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We present an introduction to the geometry of higher-order vector and covector bundles
(including higher-order generalizations of the Finsler geometry and Kaluza-Klein gravity)
and review the basic results on Clifford and spinor structures on spaces with generic local
anisotropy modeled by anholonomic frames with associated nonlinear connection struc-
tures. We emphasize strong arguments for application of Finsler-like geometries in modern
string and gravity theory, noncommutative geometry and noncommutative field theory, and
gravity.
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1. Introduction. Nowadays, interest has been established in non-Riemannian geome-

tries derived in the low-energy string theory [18, 64, 65], noncommutative geometry

[1, 3, 8, 12, 15, 22, 32, 34, 53, 55, 67, 109, 111, 112], and quantum groups [33, 35, 36, 37].

Various types of Finsler-like structures can be parametrized by generic off-diagonal

metrics, which cannot be diagonalized by coordinate transforms but only by anholo-

nomic maps with associated nonlinear connection (in brief, N-connection). Such struc-

tures may be defined as exact solutions of gravitational field equations in the Einstein

gravity and its generalizations [75, 79, 80, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104,

105, 109, 110, 111], for instance, in the metric-affine [19, 23, 56] Riemann-Cartan gravity

[24, 25]. Finsler-like configurations are considered in locally anisotropic thermodynam-

ics, kinetics, related stochastic processes [85, 96, 107, 108], and (super-) string theory

[84, 87, 90, 91, 92].

The following natural step in these lines is to elucidate the theory of spinors in

effectively derived Finsler geometries and to relate this formalism of Clifford structures

to noncommutative Finsler geometry. It should be noted that the rigorous definition

of spinors for Finsler spaces and generalizations was not a trivial task because (on

such spaces) there are no defined even local groups of automorphisms. The problem

was solved in [82, 83, 88, 89, 93] by adapting the geometric constructions with respect

to anholonomic frames with associated N-connection structure. The aim of this work

is to outline the geometry of generalized Finsler spinors in a form more oriented to

applications in modern mathematical physics.

We start with some historical remarks: the spinors studied by mathematicians and

physicists are connected with the general theory of Clifford spaces introduced in 1876

[14]. The theory of spinors and Clifford algebras play a major role in contemporary

physics and mathematics. The spinors were discovered by Èlie Cartan in 1913 in
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mathematical form in his researches on representation group theory [10, 11]; he showed

that spinors furnish a linear representation of the groups of rotations of a space of

arbitrary dimensions. The physicists Pauli [60] and Dirac [20] (in 1927, resp., for the

three-dimensional and four-dimensional space-times) introduced spinors for the rep-

resentation of the wave functions. In general relativity theory spinors and the Dirac

equations on (pseudo-) Riemannian spaces were defined in 1929 by Weyl [113], Fock

[21], and Schrödinger [68]. The books [61, 62, 63] by Penrose and Rindler summa-

rize the spinor and twistor methods in space-time geometry (see additional references

[7, 9, 26, 27, 31, 54] on Clifford structures and spinor theory).

Spinor variables were introduced in Finsler geometries by Takano in [73] where he

dismissed anisotropic dependencies not only on vectors on the tangent bundle but also

on some spinor variables in a spinor bundle on a space-time manifold. Then generalized

Finsler geometries, with spinor variables, were developed by Ono and Takano in a series

of publications during 1990–1993 [57, 58, 59, 74]. The next steps were investigations of

anisotropic and deformed geometries with spinor and vector variables and applications

in gauge and gravity theories elaborated by Stavrinos and his students, Koutroubis,

Manouselis, and Balan at the beginning of 1994 [69, 70, 71, 72]. In those works the

authors assumed that some spinor variables may be introduced in a Finsler-like way,

but they did not relate the Finlser metric to a Clifford structure and restricted the

spinor-gauge Finsler constructions only to antisymmetric spinor metrics on two-spinor

fibers with possible generalizations to four-dimensional Dirac spinors.

Isotopic spinors, related with SU(2) internal structural groups, were considered in

generalized Finsler gravity and gauge theories also by Asanov and Ponomarenko [4]. In

that book, and in other papers on Finsler geometry with spinor variables, the authors

did not investigate the possibility of introducing a rigorous mathematical definition of

spinors on spaces with generic local anisotropy.

An alternative approach to spinor differential geometry and generalized Finsler

spaces was elaborated, at the beginning of 1994, in a series of papers and commu-

nications by Vacaru and coauthors [83, 88, 101]. This direction originates from Clif-

ford algebras, Clifford bundles [28], Penrose’s spinor, and twistor space-time geometry

[61, 62, 63], which were reconsidered for the case of nearly autoparallel maps (general-

ized conformal transforms) in [86]. In the works [82, 83, 88, 89], a rigorous definition

of spinors for Finsler spaces, and their generalizations, was given. It was proven that

a Finsler, or Lagrange, metric (in a tangent or, more generally, in a vector bundle) in-

duces naturally a distinguished Clifford (spinor) structure which is locally adapted to

the nonlinear connection structure. Such spinor spaces could be defined for arbitrary

dimensions of base and fiber subspaces, their spinor metrics are symmetric, antisym-

metric, or nonsymmetric, depending on the corresponding base and fiber dimensions.

That work resulted in the formation of the spinor differential geometry of general-

ized Finsler spaces and developed a number of geometric applications to the theory of

gravitational and matter field interactions with generic local anisotropy.

The geometry of anisotropic spinors and (distinguished by nonlinear connections)

Clifford structures was elaborated for higher-order anisotropic spaces [82, 83, 92, 93]

and, more recently, for Hamilton and Lagrange spaces [109, 111].



NONLINEAR CONNECTIONS AND SPINOR GEOMETRY 1191

We emphasize that the theory of anisotropic spinors may be related not only to

generalized Finsler, Lagrange, Cartan, and Hamilton spaces or their higher-order gen-

eralizations, but also to anholonomic frames with associated nonlinear connections

which appear naturally even in (pseudo-) Riemannian and Riemann-Cartan geometries

if off-diagonal metrics are considered [94, 96, 97, 98, 102, 103, 104, 105, 110]. In order

to construct exact solutions of the Einstein equations in general relativity and extra-

dimensional gravity (for lower dimensions see [85, 96, 107, 108]), it is more convenient

to diagonalize space-time metrics by using some anholonomic transforms. As a result,

one induces locally anisotropic structures on space-time, which are related to anholo-

nomic (anisotropic) spinor structures.

The main purpose of the present review is to present a detailed summary and new

results on spinor differential geometry for generalized Finsler spaces and (pseudo-) Rie-

mannian space-times provided with an anholonomic frame and associated nonlinear

connection structure, to discuss and compare the existing approaches and to consider

applications to modern gravity and gauge theories. The work is based on communica-

tions [109, 111].

2. (Co-) vector bundles and N-connections. We outline the basic definitions and de-

notations for the vector and tangent (and their dual spaces) bundles and higher-order

vector/covector bundle geometry. In this work, we consider that the space-time geom-

etry can be modeled both on a (pseudo-) Riemannian manifold V[n+m] of dimension

n+m and on a vector bundle (or its dual, covector bundle) being, for simplicity, locally

trivial with a base space M of dimension n and a typical fiber F (cofiber F∗) of dimen-

sionm, or as a higher-order extended vector/covector bundle (we follow the geometric

constructions and definitions of [45, 46, 47, 48, 49, 50, 51, 52], which were generalized

for vector superbundles in [90, 91, 92]). Such (pseudo-) Riemannian spaces and/or vec-

tor/covector bundles enabled with compatible fibered and/or anholonomic structures

are called anisotropic space-times. If the anholonomic structure with associated nonlin-

ear connection is modeled on higher-order vector/covector bundles, we use the term

higher-order anisotropic space-time. In this section, we usually omit proofs which can

be found in the mentioned monographs [45, 46, 47, 48, 49, 50, 51, 52, 92].

2.1. (Co-) vector and tangent bundles. A locally trivial vector bundle, in brief, v-

bundle, �= (E,π,M,Gr ,F) is introduced as a set of spaces and surjective map with the

properties that a real vector space F = Rm of dimension m (dimF =m, R denotes the

real numbers field) defines the typical fiber, the structural group is chosen to be the

group of automorphisms ofRm, that is,Gr = GL(m,R), andπ : E→M is a differentiable

surjection of a differentiable manifold E (total space, dimE =n+m) to a differentiable

manifold M (base space, dimM = n). The local coordinates on � are denoted uα =
(xi,ya), or in brief u= (x,y) (the Latin indices i,j,k, . . .= 1,2, . . . ,n define coordinates

of geometrical objects with respect to a local frame on base space M ; the Latin indices

a,b,c, . . . = 1,2, . . . ,m define fiber coordinates of geometrical objects and the Greek

indices α,β,γ, . . . are considered as cumulative ones for coordinates of objects defined

on the total space of a v-bundle).
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Coordinate transforms uα′ =uα′(uα) on a v-bundle � are defined as (xi,ya)→ (xi′ ,
ya′), where

xi
′ = xi′(xi), ya

′ =Ka′a
(
xi

)
ya, (2.1)

and matrix Ka′a (xi)∈ GL(m,R) are functions of a necessary smoothness class.

A local coordinate parametrization of v-bundle � naturally defines a coordinate basis

∂α = ∂
∂uα

=
(
∂i = ∂

∂xi
, ∂a = ∂

∂ya

)
(2.2)

and the reciprocal to (2.2) coordinate basis

dα = duα = (
di = dxi, da = dya) (2.3)

which is uniquely defined from the equations dα ◦∂β = δαβ , where δαβ is the Kronecker

symbol and by “◦” we denote the inner (scalar) product in the tangent bundle ��.

A tangent bundle (in brief, t-bundle) (TM,π,M) to a manifold M can be defined as a

particular case of a v-bundle when the dimensions of the base and fiber spaces (the last

one considered as the tangent subspace) are identical, n =m. In this case both types

of indices i,k, . . . and a,b, . . . take the same values 1,2, . . . ,n. For t-bundles, the matrices

of fiber coordinates transforms from (2.1) can be written as Ki
′
i = ∂xi

′/∂xi.
We will also use the concept of covector bundle (in brief, cv-bundles) �̆ = (Ĕ,π∗,M,

Gr ,F∗) which is introduced as a dual vector bundle for which the typical fiber F∗

(cofiber) is considered to be the dual vector space (covector space) to the vector space F .

The fiber coordinates pa of Ĕ are dual to ya in E. The local coordinates on total space Ĕ
are denoted ŭ= (x,p)= (xi,pa). The coordinate transforms on Ĕ, ŭ= (xi,pa)→ ŭ′ =
(xi′ ,pa′), are written as

xi
′ = xi′(xi), pa′ =Kaa′

(
xi

)
pa. (2.4)

The coordinate bases on E∗ are denoted

∂̆α = ∂̆
∂uα

=
(
∂i = ∂

∂xi
, ∂̆a = ∂̆

∂pa

)
, d̆α = d̆uα = (

di = dxi, d̆a = dpa
)
. (2.5)

We use breve symbols in order to distinguish the geometrical objects on a cv-bundle

�∗ from those on a v-bundle �.

As a particular case with the same dimension of base space and cofiber, one obtains

the cotangent bundle (T∗M,π∗,M), in brief, ct-bundle, being dual to TM . The fibre

coordinates pi of T∗M are dual to yi in TM . The coordinate transforms (2.4) on T∗M
are stated by some matrices Kkk′(xi)= ∂xk/∂xk

′
.

In our further considerations, we will distinguish the base and cofiber indices.

2.2. Higher-order (co-) vector bundles. The geometry of higher-order tangent and

cotangent bundles provided with a nonlinear connection structure was elaborated in

[45, 49, 50, 51, 52] in order to geometrize the higher-order Lagrange and Hamilton

mechanics. In this case we have base spaces and fibers of the same dimension. To
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develop the approach to modern high-energy physics (in superstring and Kaluza-Klein

theories), we introduced (in [82, 83, 90, 91, 92, 93]) the concept of higher-order vector

bundle with the fibers consisting of finite “shells” of vector, or covector, spaces of

different dimensions not obligatorily coinciding with the base space dimension.

Definition 2.1. A distinguished vector/covector space, in brief, dvc-space, of type

F̃ = F[
v(1),v(2),cv(3), . . . ,cv(z−1),v(z)

]
(2.6)

is a vector space decomposed into an invariant oriented direct sum

F̃ = F(1)⊕F(2)⊕F∗(3)⊕···⊕F∗(z−1)⊕F(z) (2.7)

of vector spaces F(1),F(2), . . . ,F(z) of respective dimensions

dimF(1) =m1, dimF(2) =m2, . . . , dimF(z) =mz, (2.8)

and of covector spaces F∗(3), . . . ,F
∗
(z−1) of respective dimensions

dimF∗(3) =m∗
3 , . . . , dimF∗(z−1) =m∗

(z−1). (2.9)

As a particular case, we obtain a distinguished vector space, in brief dv-space (resp.,

a distinguished covector space, in brief dcv-space), if all components of the sum are

vector (resp., covector) spaces. We note that we have fixed, for simplicity, an orientation

of (co-) vector subspaces like in (2.6).

Coordinates on F̃ are denoted

ỹ = (
y(1),y(2),p(3), . . . ,p(z−1),y(z)

)= {
y〈αz〉

}
= (
ya1 ,ya2 ,pa3 , . . . ,paz−1 ,y

az
)
,
(2.10)

where indices run correspondingly to the values a1 = 1,2, . . . ,m1; a2 = 1,2, . . . ,m2; . . . ;
az = 1,2, . . . ,mz.

Definition 2.2. A higher-order vector/covector bundle, in brief, hvc-bundle, of type

�̃ = �̃[v(1),v(2),cv(3), . . . ,cv(z−1),v(z)] is a vector bundle �̃ = (Ẽ,p〈d〉, F̃ ,M) with

corresponding total, Ẽ, and base, M , spaces, surjective projection p〈d〉 : Ẽ → M , and

typical fiber F̃ .

We define the higher-order vector (resp., covector) bundles, in brief, hv-bundles (resp.,

in brief, hcv-bundles), if the typical fibre is a dv-space (resp., a dcv-space) as particular

cases of the hvc-bundles.

An hvc-bundle is constructed as an oriented set of enveloping “shell-by-shell” v-

bundles and/or cv-bundles,

p〈s〉 : Ẽ〈s〉 �→ Ẽ〈s−1〉, (2.11)

where we use the index 〈s〉 = 0,1,2, . . . ,z in order to enumerate the shells, when Ẽ〈0〉 =
M . Local coordinates on Ẽ〈s〉 are denoted

ũ(s) =
(
x,ỹ〈s〉

)= (
x,y(1),y(2),p(3), . . . ,y(s)

)= (
xi,ya1 ,ya2 ,pa3 , . . . ,y

as
)
. (2.12)
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If 〈s〉 = 〈z〉, we obtain a complete coordinate system on �̃ denoted in brief

ũ= (
x,ỹ

)= ũα = (
xi =ya0 ,ya1 ,ya2 ,pa3 , . . . ,paz−1 ,y

az
)
. (2.13)

We will use the general commutative indices α,β, . . . for objects on hvc-bundles which

are marked by tilde, like ũ, ũα, . . . , Ẽ〈s〉, . . . .
The coordinate bases on �̃ are denoted

∂̃α = ∂̃
∂uα

=
(
∂i = ∂

∂xi
, ∂a1 =

∂
∂ya1

, ∂a2 =
∂

∂ya2
, ∂̆a3 = ∂̆

∂pa3

, . . . , ∂az =
∂

∂yaz

)
,

d̃α = d̃uα = (
di = dxi, da1 = dya1 , da2 = dya2 , d̆a3 = dpa3 , . . . , d

az = dyaz).
(2.14)

We give two examples of higher-order tangent/cotangent bundles (when the dimen-

sions of fibers/cofibers coincide with the dimension of bundle space, see [45, 49, 50,

51, 52]).

2.2.1. Osculator bundle. The k-osculator bundle is identified with the k-tangent

bundle (TkM,p(k),M) of ann-dimensional manifoldM . We denote the local coordinates

ũα = (xi,yi(1), . . . ,yi(k)), where we have identified yi(1) 	 ya1 , . . . , yi(k) 	 yak , k = z, in

order to have similarity with denotations from [45, 49, 50, 51, 52]. The coordinate trans-

forms ũα′ → ũα′(ũα) preserving the structure of such higher-order vector bundles are

parametrized:

xi
′ = xi′(xi), det

(
∂xi′

∂xi

)
≠ 0,

yi
′
(1) =

∂xi′

∂xi
yi(1),

2yi
′
(2) =

∂yi
′
(1)

∂xi
yi(1)+2

∂yi
′
(1)

∂yi
yi(2),

...

kyi
′
(k) =

∂yi
′
(1)

∂xi
yi(1)+···+k

∂yi
′
(k−1)

∂yi(k−1)
yi(k),

(2.15)

where the equalities

∂yi
′
(s)

∂xi
= ∂y

i′
(s+1)

∂yi(1)
= ··· = ∂yi

′
(k)

∂yi(k−s)
(2.16)

hold for s = 0, . . . ,k−1 and yi(0) = xi.
The natural coordinate frame on (TkM,p(k),M) is defined by ∂̃α=(∂/∂xi,∂/∂yi(1), . . . ,

∂/∂yi(k)) and the coframe is d̃α = (dxi,dyi(1), . . . ,dyi(k)). These formulas are, respec-

tively, some particular cases of (2.14).
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2.2.2. The dual bundle of k-osculator bundle. This higher-order vector/covector

bundle, denoted as (T∗kM,p∗k,M), is defined as the dual bundle to the k-tangent bun-

dle (TkM,pk,M). The local coordinates (parametrized as in the previous paragraph)

are

ũ= (
x,y(1), . . . ,y(k−1),p

)= (
xi,yi(1), . . . ,y

i
(k−1),pi

)∈ T∗kM. (2.17)

The coordinate transforms on (T∗kM,p∗k,M) are

xi
′ = xi′(xi), det

(
∂xi′

∂xi

)
≠ 0,

yi
′
(1) =

∂xi′

∂xi
yi(1),

2yi
′
(2) =

∂yi
′
(1)

∂xi
yi(1)+2

∂yi
′
(1)

∂yi
yi(2),

...

(k−1)yi
′
(k−1) =

∂yi
′
(k−2)

∂xi
yi(1)+···+k

∂yi
′
(k−1)

∂yi(k−2)
yi(k−1), pi′ = ∂x

i

∂xi′
pi,

(2.18)

where the equalities

∂yi
′
(s)

∂xi
= ∂y

i′
(s+1)

∂yi(1)
= ··· = ∂yi

′
(k−1)

∂yi(k−1−s)
(2.19)

hold for s = 0, . . . ,k−2 and yi(0) = xi.
The natural coordinate frame on (T∗kM,p∗(k),M) is written in the form ∂̃α = (∂/∂xi,

∂/∂yi(1), . . . ,∂/∂y
i
(k−1),∂/∂pi) and the coframe is written as d̃α = (dxi,dyi(1), . . . ,dyi(k−1),

dpi). These formulas are, respectively, certain particular cases of (2.14).

2.3. Nonlinear connections. The concept of nonlinear connection, in brief, N-connec-

tion, is fundamental in the geometry of vector bundles and anisotropic spaces (see a

detailed study and basic references in [46, 47, 48] and, for supersymmetric and/or

spinor bundles, see [90, 91, 92, 106]). A rigorous mathematical definition is possible by

using the formalism of exact sequences of vector bundles.

2.3.1. N-connections in vector bundles. Let �=(E,p,M) be a v-bundle with typi-

cal fiber Rm and πT : TE → TM being the differential of the map P which is a fibre-

preserving morphism of the tangent bundle (TE,τE,E) → E and of tangent bundle

(TM,τ,M) → M . The kernel of the vector bundle morphism, denoted as (VE,τV ,E),
is called the vertical subbundle over E, which is a vector subbundle of the vector bundle

(TE,τE,E).
A vectorXu tangent to a pointu∈ E is locally written as (x,y,X,Y)= (xi,ya,Xi,Ya),

where the coordinates (Xi,Ya) are defined by the equality Xu = Xi∂i+Ya∂a. We have

πT(x,y,X,Y) = (x,X). Thus the submanifold VE contains the elements which are

locally represented as (x,y,0,Y ).
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Definition 2.3. A nonlinear connection N in a vector bundle � = (E,π,M) is the

splitting on the left of the exact sequence

0 
 �→ VE 
 �→ TE 
 �→ TE/VE 
 �→ 0, (2.20)

where TE/VE is the factor bundle.

By Definition 2.3 a morphism of vector bundles C : TE→ VE is defined such that the

superposition of maps C ◦i is the identity on VE, where i : VE� VE. The kernel of the

morphism C is a vector subbundle of (TE,τE,E), which is the horizontal subbundle, de-

noted by (HE,τH,E). Consequently, we can prove that in a v-bundle �, an N-connection

can be introduced as a distribution

{
N : Eu �→HuE, TuE =HuE⊕VuE

}
(2.21)

for every point u∈ E defining a global decomposition, as a Whitney sum, into horizon-

tal, H�, and vertical, V�, subbundles of the tangent bundle T�:

T�=H�⊕V�. (2.22)

Locally, an N-connection in a v-bundle � is given by its coefficientsNai (u)=Nai (x,y)
with respect to bases (2.2) and (2.3), N = Nai (u)di⊗∂a. We note that a linear connec-

tion in a v-bundle � can be considered as a particular case of an N-connection when

Nai (x,y)= Kabi(x)yb, where functions Kbai(x) on the base M are called the Christoffel

coefficients.

2.3.2. N-connections in covector bundles. A nonlinear connection in a cv-bundle

�̆ (in brief an Ň-connection) can be introduced in a similar fashion as for v-bundles

by reconsidering the corresponding definitions for cv-bundles. For instance, it may be

defined by a Whitney decomposition, into horizontal, H�̆, and vertical, V �̆, subbundles

of the tangent bundle T �̆ :

T �̆=H�̆⊕V �̆. (2.23)

Hereafter, for the sake of brevity, we will omit details on the definition of geometrical

objects on cv-bundles if they are very similar to those for v-bundles: we will present only

the basic formulas by emphasizing the most important common points and differences.

Definition 2.4. An Ň-connection on �̆ is a differentiable distribution

N̆ : �̆ �→ N̆u ∈ T∗u �̆ (2.24)

which is supplementary to the vertical distribution V , that is, Tu�̆= N̆u⊕ V̆u, for all �̆.

The same definition is true for Ň-connections in ct-bundles, we have to change in

Definition 2.4 the symbol �̆ to T∗M .

An Ň-connection in a cv-bundle �̆ is given locally by its coefficients N̆ia(u)=N̆ia(x,p)
with respect to bases (2.2) and (2.3), N̆= N̆ia(u)di⊗ ∂̆a.
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We emphasize that if an N-connection is introduced in a v-bundle (resp., cv-bundle),

we have to adapt the geometric constructions to the N-connection structure (resp., the

Ň-connection structure).

2.3.3. N-connections in higher-order bundles. The concept of N-connection can be

defined for a higher-order vector/covector bundle in a standard manner like in the

usual vector bundles.

Definition 2.5. A nonlinear connection Ñ in hvc-bundle

�̃= �̃
[
v(1),v(2),cv(3), . . . ,cv(z−1),v(z)

]
(2.25)

is a splitting of the left of the exact sequence

0 �→ V �̃ �→ T �̃ �→ T �̃/V �̃ �→ 0. (2.26)

We can associate sequences of type (2.26) to every mapping of intermediary subbun-

dles. For simplicity, we present here the Whitney decomposition

T �̃=H�̃⊕Vv(1)�̃⊕Vv(2)�̃⊕V∗cv(3)�̃⊕···⊕V∗cv(z−1)�̃⊕Vv(z)�̃. (2.27)

Locally, an N-connection Ñ in �̃ is given by its coefficients

Na1
i , Na2

i , Nia3 , . . . , Niaz−1 , Nazi ,
0, Na2

a1 , Na1a3 , . . . , Na1az−1 , Naza1 ,
0, 0, Na2a3 , . . . , Na2az−1 , Naza2 ,
...

...
...

...
...

...

0, 0, 0, . . . , Naz−2az−1 , Nazaz−2 ,
0, 0, 0, . . . , 0, Naz−1az ,

(2.28)

which are given with respect to the components of bases (2.14).

2.3.4. Anholonomic frames and N-connections. Having defined an N-connection

structure in a (vector, covector, or higher-order vector/covector) bundle, we can adapt

with respect to this structure (by “N-elongation”) the operators of partial derivatives

and differentials, and consider decompositions of geometrical objects with respect to

adapted bases and cobases.

Anholonomic frames in v-bundles. In a v-bundle � provided with an N-connec-

tion, we can adapt to this structure the geometric constructions by introducing locally

adapted basis (N-frame or N-basis)

δα = δ
δuα

=
(
δi = δ

δxi
= ∂i−Nai (u)∂a, ∂a =

∂
∂ya

)
(2.29)

and its dual N-basis (N-coframe or N-cobasis)

δα = δuα = (
di = δxi = dxi, δa = δya+Nai (u)dxi

)
. (2.30)
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The anholonomic coefficients, w = {wαβγ(u)}, of N-frames are defined to satisfy the

relations [
δα,δβ

]= δαδβ−δβδα =wαβγ(u)δα. (2.31)

A frame basis is holonomic if all anholonomy coefficients vanish (like for usual co-

ordinate basis (2.3)), or anholonomic if there are nonzero values of wαβγ .

The operators (2.29) and (2.30) on a v-bundle � enabled with an N-connection can

be considered as respective equivalents of the operators of partial derivations and dif-

ferentials: the existence of an N-connection structure results in “elongation” of partial

derivations on x-variables and in “elongation” of differentials on y-variables.

The algebra of tensorial distinguished fieldsDT(�) (d-fields, d-tensors, d-objects) on

� is introduced as the tensor algebra �= {�prqs } of the v-bundle �(d) = (H�⊕V�,pd,�),
where pd :H�⊕V�→ �.

Anholonomic frames in cv-bundles. The anholonomic frames adapted to the

Ň-connection structure are introduced similarly to (2.29) and (2.30):

(i) the locally adapted basis (Ň-basis or Ň-frame):

δ̆α = δ̆
δuα

=
(
δi = δ

δxi
= ∂i+N̆ia

(
ŭ

)
∂̆a, ∂̆a = ∂

∂pa

)
, (2.32)

(ii) its dual (Ň-cobasis or Ň-coframe):

δ̆α = δ̆uα = (
di = δxi = dxi, δ̆a = δ̆pa = dpa−N̆ia

(
ŭ

)
dxi

)
. (2.33)

We note that the sings of Ň-elongations are inverse to those for N-elongations.

The anholonomic coefficients, w̆= {w̆αβγ(ŭ)}, of Ň-frames are defined by the relations

[
δ̆α, δ̆β

]= δ̆αδ̆β− δ̆βδ̆α = w̆αβγ(ŭ)
δ̆α. (2.34)

The algebra of tensorial distinguished fields DT(�̆) (d-fields, d-tensors, d-objects) on

�̆ is introduced as the tensor algebra �̆= {�̆prqs } of the cv-bundle �̆(d) = (H�̆⊕V �̆, p̆d, �̆),
where p̆d :H�̆⊕V �̆→ �̆.

An element t̆∈ �̆
pr
qs , d-tensor field of type

(p r
q s

)
, can be written in local form as

t̆= t̆i1···ipa1···ar
j1···jqb1···br

(
ŭ

)
δ̆i1⊗···⊗ δ̆ip ⊗ ∂̆a1⊗···⊗ ∂̆ar ⊗ d̆j1⊗···⊗ d̆jq ⊗ δ̆b1 ···⊗ δ̆br .

(2.35)

We will, respectively, use the denotations �(Ĕ) (or �(M)), Λp(�̆) (or Λp(M)), and

�(Ĕ) (or �(M)) for the module of d-vector fields on �̆ (or M), the exterior algebra of

p-forms on �̆ (or M), and the set of real functions on �̆ (or M).

Anholonomic frames in hvc-bundles. The anholonomic frames adapted to an

N-connection in hvc-bundle �̃ are defined by the set of coefficients (2.28); having re-

stricted the constructions to a vector (or covector) shell, we obtain some generaliza-

tions of the formulas for the corresponding N-(or Ň)-connection elongation of partial

derivatives defined by (2.29) (or (2.32)) and (2.30) (or (2.33)).
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We introduce the adapted partial derivatives (anholonomic N-frames or N-bases) in

�̃ by applying the coefficients (2.28):

δ̃α = δ̃
δũα

= (
δi,δa1 ,δa2 , δ̆

a3 , . . . , δ̆az−1 ,∂az
)
, (2.36)

where

δi = ∂i−Na1
i ∂a1−Na2

i ∂a2+Nia3 ∂̆
a3−···+Niaz−1 ∂̆

az−1−Nazi ∂az ,
δa1 = ∂a1−Na2

a1 ∂a2+Na1a3 ∂̆
a3−···+Na1az−1 ∂̆

az−1−Naza1
∂az ,

δa2 = ∂a2+Na2a3 ∂̆
a3−···+Na2az−1 ∂̆

az−1−Naza2
∂az ,

δ̆a3 = ∂̃a3−Na3a4∂a4−···+Na3
az−1 ∂̆

az−1−Na3az∂az ,

...

δ̆az−1 = ∂̃az−1−Naz−1az∂az ,

∂az =
∂

∂yaz
.

(2.37)

These formulas can be written in the matrix form

δ̃• = N̂(u)× ∂̃• , (2.38)

where

δ̃• =



δi
δa1

δa2

δ̆a3

...

δ̆az−1

∂az


, ∂̃• =



∂i
∂a1

∂a2

∂̃a3

...

∂̃az−1

∂az


,

N̂=



1 −Na1
i −Na2

i Nia3 −Na4
i ··· Niaz−1 −Nazi

0 1 −Na2
a1 Na1a3 −Na4

a1 ··· Na1az−1 −Naza1

0 0 1 Na2a3 −Na4
a2 ··· Na2az−1 −Naza2

0 0 0 1 −Na3a4 ··· Na3
az−1 −Na3az

...
...

...
...

...
...

...
...

0 0 0 0 0 ··· 1 −Naz−1az

0 0 0 0 0 ··· 0 1


.

(2.39)

The adapted differentials (anholonomic N-coframes or N-cobases) in �̃ are introduced

in the simplest form by using the matrix formalism: the respective dual matrices

δ̃• = {
δ̃α

}= (
di δa1 δa2 δ̆a3 ··· δ̆az−1 δaz

)
,

d̃• = {
∂̃α

}= (
di da1 da2 da3 ··· daz−1 daz

) (2.40)
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are related via a matrix relation

δ̃• = d̃•M̂ (2.41)

which defines the formulas for anholonomic N-coframes. The matrix M̂ from (2.41) is

the inverse to N̂, that is, it satisfies the condition

M̂×N̂= I. (2.42)

The anholonomic coefficients, w̃ = {w̃αβγ(ũ)}, on hcv-bundle �̃ are expressed via co-

efficients of the matrix N̂ and their partial derivatives following the relations

[
δ̃α, δ̃β

]= δ̃αδ̃β− δ̃βδ̃α = w̃αβγ(ũ)
δ̃α. (2.43)

We omit the explicit formulas on shells.

A d-tensor formalism can also be developed on the space �̃. In this case the indices

have to be stipulated for every shell separately, like for v-bundles or cv-bundles.

3. Distinguished connections and metrics. In general, distinguished objects (d-

objects) on a v-bundle � (or cv-bundle �̆) are introduced as geometric objects with vari-

ous group and coordinate transforms coordinated with the N-connection structure on �

(or �̆). For example, a distinguished connection (in brief, d-connection) D on � (or �̆) is

defined as a linear connection D on E (or Ĕ) conserving under a parallelism the global

decomposition (2.22) (or (2.23)) into horizontal and vertical subbundles of T� (or T �̆).

A covariant derivation associated to a d-connection becomes d-covariant. We will give

necessary formulas for cv-bundles in round brackets.

3.1. d-connections

3.1.1. d-connections in v-bundles (cv-bundles). An N-connection in a v-bundle �

(cv-bundle �̆) induces a corresponding decomposition of d-tensors into sums of hor-

izontal and vertical parts, for example, for every d-vector X ∈ �(�)(X̆ ∈ �(�̆)) and

1-form A∈Λ1(�)(Ă∈Λ1(�̆)), we have respectively

X = hX+vX, A= hA+vA,(
X̆ = hX̆+vX, Ă= hĂ+vĂ)

,
(3.1)

where

hX =Xiδi, vX =Xa∂a,(
hX̆ = X̆iδ̃i, vX̆ = X̆a∂̆a

)
,

hA=Aiδi, vA=Aada,(
hĂ= Ăiδ̆i, vĂ= Ăad̆a

)
.

(3.2)
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In consequence, we can associate to every d-covariant derivation along the d-vector

(3.1), DX =X ◦D (DX̆ = X̆ ◦D), two new operators of h- and v-covariant derivations

D(h)X Y =DhXY , D(v)X Y =DvXY , ∀Y ∈�(�),(
D(h)X̆ Y̆ =DhX̆Y̆ , D

(v)
X̆ Y̆ =DvX̆Y̆ , ∀Y̆ ∈�

(
�̆
)) (3.3)

for which the following conditions hold:

DXY =D(h)X Y +D(v)X Y ,(
DX̆Y̆ =D(h)X̆ Y̆ +D

(v)
X̆ Y̆

)
,

(3.4)

where

D(h)X f = (hX)f , D(v)X f = (vX)f , X,Y ∈�(�), f ∈�(M),(
D̆(h)X̆ f =

(
hX̆

)
f , D̆(v)X̆ f = (

vX̆
)
f , X̆, Y̆ ∈�

(
�̆
)
, f ∈�(M)

)
.

(3.5)

The components Γαβγ(Γ̆
α
βγ) of a d-connection D̆α = (δ̆α ◦D), locally adapted to the N-

connection structure with respect to the frames (2.29) and (2.30) ((2.32) and (2.33)), are

defined by the equations

Dαδβ = Γγαβδγ,
(
D̆αδ̆β = Γ̆γαβδ̆γ

)
, (3.6)

from which one immediately has

Γγαβ(u)=
(
Dαδβ

)◦δγ, (
Γ̆γαβ

(
ŭ

)= (
D̆αδ̆β

)
◦ δ̆γ

)
. (3.7)

The coefficients of operators of h- and v-covariant derivations

D(h)k =
{
Lijk,L

a
bk

}
, D(v)c =

{
Cijk,C

a
bc

}
,(

D̆(h)k =
{
L̆ijk, L̆

b
ak

}
, D̆(v)c =

{
C̆icj , C̆

bc
a

}) (3.8)

(see (3.4)) are introduced as corresponding h- and v-parametrizations of (3.7)

Lijk =
(
Dkδj

)◦di, Labk =
(
Dk∂b

)◦δa,(
L̆ijk =

(
D̆kδ̆j

)
◦di, L̆bak =

(
D̆k∂̆b

)
◦ δ̆a

)
,

(3.9)

Cijc =
(
Dcδj

)◦di, Cabc =
(
Dc∂b

)◦δa,(
C̆icj =

(
D̆cδ̆j

)
◦di, C̆bca =

(
D̆c∂̆b

)
◦ δ̆a

)
.

(3.10)

A set of components (3.9) and (3.10)

Γγαβ =
[
Lijk,L

a
bk,C

i
jc,C

a
bc

]
,

(
Γ̆γαβ =

[
L̆ijk, L̆

b
ak, C̆

ic
j , C̆

bc
a

])
(3.11)

completely defines the local action of a d-connection D in � (D̆ in �̆).
For instance, having taken on � (�̆) a d-tensor field of type

(
1 1
1 1

)
,

t= tiajbδi⊗∂a⊗dj⊗δb, t̃= t̆ibjaδ̆i⊗ ∂̆a⊗dj⊗ δ̆b, (3.12)
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and a d-vector X (X̆), we obtain

DXt=D(h)X t+D(v)X t=
(
Xkt̆iajb|k+Xctiajb⊥c

)
δi⊗∂a⊗dj⊗δb,(

D̆X̆ t̃= D̆(h)X̆ t̃+D̆(v)X̆ t̃=
(
X̆kt̆ibja|k+X̆c t̆ib⊥cja

)
δ̆i⊗ ∂̆a⊗dj⊗ δ̆b

)
,

(3.13)

where the h-covariant derivative is written as

tiajb|k = δktiajb+Lihkthajb +Lackticjb−Lhjktiahb−Lcbktiajc ,(
t̆ibja|k = δ̆kt̆ibja+ L̆ihkt̆hbja + L̆bckt̆icja− L̆hjkt̆ibha− L̆bckt̆icja

) (3.14)

and the v-covariant derivative is written as

tiajb⊥c = ∂ctiajb+Cihcthajb +Cadctidjb−Chjctiahb−Cdbctiajd, (3.15)(
t̆ib⊥cja = ∂̆c t̆ibja+ C̆icj t̆hbja + C̆dca t̆ibjd− C̆icj t̆ibha− C̆bcd t̆idja

)
. (3.16)

For a scalar function f ∈�(�) (f ∈�(�̆)), we have

D(h)k = δf
δxk

= ∂f
∂xk

−Nak
∂f
∂ya

, D(v)c f = ∂f
∂yc

,(
D̆(h)k = δ̆f

δxk
= ∂f
∂xk

+Nka ∂f∂pa , D̆
(v)cf = ∂f

∂pc

)
.

(3.17)

3.1.2. d-connections in hvc-bundles. The theory of connections in higher-order ani-

sotropic vector superbundles and vector bundles was elaborated in [90, 91, 92, 93].

Here, we reformulate that formalism for the case when some shells of higher-order

anisotropy could be covector spaces by stating the general rules of covariant deriva-

tion compatible with the N-connection structure in hvc-bundle �̃, and omit details and

cumbersome formulas.

For an hvc-bundle of type �̃ = �̃[v(1),v(2),cv(3), . . . ,cv(z−1),v(z)], a d-connec-

tion Γ̃γαβ has the next shell decomposition of components (with induction being on the

pth shell, considered as the base space, which is in this case an hvc-bundle, we introduce

in a usual manner, like a vector or covector fiber, the (p+1)th shell):

Γ̃γαβ =
{
Γγ1
α1β1

=
[
Li1j1k1

,La1
b1k1

,Ci1j1c1 ,C
a1
b1c1

]
,

Γγ2
α2β2

=
[
Li2j2k2

,La2
b2k2

,Ci2j2c2 ,C
a2
b2c2

]
,

Γ̆γ3
α3β3

=
[
L̆i3j3k3

, L̆b3
a3k3

, C̆i3c3j3 , C̆b3c3
a3

]
, . . . ,

Γ̆γz−1
αz−1βz−1

=
[
L̆iz−1
jz−1kz−1

, L̆bz−1
az−1kz−1

, C̆iz−1cz−1
jz−1

, C̆bz−1cz−1
az−1

]
,

Γγzαzβz =
[
Lizjzkz ,L

az
bzkz ,C

iz
jzcz ,C

az
bzcz

]}
.

(3.18)

These coefficients determine the rules of a covariant derivation D̃ on �̃.
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For example, we consider a d-tensor t̃ of type
(

1 11 12 1̆3 ··· 1z
1 11 12 1̆3 ··· 1z

)
with a corresponding

tensor product of components of anholonomic N-frames (2.38) and (2.41):

t̃= t̃ia1a2b̆3···b̆z−1az
jb1b2ă3···ăz−1bzδi⊗∂a1⊗dj⊗δb1⊗∂a2⊗δb2⊗ ∂̆a3

⊗ δ̆b3···⊗ ∂̆az−1⊗ δ̆bz−1⊗∂az ⊗δbz .
(3.19)

The d-covariant derivation D̃ of t̃ is to be performed separately for every shell according

to the rule (3.15) if a shell is defined by a vector subspace, or according to the rule (3.16)

if the shell is defined by a covector subspace.

3.2. Metric structure

3.2.1. d-metrics in v-bundles. We define a metric structure G in the total space E
of a v-bundle � = (E,p,M) over a connected and paracompact base M as a symmetric

covariant tensor field of type (0,2),

G=Gαβduα⊗duβ, (3.20)

being nondegenerate and of constant signature on E.

Nonlinear connection N and metric G structures on � are mutually compatible if they

satisfy the following conditions:

G
(
δi,∂a

)= 0, (3.21)

or equivalently,

Gia(u)−Nbi (u)hab(u)= 0, (3.22)

where hab =G(∂a,∂b) and Gia =G(∂i,∂a), which gives

Nbi (u)= hab(u)Gia(u) (3.23)

(the matrix hab is inverse to hab). One obtains the following decomposition of metric:

G(X,Y)= hG(X,Y)+vG(X,Y), (3.24)

where the d-tensor hG(X,Y) = G(hX,hY) is of type
(

0 0
2 0

)
and the d-tensor vG(X,Y)=

G(vX,vY) is of type
(

0 0
0 2

)
. With respect to the anholonomic basis (2.29), the d-metric

(3.24) is written as

G= gαβ(u)δα⊗δβ = gij(u)di⊗dj+hab(u)δa⊗δb, (3.25)

where gij =G(δi,δj).
A metric structure of type (3.24) (equivalently, of type (3.25)) or a metric on E with

components satisfying the constraints (3.21) and (3.22) (equivalently (3.23)) defines an

adapted to the given N-connection inner (d-scalar) product on the tangent bundle ��.
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A d-connection DX is metric (or compatible with metric G) on � if DXG = 0, for all

X ∈�(�). With respect to anholonomic frames, these conditions are written as

Dαgβγ = 0, (3.26)

where by gβγ we denote the coefficients in the block form (3.25).

3.2.2. d-metrics in cv- and hvc-bundles. The presented considerations on the self-

consistent definition of N-connection, d-connection, and metric structures in v-bundles

can be reformulated in a similar fashion for other types of anisotropic space-times, on

cv-bundles and on shells of hvc-bundles. For simplicity, we give here only the analogous

formulas for the metric d-tensor (3.25).

(i) On cv-bundle �̆ we write

Ğ= ğαβ
(
ŭ

)
δ̆α⊗ δ̆β = ğij

(
ŭ

)
di⊗dj+ h̆ab(ŭ)

δ̆a⊗ δ̆b, (3.27)

where ğij = Ğ(δ̆i, δ̆j), h̆ab = Ğ(∂̆a, ∂̆b), and the N-coframes are given by formulas

(2.33).

For simplicity, we consider that the metricity conditions are satisfied, D̆γğαβ
= 0.

(ii) On hvc-bundle �̃ we write

G̃= g̃αβ
(
ũ

)
δ̃α⊗ δ̃β

= g̃ij
(
ũ

)
di⊗dj+ h̃a1b1

(
ũ

)
δa1⊗δb1+ h̃a2b2

(
ũ

)
δa2⊗δb2

+ h̃a3b3
(
ũ

)
δ̆a3⊗ δ̆b3+···+ h̃az−1bz−1

(
ũ

)
δ̆az−1⊗ δ̆bz−1+ h̃azbz

(
ũ

)
δaz ⊗δbz ,

(3.28)

where g̃ij = G̃(δ̃i, δ̃j), h̃a1b1 = G̃(∂a1 ,∂b1), h̃a2b2 = G̃(∂a2 ,∂b2), h̃a3b3 = G̃(∂̆a3 ,
∂̆b3), . . . , and the N-coframes are given by formula (2.41).

The metricity conditions are D̃γg̃αβ = 0.

(iii) On osculator bundle T 2M =Osc2M , we have a particular case of (3.28) when

G̃= g̃αβ
(
ũ

)
δ̃α⊗ δ̃β = g̃ij

(
ũ

)
di⊗dj+ h̃ij

(
ũ

)
δyi(1)⊗δyi(1)+ h̃ij

(
ũ

)
δyi(2)⊗δyi(2)

(3.29)

with respect to N-coframes.

(iv) On dual osculator bundle (T∗2M,p∗2,M)we have another particular case of (3.28)

when

G̃= g̃αβ
(
ũ

)
δ̃α⊗δ̃β = g̃ij

(
ũ

)
di⊗dj+h̃ij

(
ũ

)
δyi(1)⊗δyi(1)+h̃ij

(
ũ

)
δp(2)i ⊗δp(2)i (3.30)

with respect to N-coframes.

3.3. Some examples of d-connections. We emphasize that the geometry of con-

nections in a v-bundle � is very rich. If a triple of fundamental geometric objects

(Nai (u),Γ
α
βγ(u),gαβ(u)) is fixed on �, a multiconnection structure (with correspond-

ing different rules of covariant derivation, which are, or not, mutually compatible and
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with the same, or without, induced d-scalar products in ��) is defined on this v-bundle.

We can give a priority to a connection structure following some physical arguments, like

the reduction to the Christoffel symbols in the holonomic case, mutual compatibility

between metric and N-connection, and d-connection structures, and so on.

In this subsection, we enumerate some of the connections and covariant derivations

in v-bundle �, cv-bundle �̆, and in some hvc-bundles which can represent interest in

the investigation of locally anisotropic gravitational and matter field interactions.

(1) Every N-connection in � with coefficients Nai (x,y) being differentiable on y-

variables induces a structure of linear connection Nαβγ , where

Nabi =
∂Nai
∂yb

, Nabc(x,y)= 0. (3.31)

For some Y(u) = Y i(u)∂i+Ya(u)∂a and B(u) = Ba(u)∂a, one introduces a covariant

derivation as

D(Ñ)Y B =
[
Y i

(
∂Ba

∂xi
+NabiBb

)
+Yb ∂B

a

∂yb

]
∂
∂ya

. (3.32)

(2) The d-connection of Berwald type on v-bundle � (cv-bundle �̆)

Γ (B)αβγ =
(
Lijk,

∂Nak
∂yb

,0,Cabc

)
,(

Γ̆ (B)αβγ =
(
L̆ijk,−

∂N̆ka
∂pb

,0, C̆bca

))
,

(3.33)

where

Li.jk(x,y)=
1
2
gir

(
δgjk
δxk

+ δgkr
δxj

− δgjk
δxr

)
,

Ca.bc(x,y)=
1
2
had

(
∂hbd
∂yc

+ ∂hcd
∂yb

− ∂hbc
∂yd

)
,(

L̆i.jk(x,p)=
1
2
ğir

(
δ̆ğjk
δxk

+ δ̆ğkr
δxj

− δ̆ğjk
δxr

)
,

C̆bca (x,p)=
1
2
h̆ad

(
∂h̆bd

∂pc
+ ∂h̆

cd

∂pb
− ∂h̆

bc

∂pd

))
,

(3.34)

which is hv-metric, that is, the conditions D(B)k gij = 0 and D(B)c hab = 0 (D̆(B)k ğij = 0 and

D̆(B)ch̆ab = 0) are satisfied.

(3) The canonical d-connection Γ (c) (or Γ̆
(c)

) on a v-bundle (or cv-bundle) is associated

to a metric G (or Ğ) of type (3.25) (or (3.27)),

Γ (c)αβγ =
[
L(c)ijk ,L

(c)a
bk ,C

(c)i
jc ,C

(c)a
bc

]
,(

Γ̆ (c)αβγ =
[
L̆(c)ijk , L̆

(c).b
a.k , C̆

(c)ic
j , C̆(c)bca

]) (3.35)
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with coefficients

L(c)ijk = Li.jk, C(c)abc = Ca.bc,
(
L̆(c)ijk = L̆i.jk, C̆(c)bca = C̆bca

)
, (see (3.34))

L(c)abi = ∂N
a
i

∂yb
+ 1

2
hac

(
δhbc
δxi

− ∂N
d
i

∂yb
hdc− ∂N

d
i

∂yc
hdb

)
,(

L̆(c).ba.i =−
∂N̆ai
∂pb

+ 1
2
h̆ac

(
δ̆h̆bc

δxi
+ ∂N̆id
∂pb

h̆dc+ ∂N̆id
∂pc

h̆db
))
,

C(c)ijc = 1
2
gik
∂gjk
∂yc

,
(
C̆(c)icj = 1

2
ğik
∂ğjk
∂pc

)
.

(3.36)

This is a metric d-connection which satisfies the conditions

D(c)k gij = 0, D(c)c gij = 0, D(c)k hab = 0, D(c)c hab = 0,(
D̆(c)k ğjk = 0, D̆(c)cğjk = 0, D̆(c)k h̆

bc = 0, D̆(c)ch̆ab = 0
)
.

(3.37)

In physical applications, we will use the canonical connection and, for simplicity, we

will omit the index (c). The coefficients (3.36) are to be extended to a higher order if

we are dealing with derivations of geometrical objects with “shell” indices. In this case

the fiber indices are to be stipulated for every type of shell in consideration.

(4) We can consider the N-adapted Christoffel symbols

Γ̃αβγ =
1
2
gατ

(
δγgτβ+δβgτγ−δgβγ

)
(3.38)

which have the components of d-connection Γ̃αβγ = (Lijk,0,0,Cabc), with Lijk and Cabc as in

(3.34) if gαβ is taken in the form (3.25).

3.4. Almost Hermitian anisotropic spaces. There are possible very interesting par-

ticular constructions [45, 46, 47, 48, 49, 50, 51, 52] on t-bundle TM provided with

N-connection which defines an N-adapted frame structure δα = (δi, ∂̇i) (for the same

formulas (2.29) and (2.30) but with identified fiber and base indices). We use the dot-

ted symbol in order to distinguish the horizontal and vertical operators because on

t-bundles the indices could take the same values both for the base and fiber objects.

This allows us to define an almost complex structure J= {Jβα} on TM as follows:

J
(
δi

)=−∂̇i, J
(
∂̇i

)= δi. (3.39)

It is obvious that J is well defined and J2 =−I.
For d-metrics of type (3.25), on TM , we can consider the case when gij(x,y) =

hab(x,y), that is,

G(t) = gij(x,y)dxi⊗dxj+gij(x,y)δyi⊗δyj, (3.40)

where the index (t) denotes that we have a geometrical object defined on a tangent

space.
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An almost complex structure Jβα is compatible with a d-metric of type (3.40) and a

d-connection D on tangent bundle TM if the conditions

JβαJδγgβδ = gαγ, DαJ
γ
β = 0 (3.41)

are satisfied.

The pair (G(t),J) is an almost Hermitian structure on TM .

One can introduce an almost sympletic 2-form associated to the almost Hermitian

structure (G(t),J),

θ = gij(x,y)δyi∧dxj. (3.42)

If the 2-form (3.42), defined by the coefficients gij , is closed, we obtain an almost

Kähler structure in TM .

Definition 3.1. An almost Kähler metric connection is a linear connection D(H) on

TM̃ = TM \{0} with the following properties:

(1) D(H) preserves by parallelism the vertical distribution defined by the N-connec-

tion structure;

(2) D(H) is compatible with the almost Kähler structure (G(t),J), that is,

D(H)X g = 0, D(H)X J = 0, ∀X ∈�
(
TM̃

)
. (3.43)

By a straightforward calculation, we can prove that a d-connectionDΓ = (Lijk,Lijk,Cijc,
Cijc) with the coefficients defined by

D(H)δi δj = Lijkδi, D(H)δi ∂̇j = Lijk∂̇i, D(H)δi δj = Cijkδi, D(H)δi ∂̇j = Cijk∂̇i, (3.44)

where Lijk and Ceab → Cijk on TM are defined by the formulas (3.34), defines a torsionless

(see the next section on torsion structures) metric d-connection which satisfies the

compatibility conditions (3.26).

Almost complex structures and almost Kähler models of Finsler, Lagrange, Hamilton,

and Cartan geometries (of first higher orders) are investigated in detail in [45, 49, 50,

51, 52, 92].

3.5. Torsions and curvatures. We outline the basic definitions and formulas for

the torsion and curvature structures in v-bundles and cv-bundles provided with N-

connection structure.

3.5.1. N-connection curvature. (1) The curvature Ω of a nonlinear connection N in

a v-bundle � can be defined in local form as (see [46, 47, 48])

Ω= 1
2
Ωaijd

i∧dj⊗∂a, (3.45)

where

Ωaij = δjNai −δiNaj = ∂jNai −∂iNaj +Nbi Nabj−Nbj Nabi, (3.46)

Nabi being that from (3.31).
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(2) For the curvature Ω̆ of a nonlinear connection N̆ in a cv-bundle �̆, we introduce

Ω̆= 1
2
Ω̆ijadi∧dj⊗ ∂̆a, (3.47)

where

Ω̆ija =−δ̆jN̆ia+ δ̆iN̆ja =−∂jN̆ia+∂iN̆ja+N̆ibN̆bja−N̆jbN̆bja,

N̆bja = ∂̆bN̆ja =
∂N̆ja
∂pb

.
(3.48)

(3) The curvatures Ω̃ of different types of nonlinear connections Ñ in higher-order

anisotropic bundles were analyzed for higher-order tangent/dual tangent bundles and

higher-order prolongations of generalized Finsler, Lagrange, and Hamilton spaces in

[45, 49, 50, 51, 52] and for higher-order anisotropic superspaces and spinor bundles in

[82, 83, 90, 91, 92, 93]. For every higher-order anisotropy shell, we will define the coef-

ficients (3.46) or (3.48) depending on the fact what type of subfiber we are considering

(a vector or covector fiber).

3.5.2. d-torsions in v- and cv-bundles. The torsion T of a d-connection D in v-bundle

� (cv-bundle �̆) is defined by the equation

T(X,Y)= XY◦◦T�DXY−DYX−[X,Y]. (3.49)

The following h- and v-decompositions hold:

T(X,Y)= T(hX,hY)+T(hX,vY)+T(vX,hY)+T(vX,vY). (3.50)

We consider the projections

hT(X,Y),vT(hX,hY),hT(hX,hY), . . . (3.51)

and say that, for instance, hT(hX,hY) is the h(h,h)-torsion of D, vT(hX,hY) is the v(h,h)-

torsion of D, and so on.

The torsion (3.49) in v-bundle is locally determined by five d-tensor fields, torsions,

defined as

Tijk = hT
(
δk,δj

)·di, Tajk = vT
(
δk,δj

)·δa,
Pijb = hT

(
∂b,δj

)·di, Pajb = vT
(
∂b,δj

)·δa, Sabc = vT
(
∂c,∂b

)·δa. (3.52)

Using formulas (2.29), (2.30), (3.46), and (3.49), we can compute [46, 47, 48] in explicit

form the components of torsions (3.52) for a d-connection of type (3.9) and (3.10):

T i.jk = T ijk = Lijk−Likj, T ija = Ci.ja, T iaj =−Cija,
T i.ja = 0, Ta.ib =−Pa.bi,

Ta.bc = Sa.bc = Cabc−Cacb, Ta.ij = δjNai −δjNaj , Ta.bi = Pa.bi = ∂bNai −La.bj.
(3.53)
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Formulas similar to (3.52) and (3.53) hold for cv-bundles:

Ť ijk = hT
(
δk,δj

)·di, Ťjka = vT
(
δk,δj

)· δ̌a,
P̌ ibj = hT

(
∂̌b,δj

)·di, P̌baj = vT
(
∂̌b,δj

)· δ̌a, Šbca = vT
(
∂̌c , ∂̌b

)· δ̌a, (3.54)

Ť i.jk = Ť ijk = Lijk−Likj, Ť iaj = Čia.j , Ť iaj =−Čiaj ,
Ť ia.j = 0, Ť jab =−P̌ jab,

Ť bca = Šbca = Čbca − Čcba , Ť.ija =−δjŇia+δjŇja,
Ť bia = P̌ bia =−∂̌bŇia− Ľbia .

(3.55)

The formulas for torsion can be generalized for hvc-bundles (on every shell we must

write (3.53) or (3.55) depending on the type of shell, vector or co-vector one, we are

dealing with).

3.5.3. d-curvatures in v- and cv-bundles. The curvature R of a d-connection in v-

bundle � is defined by the equation

R(X,Y)Z =XY ••R•Z =DXDYZ−DYDXZ−D[X,Y]Z. (3.56)

The next properties for the h- and v-decompositions of curvature hold:

vR(X,Y)hZ = 0, hR(X,Y)vZ = 0,

R(X,Y)Z = hR(X,Y)hZ+vR(X,Y)vZ.
(3.57)

From (3.57) and the equation R(X,Y)=−R(Y,X), we get that the curvature of a d-

connection D in � is completely determined by the following six d-tensor fields:

R.ih.jk = di ·R
(
δk,δj

)
δh, R.ab.jk = δa ·R

(
δk,δj

)
∂b,

P .ij.kc = di ·R
(
∂c,∂k

)
δj, P .ab.kc = δa ·R

(
∂c,∂k

)
∂b,

S.ij.bc = di ·R
(
∂c,∂b

)
δj, S.ab.cd = δa ·R

(
∂d,∂c

)
∂b.

(3.58)

By a direct computation, using (2.29), (2.30), (3.9), (3.10), and (3.58), we get

R.ih.jk = δhLi.hj−δjLi.hk+Lm.hjLimk−Lm.hkLimj+Ci.haRa.jk,
R.ab.jk = δkLa.bj−δjLa.bk+Lc.bjLa.ck−Lc.bkLa.cj+Ca.bcRc.jk,
P .ij.ka = ∂aLi.jk−

(
δkCi.ja+Li.lkCl.ja−Ll.jkCi.la−Lc.akCi.jc

)
+Ci.jbPb.ka,

P .cb.ka = ∂aLc.bk−
(
δkCc.ba+Lc.dkCd.ba−Ld.bkCc.da−Ld.akCc.bd

)
+Cc.bdPd.ka,

S.ij.bc = ∂cCi.jb−∂bCi.jc+Ch.jbCi.hc−Ch.jcCihb,
S.ab.cd = ∂dCa.bc−∂cCa.bd+Ce.bcCa.ed−Ce.bdCa.ec.

(3.59)

We note that d-torsions (3.53) and d-curvatures (3.59) are computed in explicit form

by particular cases of d-connections (3.33), (3.36), and (3.38).
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For cv-bundles, we have

Ř.ih.jk = di ·R
(
δk,δj

)
δh, Řba.jk = δ̌a ·R

(
δk,δj

)
∂̌b,

P̌ .icj.k = di ·R
(
∂̌c ,∂k

)
δj, P̌bca.k = δ̌a ·R

(
∂̌c ,∂k

)
∂̌b,

Š.ibcj. = di ·R(
∂̌c , ∂̌b

)
δj, Šb.cd.a = δ̌a ·R

(
∂̌d, ∂̌c

)
∂̌b,

(3.60)

Ř.ih.jk = δ̌hLi.hj− δ̌jLi.hk+Lm.hjLimk−Lm.hkLimj+Cia.h Ř.ajk,
Řb..ajk = δ̌kĽba.j− δ̌j Ľabk+ ĽbcjĽc.ak− ĽbckĽca.j+ Čbca Řc.jk,
P̌ .iaj.k = ∂̌aLi.jk−

(
δ̌kČia.j +Li.lkČla.j −Ll.jkČia.l − ĽackČic.j

)
+ Čib.j P̌abk,

P̌back = ∂̌aĽbc.k−
(
δ̌kČbac. + Ľbdc.kČbad − Ľbd.kČadc.

)
− ĽadkČbdc. + Čbdc. P̌ad.k,

Š.ibcj. = ∂̌cČib.j − ∂̌bČic.j + Čhb.j Čic.h − Čhc.j Čibh ,
Šbcda. = ∂̌dČbca. − ∂̌cČbda. + Čbce. Čeda. − Čbde. Čec.a .

(3.61)

The formulas for curvature can also be generalized for hvc-bundles (on every shell

we must write (3.53) or (3.54) depending on the type of shell, vector or covector one,

we are dealing with).

4. Generalizations of Finsler geometry. We outline the basic definitions and formu-

las for Finsler, Lagrange, and generalized Lagrange spaces (constructed on tangent bun-

dle) and for Cartan, Hamilton, and generalized Hamilton spaces (constructed on cotan-

gent bundle). The original results are given in detail in [45, 46, 47, 48, 49, 50, 51, 52],

see also developments for superbundles in [90, 91, 92].

4.1. Finsler spaces. The Finsler geometry is modeled on tangent bundle TM .

Definition 4.1. A Finsler space (manifold) is a pair Fn = (M,F(x,y)), where M is

a real n-dimensional differentiable manifold and F : TM →R is a scalar function which

satisfies the following conditions:

(1) F is a differentiable function on the manifold T̃M = TM\{0} and F is continuous

on the null section of the projection π : TM →M ;

(2) F is a positive function, homogeneous on the fibers of the TM , that is, F(x,λy)=
λF(x,y), λ∈R;

(3) The Hessian of F2 with elements

g(F)ij (x,y)=
1
2
∂2F2

∂yi∂yj
(4.1)

is positively defined on T̃M .

The function F(x,y) and gij(x,y) are called, respectively, the fundamental function

and the fundamental (or metric) tensor of the Finsler space F .

One considers “anisotropic” (depending on directions yi) Christoffel symbols. For

simplicity, we write g(F)ij = gij ,

γijk(x,y)=
1
2
gir

(
∂grk
∂xj

+ ∂gjr
∂xk

− ∂gjk
∂xr

)
, (4.2)
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which are used for the definition of the Cartan N-connection

Ni(c)j =
1
2
∂
∂yj

[
γink(x,y)y

nyk
]
. (4.3)

This N-connection can be used for the definition of an almost complex structure like in

(3.39) and to define on TM a d-metric

G(F) = gij(x,y)dxi⊗dxj+gij(x,y)δyi⊗δyj, (4.4)

with gij(x,y) taken as in (4.1).

Using the Cartan N-connection (4.3) and Finsler metric tensor (4.1) (or, equivalently,

the d-metric (4.4)), we can introduce the canonical d-connection

DΓ
(
N(c)

)= Γα(c)βγ = (
Li(c)jk,C

i
(c)jk

)
(4.5)

with the coefficients computed as in (3.44) and (3.34) with hab → gij . The d-connection

DΓ(N(c)) has the unique property that it is torsionless and satisfies the metricity con-

ditions for both the horizontal and vertical components, that is, Dαgβγ = 0.

The d-curvatures

Ř.ih.jk =
{
Ř.ih.jk, P̌

.il
j.k,S

.i
(c)j.kl

}
(4.6)

on a Finsler space provided with Cartan N-connection and Finsler metric structures are

computed following the formulas (3.59) when the a,b,c, . . . indices are identified with

i,j,k, . . . indices. It should be emphasized that in this case all values gij , Γα(c)βγ , and

R.α(c)β.γδ are defined by a fundamental function F(x,y).
In general, we can consider that a Finsler space is provided with a metric gij =

∂2F2/2∂yi∂yj , but the N-connection and d-connection are defined in a different man-

ner; they are not even determined by F .

4.2. Lagrange and generalized Lagrange spaces. The notion of Finsler spaces was

generalized by Kern [30] and Miron [38, 39]. It is widely developed in [46, 47, 48] and

extended to superspaces in [76, 77, 78, 81, 90, 91, 92].

The idea of extension was to consider instead of the homogeneous fundamental

function F(x,y) in a Finsler space a more general one, a Lagrangian L(x,y) defined

as a differentiable mapping L : (x,y) ∈ TM → L(x,y) ∈ R, of class C∞ on manifold

T̃M , and continuous on the null section 0 :M → TM of the projection π : TM →M . A

Lagrangian is regular if it is differentiable and the Hessian

g(L)ij (x,y)=
1
2
∂2L2

∂yi∂yj
(4.7)

is of rank n on M .

Definition 4.2. A Lagrange space is a pair Ln = (M,L(x,y)), where M is a smooth

real n-dimensional manifold provided with regular Lagrangian L(x,y) structure L :

TM →R for which gij(x,y) from (4.7) has a constant signature over the manifold T̃M .



1212 S. I. VACARU AND N. A. VICOL

The fundamental Lagrange function L(x,y) defines a canonical N-connection

Ni(cL)j =
1
2
∂
∂yj

[
gik

(
∂2L2

∂yk∂yh
yh− ∂L

∂xk

)]
(4.8)

as well as a d-metric

G(L) = gij(x,y)dxi⊗dxj+gij(x,y)δyi⊗δyj, (4.9)

with gij(x,y) taken as in (4.7). We can also introduce an almost Kähler structure and

an almost Hermitian model of Ln, denoted as H2n as in the case of Finsler spaces but

with a proper fundamental Lagrange function and metric tensor gij . The canonical

metric d-connection DΓ(N(cL)) = Γα(cL)βγ = (Li(cL)jk,Ci(cL)jk) is to be computed by the

same formulas (3.44) and (3.34) with hab → g(L)ij , for Ni(cL)j . The d-torsions (3.53) and

d-curvatures (3.59) are defined, in this case, by Li(cL)jk and Ci(cL)jk. We also note that

instead of Ni(cL)j and Γα(cL)βγ one can consider on an Ln-space arbitrary N-connections

Nij , d-connections Γαβγ , which are not defined only by L(x,y) and g(L)ij but can be metric

or nonmetric with respect to the Lagrange metric.

The next step of generalization is to consider an arbitrary metric gij(x,y) on TM
instead of (4.7) which is the second derivative of “anisotropic” coordinates yi of a

Lagrangian [38, 39].

Definition 4.3. A generalized Lagrange space is a pair GLn = (M,gij(x,y)), where

gij(x,y) is a covariant, symmetric d-tensor field of rank n and of constant signature

on T̃M .

One can consider different classes of N- and d-connections on TM , which are com-

patible (metric) or noncompatible with (4.9) for arbitrary gij(x,y). We can apply all

formulas for d-connections, N-curvatures, d-torsions, and d-curvatures as in a v-bundle

�, but reconsidering them on TM , by changing hab → gij(x,y) and Nai →Nki .

4.3. Cartan spaces. The theory of Cartan spaces (see, e.g., [29, 66]) was formulated

in a new fashion in Miron’s works [40, 42] by considering them as duals to the Finsler

spaces (see details and references in [45, 49, 50, 51, 52]). Roughly, a Cartan space is

constructed on a cotangent bundle T∗M like a Finsler space on the corresponding

tangent bundle TM .

Consider a real smooth manifold M , the cotangent bundle (T∗M,π∗,M), and the

manifold T̃∗M = T∗M\{0}.
Definition 4.4. A Cartan space is a pair Cn = (M,K(x,p)) such that K : T∗M → R

is a scalar function which satisfies the following conditions:

(1) K is a differentiable function on the manifold T̃∗M = T∗M\{0} and is continuous

on the null section of the projection π∗ : T∗M →M ;

(2) K is a positive function, homogeneous on the fibers of the T∗M , that is, K(x,λp)
= λF(x,p), λ∈R;
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(3) the Hessian of K2 with elements

ǧij(K)(x,p)=
1
2
∂2K2

∂pi∂pj
(4.10)

is positively defined on T̃∗M .

The function K(x,y) and ǧij(x,p) are called, respectively, the fundamental function

and the fundamental (or metric) tensor of the Cartan space Cn. We use symbols like

“ǧ” to emphasize that the geometrical objects are defined on a dual space.

We consider “anisotropic” (depending on directions, momenta, pi) Christoffel sym-

bols; for simplicity, we write the inverse to (4.10) as g(K)ij = ǧij ,

γ̌ijk(x,p)=
1
2
ǧir

(
∂ǧrk
∂xj

+ ∂ǧjr
∂xk

− ∂ǧjk
∂xr

)
, (4.11)

which are used for the definition of the canonical N-connection,

Ňij = γ̌kijpk−
1
2
γknlpkp

l∂̆nǧij , ∂̆n = ∂
∂pn

. (4.12)

This N-connection can be used to define an almost complex structure like in (3.39) and

to define on T∗M a d-metric

Ǧ(k) = ǧij(x,p)dxi⊗dxj+ ǧij(x,p)δpi⊗δpj, (4.13)

with ǧij(x,p) taken as in (4.10).

Using the canonical N-connection (4.12) and Finsler metric tensor (4.10) (or, equiva-

lently, the d-metric (4.13)), we can introduce the canonical d-connection

DΓ̌
(
Ň(k)

)= Γ̌α(k)βγ = (
Ȟi(k)jk, Č

jk
(k)i

)
(4.14)

with the coefficients

Ȟi(k)jk =
1
2
ǧir

(
δ̌jǧrk+ δ̌kǧjr − δ̌r ǧjk

)
, Čjk(k)i = ǧis ∂̆s ǧjk. (4.15)

The d-connection DΓ̌(Ň(k)) has the unique property that it is torsionless and satis-

fies the metricity conditions for both the horizontal and vertical components, that is,

Ďαǧβγ = 0.

The d-curvatures

Ř.α(k)β.γδ =
{
R.i(k)h.jk,P

.i
(k)j.km, Š

.ikl
j.

}
(4.16)

on a Finsler space provided with Cartan N-connection and Finsler metric structures are

computed following formulas (3.61) when the a,b,c, . . . indices are identified with the

i,j,k, . . . indices. It should be emphasized that in this case all values ǧij , Γ̌α(k)βγ , and

Ř.α(k)β.γδ are defined by a fundamental function K(x,p).
In general, we can consider that a Cartan space is provided with a metric ǧij =

∂2K2/2∂pi∂pj , but the N-connection and d-connection could be defined in a different

manner, even if they are not determined by K.
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4.4. Generalized Hamilton and Hamilton spaces. The geometry of Hamilton spaces

was defined and investigated by Miron in [41, 43, 44] (see details and references in

[45, 49, 50, 51, 52]). It was developed on the cotangent bundle as a dual geometry

to the geometry of Lagrange spaces. Here, we start with the definition of generalized

Hamilton spaces and then consider the particular case.

Definition 4.5. A generalized Hamilton space is a pairGHn = (M,ǧij(x,p)), where

M is a real n-dimensional manifold and ǧij(x,p) is a contravariant, symmetric, nonde-

generate tensor of rank n and of constant signature on T̃∗M .

The value ǧij(x,p) is called the fundamental (or metric) tensor of the spaceGHn. One

can define such values for every paracompact manifold M . In general, an N-connection

on GHn is not determined by ǧij . Therefore, we can consider arbitrary coefficients

Ňij(x,p) and define on T∗M a d-metric like (3.27)

Ğ= ğαβ
(
ŭ

)
δ̆α⊗ δ̆β = ğij

(
ŭ

)
di⊗dj+ ǧij(ŭ)

δ̆i⊗ δ̆j . (4.17)

These N-coefficients Ňij(x,p) and d-metric structure (4.17) allow to define an almost

Kähler model of generalized Hamilton spaces and to define canonical d-connections,

d-torsions, and d-curvatures (see, respectively, formulas (3.34), (3.36), (3.55), and (3.59)

with the fiber coefficients redefined for the cotangent bundle T∗M).

A generalized Hamilton space GHn = (M,ǧij(x,p)) is called reducible to a Hamilton

one if there exists a Hamilton function H(x,p) on T∗M such that

ǧij(x,p)= 1
2
∂2H
∂pi∂pj

. (4.18)

Definition 4.6. A Hamilton space is a pair Hn = (M,H(x,p)) such that H : T∗M →
R is a scalar function which satisfies the following conditions:

(1) H is a differentiable function on the manifold T̃∗M = T∗M\{0} and is continuous

on the null section of the projection π∗ : T∗M →M ;

(2) the Hessian ofH with elements (4.18) is positively defined on T̃∗M and ǧij(x,p)
is a nondegenerate matrix of rank n and of constant signature.

For Hamilton spaces, the canonical N-connection (defined by H and its Hessian)

exists,

Ňij = 1
4

{
ǧij ,H

}− 1
2

(
ǧik

∂2H
∂pk∂xj

+ ǧjk ∂2H
∂pk∂xi

)
, (4.19)

where the Poisson brackets, for arbitrary functions f and g on T∗M , act as

{f ,g} = ∂f
∂pi

∂g
∂xi

− ∂g
∂pi

∂p
∂xi

. (4.20)

The canonical d-connection DΓ̌(Ň(c))= Γ̌α(c)βγ = (Ȟi(c)jk, Čjk(c)i) is defined by the coeffi-

cients

Ȟi(c)jk =
1
2
ǧis

(
δ̌jǧsk+ δ̌kǧjs− δ̌s ǧjk

)
, Čjk(c)i =−

1
2
ǧis ∂̌jǧsk. (4.21)
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In result we can compute the d-torsions and d-curvatures like on cv-bundle or on Cartan

spaces. On Hamilton spaces, all such objects are defined by the Hamilton function

H(x,p) and indices have to be reconsidered for cofibers of the cotangent bundle.

5. Clifford bundles and N-connections. The theory of anisotropic spinors was ex-

tended on higher-order anisotropic (ha) spaces [92, 93, 106]. In brief, such spinors will

be called ha-spinors which are defined as some Clifford ha-structures defined with re-

spect to a distinguished quadratic form (3.28) on an hvc-bundle. For simplicity, the bulk

of formulas will be given with respect to higher-order vector bundles. To rewrite such

formulas for hvc-bundles is to consider for the “dual” shells of higher-order anisotropy

some dual vector spaces and associated dual spinors.

5.1. Distinguished Clifford algebras. The typical fiber of dv-bundle ξd, πd : HE⊕
V1E⊕···⊕VzE→ E, is a d-vector space, �= h�⊕v1�⊕···⊕vz�, split into horizontal

h� and vertical vp�, p = 1, . . . ,z, subspaces, with a bilinear quadratic form G(g,h)
induced by an hvc-bundle metric (3.28). Clifford algebras (see, e.g., [28, 61, 62, 63])

formulated for d-vector spaces will be called Clifford d-algebras [88, 89, 101]. We will

consider the main properties of Clifford d-algebras. The proof of the theorems will

be based on the technique developed in [28, 92, 106], correspondingly adapted to the

distinguished character of spaces in consideration.

Let k be a number field (for our purposes k = R or k = C, R and C are, respectively,

real and complex number fields) and define �, as a d-vector space, on k provided with

nondegenerate symmetric quadratic form (metric) G. Let C be an algebra on k (not nec-

essarily commutative) and j : �→ C a homomorphism of underlying vector spaces such

that j(u)2 =G(u)·1 (1 is the unity in algebra C and d-vector u∈�). We are interested

in the definition of the pair (C,j) satisfying the next universality conditions. For every

k-algebra A and arbitrary homomorphismϕ : �→A of the underlying d-vector spaces,

such that (ϕ(u))2 → G(u)·1, there is a unique homomorphism of algebras ψ : C → A
defined as commutative diagrams.

The algebra solving this problem will be denoted as C(�,A) (equivalently as C(G) or

C(�)) and called Clifford d-algebra associated with pair (�,G).

Theorem 5.1. There is a unique solution (C,j) up to isomorphism.

Proof. See [82, 83, 92].

Now we reformulate for d-algebras the Chevalley theorem [13].

Theorem 5.2. The Clifford d-algebra

C
(
h�⊕v1�⊕···⊕vz�,g+h1+···+hz

)
(5.1)

is naturally isomorphic to C(g)⊗C(h1)⊗···⊗C(hz).
Proof. See [82, 83, 92].

From the presented theorems, we conclude that all operations with Clifford d-

algebras can be reduced to calculations for C(h�,g) and C(v(p)�,h(p))which are usual

Clifford algebras of dimensions 2n and 2mp , respectively [6, 28].
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Of special interest is the case when k = R and � is isomorphic to a vector space

Rp+q,a+b provided with quadratic form

−x2
1−···−x2

p+x2
p+q−y2

1 −···−y2
a+···+y2

a+b. (5.2)

In this case, the Clifford algebra, denoted as (Cp,q,Ca,b), is generated by the symbols

e(x)1 ,e(x)2 , . . . ,e(x)p+q,e
(y)
1 ,e(y)2 , . . . ,e(y)a+b satisfying the properties(
ei

)2 =−1 (1≤ i≤ p), (
ej

)2 =−1 (1≤ j ≤ a),(
ek

)2 = 1 (p+1≤ k≤ p+q),(
ej

)2 = 1 (n+1≤ s ≤ a+b), eiej =−ejei, i≠ j.

(5.3)

Explicit calculations of Cp,q and Ca,b are possible by using the isomorphisms [28, 61,

62, 63]

Cp+n,q+n 	 Cp,q⊗M2(R)⊗···⊗M2(R)� Cp,q⊗M2n(R)�M2n
(
Cp,q

)
, (5.4)

where Ms(A) denotes the ring of quadratic matrices of order s with coefficients in

ring A. Here, we write the simplest isomorphisms C1,0 	 C, C0,1 	 R⊕R, and C2,0 =�,

where � denotes the body of quaternions.

Now, we emphasize that higher-order Lagrange and Finsler spaces, denoted by H2n-

spaces, admit locally a structure of Clifford algebra on complex vector spaces. Really,

by using almost Hermitian structure Jβα and considering complex space Cn with nonde-

generate quadratic form
∑n
a=1 |za|2, za ∈ C2, induced locally by metric (3.28) (rewritten

in complex coordinates as za = xa+iya), we define Clifford algebra

←�
Cn =←�C 1⊗···⊗←�C 1︸ ︷︷ ︸

n

, (5.5)

where
←�
C 1 = C⊗R C = C⊕C or, in consequence,

←�
Cn 	 Cn,0 ⊗R C ≈ C0,n ⊗R C. Explicit

calculations lead to isomorphisms

←�
C 2 = C0,2⊗RC≈M2(R)⊗RC≈M2

(←�
Cn

)
, C2p ≈M2p (C),

←�
C 2p+1 ≈M2p (C)⊕M2p (C),

(5.6)

which show that complex Clifford algebras, defined locally for H2n-spaces, have peri-

odicity 2 on p.

Considerations presented in the proof of Theorem 5.1 show that the map j : � →
C(�) is monomorphic, so we can identify the space � with its image in C(�,G), denoted

as u→u, if u∈ C(0)(�,G) (u∈ C(1)(�,G)); then u=u (resp., u=−u).

Definition 5.3. The set of elements u ∈ C(G)∗, where C(G)∗ denotes the multi-

plicative group of invertible elements of C(�,G) satisfying u�u−1 ∈ �, is called the

twisted Clifford d-group, denoted as Γ̃(�).

Let ρ̃ : Γ̃(�)→ GL(�) be the homorphism given by u→ ρũ, where ρ̃u(w) = uwu−1.

We can verify that ker ρ̃ =R∗ is a subgroup in Γ̃(�).
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The canonical map j : �→ C(�) can be interpreted as the linear map �→ C(�)0 satis-

fying the universal properties of Clifford d-algebras. This leads to a homomorphism of

algebras, C(�)→ C(�)t , considered by an anti-involution of C(�) and denoted as u→
tu. More exactly, if u1 ···un ∈�, then tu =un ···u1 and tu= tu= (−1)nun ···u1.

Definition 5.4. The spinor norm of arbitraryu∈ C(�) is defined as S(u)= tu·u∈
C(�).

It is obvious that if u,u′,u′′ ∈ Γ̃(�), then S(u,u′) = S(u)S(u′) and S(uu′u′′) =
S(u)S(u′)S(u′′). For u,u′ ∈�, S(u)=−G(u) and S(u,u′)= S(u)S(u′)= S(uu′).

We introduce the orthogonal group O(G) ⊂ GL(G) defined by metric G on � and

denote sets

SO(G)= {
u∈O(G), det |u| = 1

}
, Pin(G)= {

u∈ Γ̃(�), S(u)= 1
}
, (5.7)

and Spin(G) = Pin(G)∩C0(�). For ��Rn+m, we write Spin(nE). By straightforward

calculations (see similar considerations in [28]), we can verify the exactness of these

sequences:

1 �→ �

2
�→ Pin(G) �→O(G) �→ 1,

1 �→ �

2
�→ Spin(G) �→ SO(G) �→ 0,

1 �→ �

2
�→ Spin

(
nE

)
�→ SO

(
nE

)
�→ 1.

(5.8)

We conclude this subsection by emphasizing that the spinor norm was defined with

respect to a quadratic form induced by a metric in dv-bundle �〈z〉. This approach differs

from those presented in [4, 57, 58, 59, 74].

5.2. Clifford ha-bundles. We will consider two variants of generalization of spinor

constructions defined for d-vector spaces to the case of distinguished vector bundle

spaces enabled with the structure of N-connection. The first is to use the extension to

the category of vector bundles. The second is to define the Clifford fibration associated

with compatible linear d-connection and metric G on a dv-bundle. We will analyze both

variants.

5.2.1. Clifford d-module structure in dv-bundles. Because functor � → C(�) is

smooth, we can extend it to the category of vector bundles of type

ξ〈z〉 =
{
πd :HE〈z〉 ⊕V1E〈z〉⊕···⊕VzE〈z〉 �→ E〈z〉

}
. (5.9)

Recall that by � we denote the typical fiber of such bundles. For ξ〈z〉, we obtain a bun-

dle of algebras, denoted as C(ξ〈z〉), such that C(ξ〈z〉)u = C(�u). Multiplication in every

fiber defines a continuous map C(ξ〈z〉)×C(ξ〈z〉) → C(ξ〈z〉). If ξ〈z〉 is a distinguished

vector bundle on number field k, C(ξ〈z〉)-module, the d-module, on ξ〈z〉 is given by the

continuous map C(ξ〈z〉)×E ξ〈z〉 → ξ〈z〉 with every fiber �u provided with the structure of

the C(�u)-module, correlated with its k-module structure. Because �⊂ C(�), we have a
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fiber-to-fiber map �×E ξ〈z〉 → ξ〈z〉, inducing on every fiber the map �u×E ξ〈z〉(u)→ ξ〈z〉(u) (R-

linear on the first factor and k-linear on the second one). Inversely, every such bilinear

map defines on ξ〈z〉 the structure of the C(ξ〈z〉)-module by virtue of the universal prop-

erties of Clifford d-algebras. Equivalently, the above-mentioned bilinear map defines a

morphism of v-bundles

m : ξ〈z〉 �→HOM
(
ξ〈z〉,ξ〈z〉

)
, (5.10)

where HOM(ξ〈z〉,ξ〈z〉) denotes the bundles of homomorphisms when (m(u))2 =G(u)
on every point.

Vector bundles ξ〈z〉 provided with C(ξ〈z〉)-structures are objects of the category with

morphisms being morphisms of dv-bundles, which induce on every point u∈ ξ〈z〉 mor-

phisms of C(�u)-modules. This is a Banach category contained in the category of finite-

dimensional d-vector spaces on field k.

We denote by Hs(�〈z〉,GLnE (R)), where nE = n+m1+···+mz, the s-dimensional

cohomology group of the algebraic sheaf of germs of continuous maps of dv-bundle

�〈z〉 with group GLnE (R), the group of automorphisms of RnE (for the language of

algebraic topology, see, e.g., [28]). We will also use the group SLnE (R)= {A⊂ GLnE (R),
detA= 1}. Here, we point out that cohomologies Hs(M,Gr) characterize the class of a

principal bundle π : P →M onM with structural group Gr . Taking into account that we

deal with bundles distinguished by an N-connection, we introduce into consideration

cohomologies Hs(�〈z〉,GLnE (R)) as distinguished classes (d-classes) of bundles �〈z〉

provided with a global N-connection structure.

For a real vector bundle ξ〈z〉 on compact base �〈z〉, we can define the orientation on

ξ〈z〉 as an element αd ∈H1(�〈z〉,GLnE (R)) whose image on map

H1(�〈z〉,SLnE (R)
)
�→H1(�〈z〉,GLnE (R)

)
(5.11)

is the d-class of bundle �〈z〉.

Definition 5.5. The spinor structure on ξ〈z〉 is defined as an element βd ∈H1(�〈z〉,
Spin(nE)) whose image in the composition

H1(�〈z〉,Spin
(
nE

))
�→H1(�〈z〉,SO

(
nE

))
�→H1(�〈z〉,GLnE (R)

)
(5.12)

is the d-class of �〈z〉.

The above definition of spinor structures can be reformulated in terms of principal

bundles. Let ξ〈z〉 be a real vector bundle of rank n+m on a compact base �〈z〉. If there

is a principal bundle Pd with structural group SO(nE) (or Spin(nE)), this bundle ξ〈z〉

can be provided with orientation (or spinor) structure. The bundle Pd is associated with

element αd ∈H1(�〈z〉,SO(n〈z〉)) (or βd ∈H1(�〈z〉,Spin(nE))).
We remark that a real bundle is oriented if and only if its first Stiefel-Whitney d-class

vanishes,

w1
(
ξd

)∈H1
(
ξ,

�

2

)
= 0, (5.13)
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where H1(�〈z〉,�/2) is the first group of Cech cohomology with coefficients in �/2.

Considering the second Stiefel-Whitney classw2(ξ〈z〉)∈H2(�〈z〉,�/2), it is well known

that vector bundle ξ〈z〉 admits the spinor structure if and only ifw2(ξ〈z〉)= 0. Finally, we

emphasize that taking into account that base space �〈z〉 is also a v-bundle, p : E〈z〉 →M ,

we have to make explicit calculations in order to express cohomologiesHs(�〈z〉,GLn+m)
and Hs(�〈z〉,SO(n+m)) through cohomologies

Hs
(
M,GLn

)
,Hs

(
M,SO

(
m1

))
, . . . ,Hs

(
M,SO

(
mz

))
, (5.14)

which depend on global topological structures of spacesM and �〈z〉. For general bundle

and base spaces, this requires a cumbersome cohomological calculus.

5.2.2. Clifford fibration. Another way of defining the spinor structure is to use Clif-

ford fibrations. Consider the principal bundle with the structural group Gr being a

subgroup of orthogonal group O(G), where G is a quadratic nondegenerate form de-

fined on the base (also being a bundle space) space �〈z〉. The fibration associated to

principal fibration P(�〈z〉,Gr) with a typical fiber having Clifford algebra C(G) is, by

definition, the Clifford fibration PC(�〈z〉,Gr). We can always define a metric on the Clif-

ford fibration if every fiber is isometric to PC(�〈z〉,G) (this result is proved for arbitrary

quadratic forms G on pseudo-Riemannian bases). If, additionally, Gr ⊂ SO(G), a global

section can be defined on PC(G).
Let �(�〈z〉,Gr) be the set of principal bundles with differentiable base �〈z〉 and struc-

tural group Gr . If g : Gr → Gr ′ is a homomorphism of Lie groups and P(�〈z〉,Gr) ⊂
�(�〈z〉,Gr) (for simplicity in this subsection, we will denote mentioned bundles and

sets of bundles as P , P ′, and, resp., �, �′), we can always construct a principal bun-

dle with the property that there is a homomorphism f : P ′ → P of principal bundles,

which can be projected to the identity map of �〈z〉 and corresponds to isomorphism

g :Gr →Gr ′. If the inverse statement also holds, the bundle P ′ is called the extension

of P associated to g and f is called the extension homomorphism denoted as g̃.

Now we can define distinguished spinor structures on bundle spaces.

Definition 5.6. Let P ∈�(�〈z〉,O(G)) be a principal bundle. A distinguished spinor

structure of P , equivalently, a ds-structure of �〈z〉, is an extension P̃ of P associated to

homomorphism h : PinG → O(G), where O(G) is the group of orthogonal rotations,

generated by metric G, in bundle �〈z〉.

So, if P̃ is a spinor structure of the space �〈z〉, then P̃ ∈�(�〈z〉,PinG).
The definition of spinor structures on varieties was given in [16, 17]. It has been

proved that a necessary and sufficient condition for a space-time to be orientable is to

admit a global field of orthonormalized frames. We mention that spinor structures can

also be defined on varieties modeled on Banach spaces [2]. As we have shown, similar

constructions are possible for the cases when space-time has the structure of a v-bundle

with an N-connection.

Definition 5.7. A special distinguished spinor structure, ds-structure, of principal

bundle P = P(�〈z〉,SO(G)) is a principal bundle P̃ = P̃ (�〈z〉,SpinG) for which a homo-

morphism of principal bundles p̃ : P̃ → P , projected onto the identity map of �〈z〉 and
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corresponding to the representation

R : SpinG �→ SO(G), (5.15)

is defined.

In the case when the base space variety is oriented, there is a natural bijection between

tangent spinor structures with a common base. For special ds-structures, we can define,

as for any spinor structure, the concepts of spin tensors, spinor connections, and spinor

covariant derivations (see [82, 83, 101]).

5.3. Almost complex spinor structures. Almost complex structures are an impor-

tant characteristic of H2n-spaces and of osculator bundles Osck=2k1(M), where k1 =
1,2, . . . . For simplicity in this subsection, we restrict our analysis to the case of H2n-

spaces. We can rewrite the almost Hermitian metric [46, 47, 48],H2n-metric, in complex

form [88, 89]:

G =Hab(z,ξ)dza⊗dzb, (5.16)

where

za = xa+iya, za = xa−iya, Hab
(
z,z

)= gab(x,y)|x=x(z,z)y=y(z,z), (5.17)

and define almost complex spinor structures. For a given metric (5.16) on H2n-space,

there is always a principal bundle PU with unitary structural group U(n) which allows

us to transform H2n-space into v-bundle ξU ≈ PU ×U(n) R2n. This statement will be

proved after we introduce complex spinor structures on oriented real vector bundles

[28].

We consider momentarily k = C and introduce into consideration (instead of the

group Spin(n)) the group Spinc×�/2U(1) being the factor group of the product Spin(n)×
U(1) with respect to the equivalence

(y,z)∼ (−y,−a), y ∈ Spin(m). (5.18)

This way we define the short exact sequence

1 �→U(1) �→ Spinc(n) Sc
������������������������������������������������������→ SO(n) �→ 1, (5.19)

where ρc(y,a)= ρc(y). If λ is oriented, real γ-bundle π : Eλ→Mn of rank n, with base

Mn, the complex spinor structure, spin structure, on λ is given by the principal bundle

P with structural group Spinc(m) and isomorphism λ ≈ P ×Spinc(n)Rn (see (5.19)). For

such bundles, the categorial equivalence can be defined as

εc : �TC
(
Mn

)
�→ �λC

(
Mn

)
, (5.20)

where εc(Ec) = P �Spinc(n) Ec is the category of trivial complex bundles on Mn,

�λC(Mn) is the category of complex v-bundles on Mn with action of Clifford bundle

C(λ), P�Spinc(n), and Ec is the factor space of the bundle product P×M Ec with respect



NONLINEAR CONNECTIONS AND SPINOR GEOMETRY 1221

to the equivalence (p,e) ∼ (pĝ−1, ĝe), p ∈ P , e ∈ Ec , where ĝ ∈ Spinc(n) acts on E via

the imbedding Spin(n)⊂ C0,n and the natural action U(1)⊂ C on complex v-bundle ξc ,
Ec = totξc , for bundle πc : Ec →Mn.

Now we return to the bundle ξ = �〈1〉. A real v-bundle (not being a spinor bundle)

admits a complex spinor structure if and only if there exists a homomorphism σ :

U(n)→ Spinc(2n) defining a commutative diagram. The explicit construction of σ for

arbitrary γ-bundle is given in [6, 28]. Let λ be a complex, rank n, spinor bundle with

τ : Spinc(n)×�/2U(1) �→U(1) (5.21)

the homomorphism defined by τ(λ,δ)= δ2. For Ps being the principal bundle with fiber

Spinc(n), we introduce the complex linear bundle L(λc) = PS×Spinc(n)C defined as the

factor space of PS×C on equivalence relation

(pt,z)∼ (
p,l(t)−1z

)
, (5.22)

where t ∈ Spinc(n). This linear bundle is associated to complex spinor structure on λc .
If λc and λc′ are complex spinor bundles, the Whitney sum λc⊕λc′ is naturally pro-

vided with the structure of the complex spinor bundle. This follows from the holomor-

phism

ω′ : Spinc(n)×Spinc
(
n′

)
�→ Spinc

(
n+n′) (5.23)

given by formula [(β,z),(β′,z′)] → [ω(β,β′),zz′], where ω is the homomorphism

defining a commutative diagram of maps. Here, z,z′ ∈U(1). It is obvious that L(λc⊕λc′)
is isomorphic to L(λc)⊗L(λc′).

We conclude this subsection by formulating our main result on complex spinor struc-

tures for H2n-spaces.

Theorem 5.8. Let λc be a complex spinor bundle of rankn andH2n-space considered

as a real vector bundle λc⊕λc′ provided with almost complex structure Jαβ ; multiplication

on i is given by
(

0 −δij
δij 0

)
. Then, there is a diagram of maps which is commutative up to

isomorphisms εc and ε̃c defined as in (5.20), � is a functor Ec → Ec⊗L(λc), �0,2n
C (Mn)

is defined by functor �C(Mn) → �0,2n
C (Mn) given as correspondence Ec → Λ(Cn)⊗Ec

(which is a categorial equivalence), Λ(Cn) is the exterior algebra on Cn, and W is the

real bundle λc⊕λc′ provided with complex structure.

Proof. See [88, 89, 92, 93, 106].

Now consider bundle P×Spinc(n)Spinc(2n) as the principal Spinc(2n)-bundle, associ-

ated to M⊕M being the factor space of the product P ×Spinc(2n) on the equivalence

relation (p,t,h) ∼ (p,µ(t)−1h). In this case, the categorial equivalence (5.20) can be

rewritten as

εc
(
Ec

)= P×Spinc(n) Spinc(2n)∆Spinc(2n)Ec (5.24)

and seen as a factor space of P×Spinc(2n)×M Ec on equivalence relations

(pt,h,e)∼ (
p,µ(t)−1h,e

)
,

(
p,h1,h2,e

)∼ (
p,h1,h−1

2 e
)

(5.25)
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(projections of elements p and e coincide on base M). Every element of εc(Ec) can

be represented as P∆Spinc(n)Ec , that is, as a factor space P∆Ec on equivalence relation

(pt,e) ∼ (p,µc(t),e), when t ∈ Spinc(n). The complex line bundle L(λc) can be inter-

preted as the factor space of P×Spinc(n)C on equivalence relation (pt,δ)∼ (p,r(t)−1δ).
Putting (p,e)⊗(p,δ)(p,δe), we introduce morphism

εc(E)×L(λc) �→ εc(λc) (5.26)

with properties

(pt,e)⊗(pt,δ) �→ (pt,δe)= (
p,µc(t)−1δe

)
,(

p,µc(t)−1e
)⊗(

p,l(t)−1e
)
�→ (

p,µc(t)r(t)−1δe
)
,

(5.27)

pointing to the fact that we have defined the isomorphism correctly and that it is an

isomorphism on every fiber.

6. Spinors and N-connection geometry. The purpose of this section is to show

how a corresponding abstract spinor technique entailing notational and calculational

advantages can be developed for arbitrary splits of dimensions of a d-vector space

� = h�⊕v1�⊕···⊕vz�, where dimh� = n and dimvp� =mp . For convenience, we

will also present some necessary coordinate expressions.

6.1. d-spinor techniques. The problem of a rigorous definition of spinors on locally

anisotropic spaces (d-spinors) was posed and solved [82, 83, 88, 89] in the framework

of the formalism of Clifford and spinor structures on v-bundles provided with compat-

ible nonlinear and distinguished connections and metric. We introduced d-spinors as

corresponding objects of the Clifford d-algebra C(�,G), defined for a d-vector space �

in a standard manner (see, e.g., [28]) and proved that operations with C(�,G) can be

reduced to calculations for C(h�,g),C(v1�,h1),. . .,C(vz�,hz), which are usual Clifford

algebras of respective dimensions 2n,2m1 ,. . .,2mz (if it is necessary, we can use quadratic

forms g and hp correspondingly induced on h� and vp� by a metric G (3.28)). Con-

sidering the orthogonal subgroup O(G) ⊂ GL(G) defined by a metric G, we can define

the d-spinor norm and parametrize d-spinors by ordered pairs of elements of Clifford

algebras C(h�,g) and C(vp�,hp), p = 1,2, . . . ,z. We emphasize that the splitting of a

Clifford d-algebra associated to a dv-bundle �〈z〉 is a straightforward consequence of

the global decomposition defining an N-connection structure in �〈z〉.
In this subsection, we will omit detailed proofs which in most cases are mechani-

cal but rather tedious. We can apply the methods developed in [7, 9, 26, 27, 31, 54,

61, 62, 63] in a straightforward manner on h- and v-subbundles in order to verify the

correctness of affirmations.

6.1.1. Clifford d-algebra, d-spinors, and d-twistors. In order to relate the succeeding

constructions with Clifford d-algebras [88, 89] we consider a la-frame decomposition

of the metric (3.28):

G〈α〉〈β〉(u)= l〈α̂〉〈α〉(u)l〈β̂〉〈β〉(u)G〈α̂〉〈β̂〉, (6.1)
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where the frame d-vectors and constant metric matrices are distinguished as

l〈α̂〉〈α〉(u)=


lĵj(u) 0 ··· 0

0 lâ1
a1(u) ··· 0

...
...

...
...

0 0 ··· lâzaz (u)

 ,

G〈α̂〉〈β̂〉 =


gîĵ 0 ··· 0

0 hâ1b̂1
··· 0

...
...

...
...

0 0 0 hâzb̂z

 ,
(6.2)

gîĵ and hâ1b̂1
, . . . ,hâzb̂z are diagonal matrices with gîî = hâ1â1 = ··· = hâzb̂z =±1.

To generate Clifford d-algebras, we start with matrix equations

σ〈α̂〉σ〈β̂〉+σ〈β̂〉σ〈α̂〉 = −G〈α̂〉〈β̂〉I, (6.3)

where I is the identity matrix, matrices σ〈α̂〉 (σ -objects) act on a d-vector space � =
h�⊕v1�⊕···⊕vz�, and their components are distinguished as

σ〈α̂〉 =
(
σ〈α̂〉

)·γ
β =



(
σî

)·k
j 0 ··· 0

0
(
σâ1

)·c1
b1

··· 0
...

...
...

...

0 0 ··· (
σâz

)·cz
bz

 , (6.4)

indices β,γ, . . . refer to spin spaces of type � = S(h) ⊕ S(v1) ⊕ ··· ⊕ S(vz), and under-

lined Latin indices j, k,. . . and b1,c1, . . . ,bz,cz . . . refer, respectively, to h-spin space

�(h) and vp-spin space �(vp) (p = 1,2, . . . ,z), which are correspondingly associated to

h- and vp-decompositions of a dv-bundle �〈z〉. The irreducible algebra of matrices σ〈α̂〉
of minimal dimension N×N, where N =N(n)+N(m1)+···+N(mz), dim�(h) =N(n), and

dim�(vp) =N(mp), has the dimensions

N(n) =
2(n−1)/2, n= 2k+1,

2n/2, n= 2k,
N(mp) =

2(mp−1)/2, mp = 2kp+1

2mp , mp = 2kp
, (6.5)

where k,kp = 1,2, . . . .
The Clifford d-algebra is generated by sums on n+1 elements of the form

A1I+Bîσî+Cîĵσîĵ+Dîĵk̂σîĵk̂+··· (6.6)

and sums of mp+1 elements of the form

A2(p)I+Bâpσâp +Câpb̂pσâpb̂p +Dâpb̂pĉpσâpb̂pĉp +··· (6.7)

with antisymmetric coefficients Cîĵ = C[îĵ], Câpb̂p = C[âpb̂p], Dîĵk̂ = D[îĵk̂], Dâpb̂pĉp =
D[âpb̂pĉp], . . . and matrices σîĵ = σ[îσĵ], σâpb̂p = σ[âpσb̂p], σîĵk̂ = σ[îσĵσk̂], . . . . Really,
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we have 2n+1 coefficients (A1,Cîĵ ,Dîĵk̂, . . .) and 2mp+1 coefficients (A2(p),Câpb̂p ,Dâpb̂pĉp ,
. . .) of the Clifford algebra on �.

For simplicity, we will present the necessary geometric constructions only for h-spin

spaces �(h) of dimension N(n). Considerations for a v-spin space �(v) are similar but

with proper characteristics for a dimension N(m).
In order to define the scalar (spinor) product on �(h), we introduce into consideration

the following finite sum (because of a finite number of elements σ[îĵ···k̂]):

(±)E
ij
km = δikδ

j
m+ 2

1!

(
σî

).i
k

(
σ î

).j
m
+ 22

2!

(
σîĵ

).i
k

(
σ îĵ

).j
m
+ 23

3!

(
σîĵk̂

).i
k

(
σ îĵk̂

).j
m
+··· , (6.8)

which can be factorized as

(±)E
ij
km =N(n) (±)εkm (±)εij for n= 2k, (6.9)

(+)E
ij
km = 2N(n)εkmεij, (−)E

ij
km = 0 for n= 3(mod4),

(+)E
ij
km = 0, (−)E

ij
km = 2N(n)εkmεij for n= 1(mod4).

(6.10)

Antisymmetry of σîĵk̂... and the construction of the objects (6.6), (6.8), (6.9), and (6.10)

define the properties of ε-objects (±)εkm and εkm which have an eight-fold periodicity

on n (see details in [61, 62, 63] and, with respect to locally anisotropic spaces, [88, 89]).

For even values of n, it is possible the decomposition of every h-spin space �(h)
into irreducible h-spin spaces S(h) and S′(h) (one considers splitting of h-indices, e.g.,

l = L⊕L′, m =M⊕M′, . . . ; for vp-indices, we will write ap = Ap⊕A′p , bp = Bp⊕B′p, . . .)
and one defines new ε-objects

εlm = 1
2

(
(+)ε

lm+ (−)εlm
)
, ε̃lm = 1

2

(
(+)ε

lm− (−)εlm
)
. (6.11)

We will omit similar formulas for ε-objects with lower indices.

In general, the spinor ε-objects should be defined for every shell of anisotropy, where

instead of dimension n, we will consider the dimensions mp , 1≤ p ≤ z, of shells.

We define a d-spinor space �(n,m1) as a direct sum of horizontal and vertical spinor

spaces, for instance,

�(8k,8k′) = S◦⊕S′◦⊕S|◦ ⊕S′|◦, �(8k,8k′+1) = S◦⊕S′◦⊕�(−)|◦ , . . . ,

�(8k+4,8k′+5) = S�⊕S′�⊕�(−)|� , . . . .
(6.12)

The scalar product on a �(n,m1) is induced by ε-objects (corresponding to fixed values

of n and m1) considered for h- and v1-components. We present also an example for

�(n,m1+···+mz):

�(8k+4,8k(1)+5,...,8k(p)+4,...,8k(z))

= S�⊕S′�⊕�(−)|(1)�⊕···⊕S|(p)�⊕S′|(p)�⊕···⊕S|(z)◦⊕S′|(z)◦.
(6.13)
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Having introduced d-spinors for dimensions (n,m1+···+mz), we can write out the

generalization for ha-spaces of twistor equations [61, 62, 63] by using the distinguished

σ -objects (6.4):

(
σ〈α̂〉

)..γ
|β|
δωβ

δu〈β̂〉
= 1
n+m1+···+mz

G〈α̂〉〈β̂〉
(
σε̂

)..γ
β
δωβ

δuε̂
, (6.14)

where |β| denotes that we do not consider symmetrization on this index. The general

solution of (6.14) on the d-vector space � looks like

ωβ =Ωβ+u〈α̂〉
(
σ〈α̂〉

)..β
ε
Πε, (6.15)

where Ωβ and Πε are constant d-spinors. For fixed values of dimensions n and m =
m1+···+mz, we must analyze the reduced and irreducible components of h- and vp-

parts of (6.14) and their solutions (6.15) in order to find the symmetry properties of a d-

twistor Zα defined as a pair of d-spinors Zα = (ωα,π ′β), where πβ′ =π(0)β′ ∈ �̃(n,m1,...,mz)

is a constant dual d-spinor. The problem of the definition of spinors and twistors on ha-

spaces was firstly considered in [101] (see also [86]) in connection with the possibility

to extend (6.15) and their solutions (6.16), by using nearly autoparallel maps on curved,

locally isotropic or anisotropic, spaces. We note that the definition of twistors has been

extended to higher-order anisotropic spaces with trivial N- and d-connections.

6.1.2. Mutual transforms of d-tensors and d-spinors. The spinor algebra for spaces

of higher dimensions cannot be considered as a real alternative to the tensor algebra as

for locally isotropic spaces of dimensions n= 3,4 [61, 62, 63]. The same holds true for

ha-spaces and we emphasize that it is not quite convenient to perform a spinor calculus

for dimensions n,m� 4. The concept of spinors is important for every type of spaces.

We can deeply understand the fundamental properties of geometrical objects on ha-

spaces, and we will consider in this subsection some questions concerning transforms

of d-tensor objects into d-spinor ones.

6.1.3. Transformation of d-tensors into d-spinors. In order to pass from d-tensors

to d-spinors, we must use σ -objects (6.4) written in reduced or irreduced form (depend-

ing on fixed values of dimensions n and m):(
σ〈α̂〉

)·γ
β
,
(
σ 〈α̂〉

)βγ
,
(
σ 〈α̂〉

)
βγ
, . . . ,

(
σ〈â〉

)bc
, . . . ,

(
σî

)
jk
, . . . ,

(
σ〈â〉

)AA′
, . . . ,

(
σ î

)
II′
, . . . .

(6.16)

It is obvious that contracting with corresponding σ -objects (6.16), we can introduce

instead of d-tensors indices the d-spinor ones, for instance,

ωβγ =
(
σ 〈α̂〉

)βγ
ω〈α̂〉, ωAB′ =

(
σ 〈â〉

)
AB′
ω〈â〉, . . . , ζ

i
·j =

(
σk̂

)i
·jζk̂, . . . . (6.17)

For d-tensors containing groups of antisymmetric indices, there is a more simple pro-

cedure of their transforming into d-spinors because the objects(
σα̂β̂···γ̂

)δν
,
(
σâb̂···ĉ

)de
, . . . ,

(
σ îĵ···k̂

)
II′
, . . . (6.18)
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can be used for sets of such indices into pairs of d-spinor indices. We enumerate some

properties of σ -objects of type (6.18) (for simplicity, we consider only h-components

having q indices î, ĵ, k̂, . . . taking values from 1 to n; the properties of vp-components

can be written in a similar manner with respect to indices âp, b̂p, ĉp, . . . taking values

from 1 to m):

(
σî···ĵ

)kl
is

symmetric on k,l for n−2q ≡ 1,7(mod8),

antisymmetric on k,l for n−2q ≡ 3,5(mod8),
(6.19)

for odd values of n, and an object

(
σî···ĵ

)IJ((
σî···ĵ

)I′J′)

is

symmetric on I,J (I′,J′) for n−2q ≡ 0(mod8),

antisymmetric on I,J (I′,J′) for n−2q ≡ 4(mod8),

(6.20)

or

(
σî···ĵ

)IJ′ = ±(
σî···ĵ

)J′In+2q ≡ 6(mod8),

n+2q ≡ 2(mod8),
(6.21)

with vanishing of the rest of reduced components of the d-tensor (σî···ĵ )
kl with prime/

unprime sets of indices.

6.1.4. Fundamental d-spinors. We can transform every d-spinor ξα = (ξi,ξa1 , . . . ,
ξaz ) into a corresponding d-tensor. For simplicity, we consider this construction only

for an h-component ξi on an h-space being of dimension n. The values

ξαξβ
(
σ î···ĵ

)
αβ

(n is odd) (6.22)

or

ξIξJ
(
σ î···ĵ

)
IJ

(
or ξI

′
ξJ
′(
σ î···ĵ

)
I′J′

)
(n is even) (6.23)

with a different number of indices î··· ĵ, taken together, define the h-spinor ξi to

an accuracy to the sign. We emphasize that it is necessary to choose only those h-

components of d-tensors (6.22) (or (6.23)) which are symmetric on pairs of indices αβ
(or IJ (or I′J′)) and the number q of indices î··· ĵ satisfies the condition (as a respective

consequence of the properties (6.19) and/or (6.20), (6.21))

n−2q ≡ 0,1,7(mod8). (6.24)

Of special interest is the case when

q = 1
2
(n±1) (n is odd) (6.25)
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or

q = 1
2
n (n is even). (6.26)

If all expressions (6.22) and/or (6.23) are zero for all values of q with the exception of

one or two ones defined by the conditions (6.24), (6.25) (or (6.26)), the value ξî (or ξI

(ξI′)) is called a fundamental h-spinor. Defining in a similar manner the fundamental

v-spinors, we can introduce fundamental d-spinors as pairs of fundamental h- and v-

spinors. Here we remark that an h(vp)-spinor ξî (ξâp ) (we can also consider reduced

components) is always a fundamental one for n(m) < 7, which is a consequence of

(6.26).

6.2. Differential geometry of ha-spinors. This subsection is devoted to the differen-

tial geometry of d-spinors in higher-order anisotropic spaces. We will use denotations

of type

v〈α〉 = (
vi,v〈a〉

)∈ σ 〈α〉 = (
σi,σ 〈a〉

)
,

ζαp = (
ζip ,ζap

)∈ σαp = (
σip ,σap

) (6.27)

for, respectively, elements of modules of d-vector and irreduced d-spinor fields (see de-

tails in [88, 89]). We will interpret d-tensors and d-spinor tensors (irreduced or reduced)

as elements of corresponding σ -modules, for instance,

q〈α〉〈β〉· ∈ σ 〈α〉
/ [
−0〈β〉, ψ

αpγp
βp· ∈ σαpγpβp· , ξ

IpI′p
JpK′pN′p ∈ σ

IpI′p
JpK′pN′p , . . .

]
. (6.28)

We can establish a correspondence between the higher-order anisotropic adapted to

the N-connection metric gαβ (3.28) and d-spinor metric εαβ (ε-objects for both h- and

vp-subspaces of �〈z〉) of a ha-space �〈z〉 by using the relation

g〈α〉〈β〉 = − 1
N(n)+N(

m1
)+···+N(

mz
)

×
((
σ〈α〉(u)

)αβ(
σ〈β〉(u)

)δγ)
εαγεβδ,

(6.29)

where (
σ〈α〉(u)

)νγ = l〈α̂〉〈α〉(u)(σ〈α̂〉)〈ν〉〈γ〉, (6.30)

which is a consequence of formulas (6.3), (6.4), (6.6), (6.8), (6.9), (6.10), and (6.11). In

brief, we can write (6.29) as

g〈α〉〈β〉 = εα1α2εβ1β2
(6.31)

if the σ -objects are considered as a fixed structure, whereas ε-objects are treated as

carrying the metric “dynamics” on higher-order anisotropic space. This variant is used,

for instance, in the so-called 2-spinor geometry [61, 62, 63] and should be preferred if we

have to make explicit the algebraic symmetry properties of d-spinor objects by using
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metric decomposition (6.31). An alternative way is to consider as fixed the algebraic

structure of ε-objects and to use variable components of σ -objects of type (6.30) for

developing a variational d-spinor approach to gravitational and matter field interactions

on ha-spaces (the spinor Ashtekar variables [5] are introduced in this manner).

We note that a d-spinor metric

εντ =


εij 0 ··· 0

0 εa1b1 ··· 0
...

...
...

...

0 0 ··· εazbz

 (6.32)

on the d-spinor space �= (�(h),�(v1), . . . ,�(vz)) can have symmetric or antisymmetric h

(vp)-components εij (εapbp ), see ε-objects. For simplicity, in order to avoid cumbersome

calculations connected with eight-fold periodicity on dimensions n and mp of a ha-

space �〈z〉, we will develop a general d-spinor formalism only by using irreduced spinor

spaces �(h) and �(vp).

6.2.1. d-covariant derivation on ha-spaces. Let �〈z〉 be a ha-space. We define the

action on a d-spinor of a d-covariant operator

�〈α〉 =
(�i,�〈a〉)= (

σ〈α〉
)α1α2�α1α2

=
((
σi

)i1i2�i1i2 ,
(
σ〈a〉

)a1a2�a1a2

)
=

((
σi

)i1i2�i1i2 ,
(
σa1

)a1a2�(1)a1a2 , . . . ,(
σap

)a1a2�(p)a1a2 , . . . ,
(
σaz

)a1a2�(z)a1a2

)
(6.33)

(in brief, we will write �〈α〉 = �α1α2 = (�i1i2 ,�(1)a1a2 , . . . ,�(p)a1a2 , . . . ,�(z)a1a2 )) as

maps

�α1α2 : σβ �→ σβ〈α〉 = σ
β
α1α2

=
(
σ
β
i = σ

β
i1i2 , σ

β
(1)a1

= σβ(1)α1α2
, . . . ,

σ
β
(p)ap = σ

β
(p)α1α2

, . . . , σ
β
(z)az = σ

β
(z)α1α2

) (6.34)

satisfying conditions

�〈α〉
(
ξβ+ηβ)=�〈α〉ξβ+�〈α〉ηβ, �〈α〉

(
fξβ

)= f�〈α〉ξβ+ξβ�〈α〉f (6.35)

for every ξβ,ηβ ∈ σβ and f being a scalar field on �〈z〉. It is also required that the

Leibnitz rule (�〈α〉ζβ)ηβ =�〈α〉(ζβηβ)−ζβ�〈α〉ηβ (6.36)

holds and that �〈α〉 be a real operator, that is, it commutes with the operation of

complex conjugation:

�〈α〉ψαβγ... =�〈α〉
(
ψαβγ...

)
. (6.37)
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We now analyze the question on uniqueness of action on d-spinors of an operator

�〈α〉 satisfying necessary conditions. Denoting by�(1)〈α〉 and�〈α〉 two such d-covariant

operators, we consider the map(
�(1)〈α〉−�〈α〉

)
: σβ �→ σβα1α2 . (6.38)

Because the action on a scalar f of both operators�(1)α and�α must be identical, that

is,

�(1)〈α〉f =�〈α〉f , (6.39)

the action (6.38) on f =ωβξβ must be written as(
�(1)〈α〉 −�〈α〉

)(
ωβξβ

)
= 0. (6.40)

In consequence, we conclude that there is an element Θ
γ
α1α2β ∈ σ

γ
α1α2β for which

�(1)α1α2
ξγ =�α1α2ξ

γ+Θγα1α2βξ
β, �(1)α1α2

ωβ =�α1α2ωβ−Θ
γ
α1α2βωγ. (6.41)

The action of the operator (6.38) on a d-vector v〈β〉 = vβ1β2 can be written by using

formula (6.41) for both indices β
1

and β
2
:(

�(1)〈α〉−�〈α〉
)
vβ1β2 =Θβ1

〈α〉γv
γβ2+Θβ2

〈α〉γv
β1γ

=
(
Θ
β1
〈α〉γ1

δ
β2
γ2
+Θβ2

〈α〉γ1
δ
β1
γ2

)
vγ1γ2

=Q〈β〉〈α〉〈γ〉v〈γ〉,

(6.42)

where

Q〈β〉〈α〉〈γ〉 =Q
β1β2
α1α2γ1γ2

=Θβ1
〈α〉γ1

δ
β2
γ2
+Θβ2

〈α〉γ1
δ
β1
γ2
. (6.43)

The d-commutator �[〈α〉�〈β〉] defines the d-torsion. So, applying operators �(1)[〈α〉�(1)〈β〉]
and �[〈α〉�〈β〉] on f =ωβξβ, we can write

T(1)〈γ〉〈α〉〈β〉 −T 〈γ〉〈α〉〈β〉 =Q〈γ〉〈β〉〈α〉 −Q〈γ〉〈α〉〈β〉 (6.44)

with Q〈γ〉〈α〉〈β〉 from (6.43).

The action of operator�(1)〈α〉 on d-spinor tensors of type χ
β1β2...
α1α2α3... must be constructed

by using formula (6.41) for every upper index β
1
β

2
. . . and formula (6.43) for every lower

index α1α2α3 . . . .

6.2.2. Infeld-van der Waerden coefficients. Let

δαα =
(
δi1,δ

i
2, . . . ,δ

i
N(n),δ

a
1 ,δ

a
2 , . . . ,δ

i
N(m)

)
(6.45)

be a d-spinor basis. The basis dual to it is denoted as

δαα =
(
δ1
i ,δ

2
i , . . . ,δ

N(n)
i ,δ1

i ,δ
2
i , . . . ,δ

N(m)
i

)
. (6.46)
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A d-spinor κα ∈ σα has components κα = καδαα . Taking into account that δααδ
β
β�αβ =

�αβ, we write out the components �αβ κγ in the form

δααδ
β
βδ

γ
γ�αβκγ = δτεδγτ�αβκε+κεδγε�αβδ

ε
ε =�αβκγ+κεγγαβε, (6.47)

where the coordinate components of the d-spinor connection γ
γ
αβε are defined as

γ
γ
αβε�δ

γ
τ�αβδ

τ
ε . (6.48)

We call the Infeld-van der Waerden d-symbols a set of σ -objects (σα)αβ parametrized

with respect to a coordinate d-spinor basis. Defining

�〈α〉 =
(
σ〈α〉

)αβ�αβ, (6.49)

introducing denotations

γ
γ
〈α〉τ�γ

γ
αβτ

(
σ〈α〉

)αβ, (6.50)

and using properties (6.47), we can write the relations

l〈α〉〈α〉δ
β
β�〈α〉κβ =�〈α〉κβ+κδγ

β
〈α〉δ,

l〈α〉〈α〉δ
β
β�〈α〉µβ =�〈α〉µβ−µδγδ〈α〉β

(6.51)

for d-covariant derivations �ακβ and �αµβ.
We can consider expressions similar to (6.51) for values having both types of d-spinor

and d-tensor indices, for instance,

l〈α〉〈α〉l
〈γ〉
〈γ〉δ

δ
δ�〈α〉θ〈γ〉δ =�〈α〉θ〈γ〉δ −θ〈γ〉ε γε〈α〉δ+θ〈τ〉δ Γ 〈γ〉〈α〉〈τ〉 (6.52)

(we can prove this by a straightforward calculation).

Now we will consider some possible relations between components of d-connections

γε〈α〉δ and Γ 〈γ〉〈α〉〈τ〉 and derivations of (σ〈α〉)αβ. We can write

Γ 〈α〉〈β〉〈γ〉 = l〈α〉〈α〉�〈γ〉 l〈α〉〈β〉 = l〈α〉〈α〉�〈γ〉
(
σ〈β〉

)ετl〈α〉〈α〉�〈γ〉 ((σ〈β〉)ετδεεδττ)
= l〈α〉〈α〉δααδεε�〈γ〉

(
σ〈β〉

)αε+l〈α〉〈α〉(σ〈β〉)ετ(δττ�〈γ〉δεε+δεε�〈γ〉δττ)
= l〈α〉ετ �〈γ〉

(
σ〈β〉

)ετ+l〈α〉µν δ
µ
ε δ

ν
τ
(
σ〈β〉

)ετ(δττ�〈γ〉δεε+δεε�〈γ〉δττ),
(6.53)

where l〈α〉〈α〉 = (σετ)〈α〉, from which follows

(
σ〈α〉

)µν(σαβ)〈β〉Γ 〈α〉〈γ〉〈β〉 =
(
σαβ

)〈β〉�〈γ〉 (σ〈α〉)µν+δνβγµ〈γ〉α+δµαγν〈γ〉β. (6.54)

Connecting the last expressions on β and ν and using an orthonormalized d-spinor

basis when γ
β
〈γ〉β = 0 (a consequence from (6.48)), we have

γ
µ
〈γ〉α =

1
N(n)+N(

m1
)+···+N(

mz
)(
Γ
µβ
〈γ〉αβ−

(
σαβ

)〈β〉�〈γ〉 (σ〈β〉)µβ), (6.55)
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where

Γ
µβ
〈γ〉αβ =

(
σ〈α〉

)µβ(σαβ)βΓ 〈α〉〈γ〉〈β〉. (6.56)

We also note here that, for instance, for the canonical and Berwald connections and

Christoffel d-symbols, we can express d-spinor connection (6.56) through correspond-

ing locally adapted derivations of components of metric and N-connection by introduc-

ing corresponding coefficients instead of Γ 〈α〉〈γ〉〈β〉 in (6.56) and then in (6.55).

6.2.3. d-spinors of ha-space curvature and torsion. The d-tensor indices of the com-

mutator ∆〈α〉〈β〉 can be transformed into d-spinor ones:

�αβ =
(
σ 〈α〉〈β〉

)
αβ∆αβ =

(
�ij ,�ab

)
=

(
�ij ,�a1b1 , . . . ,�apbp , . . . ,�azbz

)
, (6.57)

with h- and vp-components,

�ij =
(
σ 〈α〉〈β〉

)
ij∆〈α〉〈β〉, �ab =

(
σ 〈α〉〈β〉

)
ab∆〈α〉〈β〉, (6.58)

being symmetric or antisymmetric depending on the corresponding values of dimen-

sions n and mp (see eight-fold parametrizations). Considering the actions of operator

(6.57) on d-spinors πγ and µγ , we introduce the d-spinor curvature X
γ
δαβ as to satisfy

equations

�αβπγ =Xγδαβπδ, �αβµγ =Xδγαβµδ. (6.59)

The gravitational d-spinor Ψαβγδ is defined by a corresponding symmetrization of d-

spinor indices:

Ψαβγδ =X(α|β|γδ). (6.60)

We note that d-spinor tensors X
γ
δαβ and Ψαβγδ are transformed into similar 2-spinor ob-

jects on locally isotropic spaces [61, 62, 63] if we consider vanishing of the N-connection

structure and a limit to a locally isotropic space.

Putting δ
γ
γ instead of µγ in (6.59) and using (6.60), we can express, respectively, the

curvature and gravitational d-spinors as

Xγδαβ = δδτ�αβδτγ, Ψγδαβ = δδτ�(αβδτγ). (6.61)

The d-spinor torsion T
γ1γ2
αβ is defined similarly as for d-tensors by using the d-spinor

commutator (6.57) and equations

�αβf = Tγ1γ2
αβ �γ1γ2

f . (6.62)

The d-spinor components Rδ1δ2
γ1γ2αβ

of the curvature d-tensor Rδγαβ can be computed

by using relations (6.56), (6.57), and (6.60) as to satisfy the equations(
�αβ−Tγ1γ2

αβ �γ1γ2

)
Vδ1δ2 = Rδ1δ2

γ1γ2αβ
Vγ1γ2 . (6.63)
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Here d-vector Vγ1γ2 is considered as a product of d-spinors, that is, Vγ1γ2 = νγ1µγ2 . We

find

Rδ1δ2
γ1γ2αβ

=
(
Xδ1
γ1αβ

+Tτ1τ2
αβ γδ1

τ1τ2γ1

)
δδ2
γ2
+

(
Xδ2
γ2αβ

+Tτ1τ2
αβ γδ2

τ1τ2γ2

)
δδ1
γ1
. (6.64)

It is convenient to use this d-spinor expression for the curvature d-tensor

Rδ1δ2
γ1γ2α1α2β1β2

=
(
Xδ1
γ1α1α2β1β2

+Tτ1τ2
α1α2β1β2

γδ1
τ1τ2γ1

)
δδ2
γ2

+
(
Xδ2
γ2α1α2β1β2

+Tτ1τ2
α1α2β1β2

γδ2
τ1τ2γ2

)
δδ1
γ1

(6.65)

in order to get the d-spinor components of the Ricci d-tensor

Rγ1γ2α1α2 = R
δ1δ2
γ1γ2α1α2δ1δ2

=Xδ1
γ1α1α2δ1γ2

+Tτ1τ2
α1α2δ1γ2

γδ1
τ1τ2γ1

+Xδ2
γ2α1α2δ1γ2

+Tτ1τ2
α1α2γ1δ2

γδ2
τ1τ2γ2

(6.66)

and the following d-spinor decomposition of the scalar curvature:

q
←�
R = Rα1α2

α1α2 =Xα1δ1α2
α1δ1α2

+Tτ1τ2α1α2
α2δ1

γδ1
τ1τ2α1+Xα2δ2α1

α2δ2α1
+Tτ1τ2α2α1

α1δ2
γδ2
τ1τ2α2 . (6.67)

Using (6.66) and (6.67), see details in [61, 62, 63], we define the d-spinor components

of the Einstein and Φ〈α〉〈β〉 d-tensors:

←�
G〈γ〉〈α〉 =←�Gγ1γ2α1α2 =X

δ1
γ1α1α2δ1γ2

+Tτ1τ2
α1α2δ1γ2

γδ1
τ1τ2γ1

+Xδ2
γ2α1α2δ1γ2

+Tτ1τ2
α1α2γ1δ2

γδ2
τ1τ2γ2

− 1
2
εγ1α1εγ2α2

[
X
β1µ1β2
β1µ1β2

+Tτ1τ2β1β2
β2µ1

γ
µ1
τ1τ2β1

+Xβ2µ2ν1
β2µ2ν1

+Tτ1τ2β2β1
β1δ2

γδ2
τ1τ2β2

]
,

Φ〈γ〉〈α〉 = Φγ1γ2α1α2 =
1

2
(
n+m1+···+mz

)
×εγ1α1εγ2α2

[
X
β1µ1β2
β1µ1β2

+Tτ1τ2β1β2
β2µ1

γ
µ1
τ1τ2β1

+Xβ2µ2ν1
β2µ2ν1

+Tτ1τ2β2β1
β1δ2

γδ2
τ1τ2β2

]
− 1

2

[
Xδ1
γ1α1α2δ1γ2

+Tτ1τ2
α1α2δ1γ2

γδ1
τ1τ2γ1

+Xδ2
γ2α1α2δ1γ2

+Tτ1τ2
α1α2γ1δ2

γδ2
τ1τ2γ2

]
.

(6.68)

We omit this calculus in this work.
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32 (1986), no. 2, 37–62.

[39] , A Lagrangian theory of relativity. II, An. Şti. Univ. “Al. I. Cuza” Iaşi Seçt. I a Mat.
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