ON ALMOST AUTOMORPHIC SOLUTIONS OF LINEAR OPERATIONAL-DIFFERENTIAL EQUATIONS

GASTON M. N'GUÉRÉKATA

Received 20 January 2003

We prove almost periodicity and almost automorphy of bounded solutions of linear differential equations x'(t) = Ax(t) + f(t) for some class of linear operators acting in a Banach space.

2000 Mathematics Subject Classification: 34G10, 34K14.

1. Introduction. Throughout this note, *X* will be a Banach space equipped with the norm topology and X^* its dual space. $\langle \cdot, \cdot \rangle$ will denote the duality between *X* and X^* .

We recall that a (strongly) continuous function $f : \mathbb{R} \to X$ is said to be almost automorphic if for every sequence of real numbers (s'_n) , there exists a subsequence (s_n) such that

$$\lim_{n \to \infty} f(t + s_n) = g(t), \tag{1.1}$$

$$\lim_{n \to \infty} g(t - s_n) = f(t), \tag{1.2}$$

pointwise on \mathbb{R} .

f is said to be weakly almost automorphic if (1.1) and (1.2) are replaced, respectively, by

weak-lim
$$f(t+s_n) = g(t),$$
 (1.3)

weak-lim
$$g(t - s_n) = f(t),$$
 (1.4)

for each $t \in \mathbb{R}$.

When convergence in (1.1) and (1.2) is uniform in $t \in \mathbb{R}$, f is said to be (Bochner) almost periodic. Almost periodic functions are characterized by the following so-called Bochner's criterion.

 $f : \mathbb{R} \to X$ is almost periodic if and only if for every sequence of real numbers (s'_n) , there exists a subsequence (s_n) such that $(f(t + s_n))$ is uniformly convergent in $t \in \mathbb{R}$.

For more information on almost automorphic and almost periodic functions, see, for instance, [2, 4].

We consider both differential equations

$$x'(t) = Ax(t), \quad t \in \mathbb{R}, \tag{1.5}$$

$$x'(t) = Ax(t) + f(t), \quad t \in \mathbb{R}.$$
(1.6)

Recently, we proved in [1] that if *A* is the infinitesimal generator of a C_0 -group of bounded linear operators, then every solution of (1.3) with a relatively compact range in *X* is almost periodic. In Section 2 below, we will investigate the case in which *A* is a nilpotent operator, that is, there exists a natural number *n* such that $A^n = \theta$. In Section 3, we deal with (1.4) where *A* is of simplest type (see definition below). We prove that if *f* is almost automorphic, then every solution is almost automorphic too. We also give a property of (1.5) when *A* generates a C_0 -group of bounded linear operators.

2. We first recall a result by Zaidman [4].

PROPOSITION 2.1. If A is nilpotent, then every solution of (1.1) is constant.

Now we state and prove the following result.

THEOREM 2.2. If A is nilpotent, then every solution of (1.1) with a relatively compact range in X is almost periodic.

PROOF. Let x(t) be a solution of (1.1) with a relatively compact range in *X*. Then, it is bounded. So, by the result above, it is constant over \mathbb{R} , that is,

$$||x(t)|| = ||x(0)||, \quad t \in \mathbb{R}.$$
 (2.1)

Fix $s \in \mathbb{R}$ and consider $y_s(t) = x(t+s)$, $t \in \mathbb{R}$. Then, $y_s(t)$ is also a bounded solution of (1.1), so $||y_s(t)|| = ||y_s(0)||$ for all $t \in \mathbb{R}$. Now fix s_1, s_2 in \mathbb{R} . Then, $y_{s_1}(t) - y_{s_2}(t)$ is a bounded solution of (1.1), so,

$$\||\boldsymbol{y}_{s_1}(t) - \boldsymbol{y}_{s_2}(t)\| = \||\boldsymbol{y}_{s_1}(0) - \boldsymbol{y}_{s_2}(0)\|$$
(2.2)

which gives

$$||x(t+s_1) - x(t+s_2)|| = ||x(s_1) - x(s_2)||.$$
(2.3)

Consider a given sequence (s'_n) in \mathbb{R} . Since x(t) has relatively compact range in X, then there exists $(s_n) \subset (s'_n)$ such that $(x(s_n))$ is convergent, thus Cauchy. Given $\epsilon > 0$, there exists N such that $||x(s_n) - x(s_m)|| < \epsilon$, if n, m > N so that for every $t \in \mathbb{R}$,

$$||x(t+s_n) - x(t+s_m)|| < \epsilon \tag{2.4}$$

which proves that x(t) is almost periodic.

THEOREM 2.3. In a reflexive Banach Space X, if A is nilpotent, then every bounded solution of (1.1) is weakly almost periodic.

The proof is based on the fact that in a reflexive Banach space, every sequence which is bounded in norm has weakly convergent subsequent (see [3, Theorem 1, page 26]). We apply the second part of the proof of the previous theorem to $\langle \phi, x(t) \rangle$ (arbitrary $\phi \in X^*$) to complete the proof.

3. It is known that if $A \in f(X)$, where *X* is a finite-dimensional space and *f* is almost automorphic, then every bounded solution of (1.6) is almost automorphic [2]. We generalize this result here for a uniformly convex Banach space *X* and *A* of simplest type, that is, $A \in f(X)$ and

$$A = \sum_{j=1}^{n} \alpha_j P_j, \tag{3.1}$$

where $\alpha_j \in \mathbb{C}$, j = 1, ..., n, are mutually distinct and P_j form a complete system (i.e., $\sum_{j=1}^{n} P_j = I$) of pairwise disjoint operators in *X* with $P_i P_j = \delta_{ij} P_i$. We state and prove the following theorem.

THEOREM 3.1. If A is of simplest type, then every bounded solution of (1.6) is almost automorphic.

PROOF. If x(t) is a solution, then $x(t) = \sum_{j=1}^{n} x_j(t)$, where $x_j(t) = P_j(x(t))$, j = 1, 2, ..., n. We show that each $x_j(t)$ is almost automorphic. In fact,

$$\begin{aligned} x_j(t) &= P_j A x(t) + P_j f(t) \\ &= P_j \left(\sum_{i=1}^n \alpha_i P_i \right) x(t) + P_j f(t) \\ &= \alpha_j x_j(t) + P_j f(t), \end{aligned}$$
(3.2)

where $P_j f(t)$ is almost automorphic. Therefore, $x_j(t)$ is almost automorphic (see [2, page 69]) and so is x(t). The proof is complete.

It is known that if *A* is bounded linear operator on a Banach space *X* and the function $x(t) = e^{tA}x_0$ is almost automorphic for some $x_0 \in D(A)$, then either $\inf_{t \in \mathbb{R}} ||x(t)|| > 0$ or x(t) = 0, for every $t \in \mathbb{R}$. This is presented in [2, Theorem 2.1.9, page 17]. We now state a more general result.

THEOREM 3.2. Suppose $(T(t))_{t \in \mathbb{R}}$ is a C_0 -group of bounded linear operators in a Banach space X and the function $x(t) = T(t)x_0 : \mathbb{R} \to X$ is weakly almost automorphic for some $x_0 \in X$. Then, either $\inf_{t \in \mathbb{R}} ||x(t)|| > 0$, or x(t) = 0 for every $t \in \mathbb{R}$.

PROOF. We assume that $\inf_{t \in \mathbb{R}} ||x(t)|| = 0$. Then, we find a minimizing sequence of real numbers (s'_n) such that $s'_n \to \infty$ and $||s'_n|| \to 0$ as $n \to \infty$.

Since x(t) is weakly almost automorphic, there exists a subsequence (s_n) of (s'_n) such that (1.3) and (1.4) are pointwise in $t \in \mathbb{R}$. And so, for every $\phi \in X^*$, we have

$$\lim_{n \to \infty} \langle \phi, \chi(t + s_n) \rangle = \langle \phi, \chi(t) \rangle,$$

$$\lim_{n \to \infty} \langle \phi, \chi(t - s_n) \rangle = \langle \phi, \chi(t) \rangle$$
(3.3)

for each $t \in \mathbb{R}$. It is

$$x(t+s_n) = T(t+s_n)x_0 = T(t)T(s_n)x_0 = T(t)x(s_n),$$
(3.4)

 $t \in \mathbb{R}$, $n = 1, 2, \dots$, so that

$$\lim_{n \to \infty} \langle \phi, T(t) x(s_n) \rangle = \langle \phi, y(t) \rangle$$
(3.5)

for each $t \in \mathbb{R}$, $\phi \in X^*$. But

$$\left|\left\langle\phi, T(t)x(s_n)\right\rangle\right| \le \|\phi\| \|T(t)\| \|x(s_n)\| \to 0 \tag{3.6}$$

as $n \to \infty$. That implies $\langle \phi, y(t) \rangle = 0$, for each $\phi \in X^*$ and $t \in \mathbb{R}$. So, y(t) = 0, $t \in \mathbb{R}$, and consequently x(t) = 0, $t \in \mathbb{R}$. The proof is now complete.

APPLICATION 3.3. Consider (1.5), where *A* is the infinitesimal generator of a C_0 -group of bounded linear operators T(t), $t \in \mathbb{R}$. Then, every mild weakly almost automorphic solution x(t) satisfies the property: $\inf_{t \in \mathbb{R}} ||x(t)|| > 0$, or x(t) = 0 for every $t \in \mathbb{R}$.

PROOF. Mild solutions of (1.6) in this case are written as $x(t) = T(t)x(0), t \in \mathbb{R}$. Then apply Theorem 3.2.

REFERENCES

- T. Diagana and G. M. N'Guérékata, On some perturbations of some abstract differential equations, Comment. Math. Prace Mat. 43 (2003), no. 2, 201–206.
- G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001.
- [3] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1974.
- [4] S. Zaidman, *Topics in Abstract Differential Equations. II*, Pitman Research Notes in Mathematics Series, vol. 321, John Wiley & Sons, New York, 1995.

Gaston M. N'Guérékata: Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

E-mail address: gnguerek@morgan.edu