȧ)
2

a2f 2
+ kf

2

f 2

)
, (5.8)

Gϕϕ = r 2 sin2θ
(

2aäf
f 2

− aȧḟ
f 2

+ f(aȧ)
2

a2f 2
+ kf

2

f 2

)
. (5.9)

According to the standard calculus of distributions, we have

ḟ (t)= θ̇(t)− θ̇(−t)= δ(t)+δ(−t)= 2δ(t), (5.10)

taking into account δ(−t)= δ(t). Now, using Colombeau’s algebra we can write (based

on (4.14))

θ(t)δ(t)≈ 1
2
δ(t). (5.11)

Therefore we may write

f(t)δ(t)= θ(t)δ(t)−θ(−t)δ(t)≈ 1
2
δ(t)− 1

2
δ(t)≈ 0. (5.12)
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In evaluating (5.6)–(5.9) we should take care of the following property of association.

Having

AB ≈AC, (5.13)

we are not allowed to conclude

B ≈ C. (5.14)

Since the time derivative of any discontinuous function F is given by

Ḟ = Ḟ+θ(t)+ Ḟ−θ(−t)+[F]δ(t), (5.15)

using the relations (5.6)–(5.9) we obtain for the singular parts of these equations

Ĝtt ≈ 0,

Ĝrr ≈
(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t),

Ĝθθ ≈
(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t),

Ĝϕϕ ≈
(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t),

(5.16)

where multiplication of the distribution δ(t) with the generalised functions 1/f 2 and

f/f 2 is defined as in (2.3).

This is a rigorous calculation concerning the question of vanishing the left-hand side

of the Einstein equation on the surface of signature change. Our calculation based on

Coloumbeau’s algebra shows definitely that there are nonvanishing terms on the left-

hand side of the field equations related to the signature change surface. Now we have to

look at the energy-momentum tensor on the right-hand side, its possible interpretation

and consequences for the dynamics of the signature change surface.

According to [7] the complete energy-momentum tensor (with any kind of matter

content) can be written as

Tµν = θ(t)T+µν+θ(−t)T−µν+CSµνδ(t), (5.17)

where T±µν are energy-momentum tensors corresponding to Lorentzian and Euclidean

regions, respectively, and C is a constant which can be obtained by taking the following

pill box integration defining Sµν :

Sµν = lim
Σ→0

∫ Σ
−Σ

(
Tµν−gµν Λκ

)
dn= 1

κ
lim
Σ→0

∫ Σ
−Σ
Gµνdn. (5.18)

Since

T̂µν = CSµνδ
(
Φ(x)

)
,∫

T̂µνdn= CSµν
∫
δ
(
Φ(x)

)
dn= CSµν

∣∣∣∣dndΦ
∣∣∣∣, (5.19)
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we find

C =
∣∣∣∣dΦdn

∣∣∣∣= ∣∣nµ∂µΦ∣∣, (5.20)

where Φ = t = 0 defines the singular surface Σ. The vector nµ is normal to the surface

Φ and n measures the distance along it. Using the metric (5.1), we obtain

C = 1∣∣f(t)∣∣ . (5.21)

The distributional part of the Einstein equation reads as follows:

Ĝµν = κT̂µν . (5.22)

Using (5.16), (5.21), and (5.22), we obtain

0≈ κ∣∣f(t)∣∣Stt δ(t),
Ĝrr ≈

(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t)≈ κ∣∣f(t)∣∣Srr δ(t),

Ĝθθ ≈
(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t)≈ κ∣∣f(t)∣∣Sθθδ(t),

Ĝϕϕ ≈
(
f[ȧ]
f 2a

− [ȧ]
f 2a

)
δ(t)≈ κ∣∣f(t)∣∣Sϕϕδ(t).

(5.23)

Now using (2.3), we must define the multiplication of δ-distribution with the discontinu-

ous functions 1/|f | and 1/f 2. To this end we consider them as Colombeau’s regularized

functions:

G̃1ε(t) := δε(t)
(

1∣∣f(t)∣∣
)
ε
,

G̃2ε(t) := δε(t)
(

1
f 2(t)

)
ε
.

(5.24)

Now according to (2.3), these two multiplications are defined as follows:

(
δ(t)

1∣∣f(t)∣∣ ,Ψ
)

:= lim
ε→0

∫
G̃1ε(t)Ψ(t)dt,(

δ(t)
1

f 2(t)
,Ψ
)

:= lim
ε→0

∫
G̃2ε(t)Ψ(t)dt,

(5.25)

for any test function Ψ . Now we argue that G̃1ε and G̃2ε are associates in Colombeau’s

sense, that is,

lim
ε→0

∫ (
G̃1ε(t)−G̃2ε(t)

)
Ψ(t)dt = 0. (5.26)

This is correct for any test function Ψ because, although G̃1ε and G̃2ε are divergent at

a common point, the difference in their “microscopic structure” at that point tends to
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zero for ε→ 0. Therefore, we obtain from (5.23) the final form of the energy-momentum

tensor of the singular surface, or the dynamics of, Σ:

Stt ≈ 0,

κSrr ≈
(
f[ȧ]
a

− [ȧ]
a

)
,

κSθθ ≈
(
f[ȧ]
a

− [ȧ]
a

)
,

κSϕϕ ≈
(
f[ȧ]
a

− [ȧ]
a

)
.

(5.27)

Therefore the “energy-momentum” tensor of the singular hypersurface is

κSνµ = diag
(

0,
f [ȧ]
a

− [ȧ]
a
,
f [ȧ]
a

− [ȧ]
a
,
f [ȧ]
a

− [ȧ]
a

)

= diag
(
0,2

[
H0
]
(τ−1),2

[
H0
]
(τ−1),2

[
H0
]
(τ−1)

)
,

(5.28)

where we have used (5.5). In this equation all quantities are to be taken at t = 0, and H0

is defined as

H0 = ȧa
∣∣∣∣
t=0
, (5.29)

which is the familiar Hubble constant at the signature change surface. This is our non-

trivial and nonexpected result. One may question the validity of Coloumbeau’s algebra,

although it sounds physically well motivated and based on good physical intuition. The

above result shows that within this algebra it is not reasonable to assume that the en-

ergy momentum tensor at the singular hypersurface of signature change is vanishing,

as is usually assumed in the literature. If we assume that [ȧ]= 0 (as is usually assumed

in the literature), then (5.28) will give Sνµ = 0, but this is not necessary in general. There-

fore the condition [ȧ]= 0 is not compulsory on the singular surface.

We have seen that the requirement of signature change leads to a very specific and

nonvanishing form for the Sµν . Since the nonvanishing terms of Sµν are related to the

extrinsic curvature of the signature change surface, they tell us how it is embedded

in the space-time. Therefore one should not be bothered about its matter interpreta-

tion. This form of the energy-momentum tensor of the singular hypersurface we have

obtained set limits to the possible space-times emerged after signature change. As an

example, we will consider in the next section the possibility of the emergence of de

Sitter space-time after signature change.

5.2. Junction conditions for de Sitter manifold in the line of differential geometry.

According to the Hartle-Hawking proposal, the universe after signature change should

be a de Sitter universe (inflationary phase). We assume that the space-time after signa-

ture change is a de Sitter one. Consider now the following de Sitter metric with appro-

priate lapse function f(t) in order to contain signature change at t = 0. The t = const

sections of this metric are surfaces of constant curvature k= 1:

ds2 =−f(t)dt2+a2(t)
(
dχ2+sin2χ

(
dθ2+sin2θdθ2)), (5.30)
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where f(t) is defined as in (5.2) and

a2(t)=α2
+ cosh2 (α−1

+ t
)
θ(t)+α2

− cos2 (α−1
− t

)
θ(−t). (5.31)

Since [a]= 0, we will have α+ =α− := R. Now, the Euclidean sector can be interpreted

as S4 with S3 sections defined by t = const. The boundary of the Euclidean sector,

defined by t = 0, is an S3 having the radius R =α− =H−1
0 which is the maximum value

of α− cos(α−1− t).
In the Lorentzian sector, the cosmological constant is given by Λ = 3α−2+ = 3H2

0 .

The t = const surfaces are S3 with radius α+ cosh(α−1+ t) having the minimum value

R = α+ = H−1
0 . Therefore, the following relation between the cosmological constant

and the radius of the boundary is obtained:

Λ= 3
R2
. (5.32)

Following the same procedure as for the metric (5.1) and again using Colombeau’s

algebra, or simply using (5.28), we find for the elements of energy-momentum tensor

of the hypersurface

κSνµ = diag(0,Π,Π,Π), (5.33)

where Π is defined as

Π=
(

2
R

tanh
(
R−1t

)− 2
R

tan
(
R−1t

))∣∣∣∣
(t=0)(τ−1)

= 0. (5.34)

We therefore conclude that given the de Sitter metric in the form of (5.6), the energy-

momentum tensor of the hypersurface of signature change defined by t = 0 vanishes.

This is a familiar result that the previous authors usually assume from the beginning,

but we obtain it as a special case depending on the form of the metric of space-time.

It may be useful to look at the Darmois-Israel approach. There, we have the following

relation between the energy-momentum tensor of the singular hypersurface and the

jump of the extrinsic curvature:

κSji =
[
Kji
]−hji [K], (5.35)

where hji is the three-metric of the singular hypersurface. The extrinsic curvature is

defined as

Kij = eµi eνj∇µnν, (5.36)

where ei, the mutually normal unit 4-vectors in signature changing surface Φ, are de-

fined as

eµi =
∂xµ

∂ξi
, i= 1,2,3. (5.37)

ξi are coordinates adopted to the signature changing surface Σ and ∇µ denotes the

covariant derivative with respect to the 4-geometry. We then find for the nonvanishing
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components of extrinsic curvature in Lorentzian sector (with f(t)=+1)

K+ii =− 1
α+

tanh
(
α−1
+ t

)
, i= 1,2,3. (5.38)

The corresponding components in the Euclidean sector are (with f(t)=−1)

K−ii = 1
α−

tan
(
α−1
− t

)
, i= 1,2,3. (5.39)

Now we obtain for the jump of the extrinsic curvature on the signature change surface

[
Kii
]≡ (K+ii −K−ii )|t=0 =

(
− 1
R

tanh
(
R−1t

)− 1
R

tan
(
R−1t

))∣∣∣∣
t=0

= 0, i= 1,2,3.

(5.40)

Within the Darmois-Israel approach to signature change it is used to assume that

the energy-momentum tensor of the singular hypersurface vanishes. Therefore, given

the above result, the junction condition (5.35) is satisfied and it is concluded that

the matching is possible. In contrast to this within the distributional approach, using

Coloumbeau’s algebra, we obtain in general a nonvanishing expression for the energy-

momentum tensor Sµν and no explicit junction condition. The Einstein equations writ-

ten for the whole manifold imply the junction conditions. Only in the special case of

the metric (5.30) the matching at t = 0 leads to Sµν = 0. One could require a matching

along other sections corresponding to a nonmaximum radius of the Euclidean sector

or a nonminimum radius of the Lorenzian sector. In this case the energy-momentum

tensor of the singular surface may not be vanishing any more, and has to be checked

in each case.

6. Conclusions. Since the classical theory of distributions is unable to handle non-

linear operations on distributions, Colombeau’s theory of generalized functions gives

a reasonable framework to do such nonlinear operations and as a result this theory can

be used to remove ambiguities of classical theory. In this paper, we have used this new

theory to solve the partial differential equations of two systems: a system of elasticity

and a system of multifluid flow. Although physically this problem must have unam-

biguous travelling waves solutions, classical theory of distributions for such solutions

encounter some ambiguities such as infinite number of jump conditions. Since jump

conditions have most of the information on the boundary surface, infinite number of

jump conditions physically is not acceptable, so one have to resolve this ambiguity.

These ambiguities in the classical theory of distributions are unavoidable, but in new

theory of generalized functions there are mathematically consistent way to remove

these ambiguities. In the line of removing these ambiguities we arrived at the impor-

tant result between Heaviside step function and Dirac δ-function, relation (4.14) with

A = 1/2. One can do some numerical calculations based on these analytical consid-

erations to find deeper insight in this subject, which is the title of our forthcoming

paper.

On the other hand, based on the important result (4.14), one can consider the formal-

ism of singular hypersurfaces in general relativity in the framework of distributional
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approach. We have considered such a problem for the case of cosmological models with

signature change and we have found the dynamics of this hypersurface in Colombeau’s

algebra. As we have shown, using Coloumbeau’s algebra we could show that the energy-

momentum tensor of the hypersurface of signature change does not vanish in general,

and its space components are proportional to the jump of the derivative of the scale fac-

tor, or to the jump of the Hubble parameter. For the special case of de Sitter space-time

we have shown that this jump vanishes, and the matching along the t = 0 hypersurface,

corresponding to the equator of the Euclidean sector, is possible. This is in agreement

with the previous results based on the Darmois-Israel approach. One could try to do

the matching along other sections or other metrics and compare the results with that

of the Darmois-Israel approach. This will be done in a forthcoming paper.
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