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Complex variable methods are used to obtain exact and closed expressions for Goursat’s
functions for the stretched infinite plate weakened by two inner holes which are free from
stresses. The plate considered is conformally mapped on the area of the right half-plane.
Previous work is considered as special cases of this work. Cases of different shapes of holes
are included. Also, many new cases are discussed using this mapping.
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1. Introduction. The boundary value problems for isotropic homogeneous perfo-

rated infinite plates have been discussed by several authors [1, 2, 3, 4, 5, 6, 7, 8, 9].

Muskhelishvili [9] solved the problem of stretching an infinite plate weakened by an

elliptic hole by using the transformation

Z = c(ξ+mξ−1). (1.1)

This transformation conformally maps the infinite domain bounded internally by an

elliptic onto the domain outside the unit circle |ξ| = 1 in the ξ-plane.

Muskhelishvili also used the Hilbert problem to discuss the case of a stretched infinite

plate weakened by a circular cut.

He showed also that the first and second fundamental problems in the plane theory

of elasticity are equivalent to finding two analytic functions φ1(z) and ψ1(z) of one

complex argument z = x+iy satisfying the boundary conditions

kφ1(t)−tφ′1(t)−ψ1(t)= f(t), (1.2)

where k = −1, f(t) is a given function of stresses for the first fundamental problem,

while k = χ = (λ+ 3µ)/(λ+ µ) > 1, f = 2µg(t) is a given function of the displace-

ment for the second fundamentals. λ, µ are called the Lame’s constants, χ is called

Muskhelishvili’s constant, and t denotes the affix of a point of the boundary L.

In [5], El-Sirafy used the complex variable methods and rational mapping function

to obtain the Goursat functions for a stretched infinite plate weakened by an inner

curvilinear hole Γ , conformally mapped on the right half-plane (Res ≥ 0) by the trans-

formation

z = cw(ξ)= c (s+1)2+m(s−1)2

s2−1−n(s−1)2
, c > 0, |n|< 1, s = σ +iτ. (1.3)
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The same author in [6] considered the case of stretched infinite plate weakened by

hypotrochoidal holes. The two functions φ(z) and ψ(z) were obtained in closed form.

In [1], Abdou and Hassan obtained the two Gourstat’s functions for the stretched infinite

plate weakened by a hole whose edge is free from stresses, using the two rational

mapping functions

z = c ξ+mξ
−2

1−nξ−1
, z = c ξ+mξ

−2

1−nξ−2
, (1.4)

wherem,n are real parameters subject to the conditions that z′(ξ)≠ 0 or∞ for |ξ|> 1.

In this paper, Cauchy integral methods and rational mapping function

z = cw(s)= c (s+1)
[
(s+1)2+m(s−1)2

]
(s−1)

[
(s+1)−n1(s−1)

][
(s+1)−n2(s−1)

] ,
c > 0, |n1|< 1, |n2|< 1, Res ≥ 0, s = σ +iτ, n1 ≠n2,

(1.5)

are used to obtain exact and closed expressions for Goursat functions for the first

and second fundamental problems of an infinite plate weakened by curvilinear holes

conformally mapped on the domain onto the right half-plane.

m, n1, and n2 are real parameters subject to the conditions that w(∞) is bounded

and w′(s) does not vanish in the right half-plane (i.e., Res ≥ 0). Some applications

of the first and second fundamental problems on these domains are investigated. The

interesting cases of an infinite plate weakened by an elliptic hole, a crescent-like hole, or

a cut having the shape of a circular arc, and the hypotrochoidal hole with three rounded

corners are considered as special cases. Functionsφ(z) andψ(z) are obtained in closed

form.

2. Mapping function. The mapping function given in (1.5) maps the area outside

curvilinear contours in the z-plane in the half-plane Res ≥ 0, where the constants m,

n1, and n2 are real parameters subject to the conditions that w(∞) is bounded and

w′(s) does not vanish in the right half-plane.

In (1.5), if we let s = (ξ+1)/(ξ−1), we have the transformation mapping

z = cw(ξ)= c ξ+mξ−1(
1−n1ξ−1

)(
1−n2ξ−1

) . (2.1)

Here, the mapping function maps the area outside curvilinear holes in the z-plane

on the area outside the unit circle γ in the ξ-plane under the condition z′(ξ)≠ 0 or ∞
for |ξ|> 1.

Assuming that τ is the parameter of the curve, the parametric equations of (1.5) are

x = c
g(τ)

(
	1M1+	2M2

)
,

y = c
g(τ)

(
	2M1+	1M2

)
,

g(τ)=M2
1 +M2

2 ,

(2.2)
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Figure 2.1. Plotting of parametric equation of the mapping z = 2(ξ −
0.76ξ−1)/(1+0.3ξ−1)(1+0.2ξ−1).

where

	1 = (1+m)+(m−2)τ2, 	2 =
[
3−m−(1+m)τ2]τ,

M1 =−
(
1+n1+n2+n1n2

)+(n2−n1+3n1n2−1
)
τ2,

M2 =
[
sn1n2−

(
1+n1+n2+n1n2

)
τ2−n2−n1−1

]
τ.

(2.3)

The shapes of the curvilinear holes depend on the parameters in (2.2), (2.3). Various

shapes with several axes of symmetery can be obtained (see Figures 2.1, 2.2, 2.3, and

2.4).

3. Basic equations. Consider a region of an elastic media of an infinite plate denoted

by S and bounded by a single contour L, with a curvilinear hole.

If xx, yy , and xy represent the components of stress, while u, v represent those

of displacement, in the absence of body forces, the formula of Kolosov-Muskhelishvili

[9] has the following form:

xx+yy = 4Re
[
φ′1(z)

]
,

yy−xx+2ixy = 2
[
zφ′′1 (z)+ψ′(z)

]
,

(3.1)

2µ(u+iv)= kφ1(z)−zφ′1(z)−ψ1(z). (3.2)

In terms of the conformal mapping function,

z = cw(ξ), c > 0, w′(ξ)≠ 0 or ∞ for |ξ|> 1. (3.3)

The infinite region outside a closed contour is conformally mapped on the region

outside the unit circle γ.
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Figure 2.2. Plotting of parametric equation of the mapping z = 2(ξ −
0.7ξ−1)/(1−0.25ξ−1)(1−0.4ξ−1).
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Figure 2.3. Plotting of parametric equation of the mapping z = 2(ξ +
0.2ξ−1)/(1−0.1ξ−1)(1−0.3ξ−1).

The complex potentials φ1(z) and ψ1(z) can be written in the form

φ1(t)=− X+iY
2π(1+χ)	nt+cΓ t+φ(t),

ψ1(t)= χ(X+iY)
2π(1+χ)	nt+cΓ

∗t+ψ(t),
(3.4)
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Figure 2.4. Plotting of parametric equation of the mapping z = 2(ξ −
0.76ξ−1)/(1−0.3ξ−1)(1+0.2ξ−1).

where x, y are the components of the resultant vector of all external forces acting on

single contour L while Γ , Γ∗ are complex constants.

Generally, functions φ(ξ) and ψ(ξ) are single-valued analytic functions within the

region outside the unit circle, and φ(∞)= 0.

Substituting (3.4) in (3.2), we obtain

kφ(t)−tφ′(t)−ψ(t)= f(t), (3.5)

where k=−1, f(t)=−f∗(t) for the first displacement, while k= χ, f(t)= 2µg(t) for

the second fundamental problem.

4. Method of solution. Since

w(iτ)
w′(iτ)

=α(τ)+β(iτ), (4.1)

where

α(τ)=
2∑
j=1

hj
aj+iτ , aj = 1+nj

1−nj (j = 1,2),

h1 = λ1
(
a1,a2

)
J01

, h2 = λ1
(
a2,a1

)
J02

,

J01 =
(
a1+1

)(
a1−a2

)[
λ2
(
a1,a2

)−λ3
(
a1,a2

)]
,

J02 =
(
a2+1

)(
a2−a1

)[
λ2
(
a2,a1

)−λ3
(
a2,a1

)]
,

λ1
(
a1,a2

)= 4a2
1

(
a1−1

)3(a1+a2
)2
[(
a1−1

)2+m(a1+1
)2
]
,

λ2
(
a1,a2

)= 2a1
(
a1−1

)(
a1+a2

)[
3
(
a1+1

)2+2m
(
a2

1−1
)+m(a1−1

)2
]
,

λ3
(
a1,a2

)= (a1+1
)[(
a1+1

)2+m(a1−1
)2
][

2a1
(
a1−1

)+(a1+a2
)(

3a1−1
)]
,

(4.2)
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and

β(s)= 1(
s−a1

)(
s+a2

)[H(s)
E(s)

+h1
(
s−a2

)+h2
(
s−a1

)]
. (4.3)

Notice that β(s) is a regular function within the right half-plane except at infinity, where

H(s)= (s−1)3
[
(s−1)2+m(s+1)2

](
s+a1

)2(s+a2
)2,

E(s)= (s+1)
{[
(s−1)

(
s+a1

)(
s+a2

)]⌊
3(s+1)2+2m

(
s2−1

)+m(s−1)2
⌋

−[(s+1)3+m(s+1)(s−1)2
][
(s−1)

(
2s+a1+a2

)+(s+a1
)(
s+a2

)]}
.

(4.4)

The boundary condition (3.5) takes the form

kφ(iτ)−α(τ)φ′(iτ)−ψ(iτ)= f∗(τ), (4.5)

where

φ(s)=φ(w(s)),
f∗(τ)= f

(
w(iτ)

)− 2∑
j=1

γ0j+w(iτ)
(
Γ −kΓ)+w(iτ)Γ∗

− X−iY
2π(1+χ)w′(iτ)

[
w(iτ)−w′(iτ)

]
(j = 1,2),

ψ(s)=ψ(w(s))+β(s)φ′(s)+ 2∑
j=1

γ0j− X+iY
2π(1+χ) ,

γ0j = c
(

1+m
1−nj

)(
Γ −kΓ +Γ∗) (j = 1,2).

(4.6)

Assuming φ(∞)=ψ(∞)= 0, then multiplying both sides of (4.5) by 1/2π(s−iτ) and

integrating with respect to τ from ∞ to −∞, we have

k(φ)(s)− 1
2π

∫∞
−∞
α(τ)φ′(iτ)
s−iτ dτ = 1

2π

∫∞
−∞
f∗(τ)
s−iτ dτ. (4.7)

Substituting (4.1) in (4.7), we obtain

1
2π

∫∞
−∞
α(τ)φ′(iτ)
s−iτ dτ =

2∑
j=1

cbjhj
s+aj , (4.8)

1
2π

∫∞
−∞
f∗(τ)dτ
s−iτ = f1(s)− 2cΓ∗

1+s +2c
(
kΓ −Γ) 2∑

j=1

m+n2
j(

1−n2
j
)(
s+aj

)

+ X−iY
1+χ

2∑
j=1

njaj
(
m+n2

j
)

(
1+mn2

j
)(
s+aj

) ,
(4.9)

A1(s)= 1
2π

∫∞
−∞
f
(
w(iτ)

)
s−iτ dτ, (4.10)
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where bj(j = 1,2) are complex constants to be determined. Substituting from (4.8),

(4.9), and (4.10) in (4.7), we get

kφ(s)=A1(s)+ 2cΓ∗

1+s

+
2∑
j=1

[
chjbj
s+aj +

2c
(
kΓ −Γ)(

1−nj
)2

(
m+n2

j

s+aj

)
+ njaj

(
m+n2

j
)
(X−iY)

π
(
1+mn2

j
)
(1+χ)(s+aj)

]
.

(4.11)

Differentiating (4.11) and inserting φ(τ) in (4.8), the complex constants bj can be

determined in the form

bj =
2a2

j

c
(
16a4

j +h2
j
)
{[

8a2
jkA

′
1

(
aj
)−2hjA′1

(
aj
)]+c(1−nj)2(

4a2
jk−hgΓ∗

)

−c
[(

4a2
jk

2+hj
)
Γ −kΓ(4a2

j +hj
)][ m+n2

j(
1+nj

)2

]}

− nj
(
m+n2

j
)
aj

c(1+χ)(1+mn2
j
)[ X

4a2
jk+hj

+i Y
4a2

jk+hj
]
(j = 1,2).

(4.12)

Substituting (4.12) in (4.11), the function φ(s) becomes

kφ(s)=A1(s)+ 2cΓ∗

1+s +
k

π(1+χ)
2∑
j=1

nj
(
m+n2

j
)
ajJ0j

s+aj
(
XJ1j−iYJ2j

)

+2c
(
kΓ −Γ) 2∑

j=1

(
m+n2

j
)

(
s+aj

)(
1−nj

)2 +
2∑
j=1

2n2
j
(
m+n2

j
)
J1jJ2jLj(

1−nj
)2(s+aj) .

(4.13)

Hence from the boundary condition (3.4), we have

ψ(s)=A2(s)+B1(s)+ 2c
(
Γ −kΓ)
1+s +2cΓ∗

2∑
j=1

m+n2
j(

s+aj
)(

1−nj
)2

− Γ∗

(1+s)2
2∑
j=1

(
1−nj

)(
s+aj+2

)+ 2∑
j=1

n2
j
(
s+3aj

)(
m+n2

j
)2

(
s+aj

)2

∗
{

2c(kΓ −Γ)(
1−nj

)2 J
−1
0j +

aj
(
XJ1j−iYJ2j

)
π(1+χ)(1+mn2

j
) + 2n2

jJ1jJ2j

k
(
1−nj

)2J0j
Lj

}
,

(4.14)
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where

J1j =
[
kJ0j+n2

j
(
m+n2

j
)]−1,

J2j =
[
kJ0j−n2

j
(
m+n2

j
)]−1,

Lj = k
⌊
2
(
1+nj

)2A′1
(
aj
)+c(1−n2

j
)2Γ∗+c(m+n2

j
)(
Γ −kΓ)⌋J0j

−n2
j
(
m+n2

j
)[

2
(
1+nj

)2A′1
(
aj
)+c(1−n2

j
)2Γ∗+c(m+n2

j
)(
Γ −kΓ)],

B1(s)= 1
2π

∫∞
−∞

A1(iτ)(
iτ−aj

)
(s−iτ)dτ,

A2 = 1
2π

∫∞
−∞
f
(
w(iτ)

)
dτ

s−iτ (j = 1,2).

(4.15)

5. Special cases. We are now in a position to consider several interesting cases.

(A) Let n2 = 0 in the transformation mapping of (2.1) and X = Y = f = 0, k = −1,

Γ = P/4, and Γ∗ = −(P/2)e−2iθ . We have firstly the transformation mapping

Z = cw(s)= c (1+s)
2+m(s−1)2

s2−1−n(s−1)2
, (5.1)

which leads to the Goursat’s functions

φ(s)= cp
(1−n)2

[(
m+n2

)
J

s+a − (1−n)
2e2iθ

1+s
]
,

ψ(s)= cP
[

1
1+s −

(
m+n2

)
e2iθ

(1−n)2(s+a)

]

+cph
[(
m+n2

)
(s+3a)

4(1+n)2(s+a)2 J−
s+2+a

(1+a)2(1+s)2
]
,

(5.2)

where

J = (m+2)n2−1+n2
(
n2−1

)
cos2θ

n4−1+2n2(1+m) +in2 sin2θ (5.3)

and p is a uniform tensile stress.

These results are in agreement with the work of El-Sirafy [5].

(B) Let n2 = 0, n1 =n, and s = (ξ+1)/(ξ−1). We have the transformation mapping

z = cw(ξ)= c ξ+mξ
−1

1−nξ−1
(5.4)

and the two Goursat’s functions

kφ(ξ)= h
n−ξ

(
N+ kE−hνE

k2−h2ν2

)
− cΓ

∗

ξ
+A(ξ),

ψ(ξ)= cKΓ
ξ
−w

(
ξ−1

)
w′(ξ)

φ∗(ξ)+ hξ
1−nξφ∗

(
n−1)+B(ξ)−B,

(5.5)
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where

φ∗(ξ)=φ′(ξ)+cΓ − X+iY
2π(1+χ)ξ ,

N = cΓ − X−iY
2π(1+χ)n,

h=
(
m+n2

)(
1−n2

)2

1−(m+2)n2
,

ν = n2(
1−n2

)2 ,

E =−A′(n−1
)−cn2Γ∗−chνΓ + hνn(X+iY)

2π(1+χ) ,

(5.6)

and B is a constant.

Also, results are in agreement with the work of El-Sirafy and Abdou [7].

(C) For n1 = n2 = 0, 0 <m< 1, and ξ = (s+1)/(s−1), we get the mapping function

z = c(ξ +mξ−1). This function, in addition to functions (5.5), agrees with those of

Muskhelishvili’s obtained for the elliptic hole [9].

(D) For m=−1, the curvilinear holes degenerate into circular cuts.

(E) For m= 0, |n1|< 1, and |n2|< 1, we get the mapping function

z = cw(s)= c (s+1)3

(s−1)
[
(s+1)−n1(s−1)

][
(s+1)−n2(s−1)

] , n1 ≠n2. (5.7)

Here the inner edges of the infinite plate are the inverse of elliptic limacon.

(F) Let m = −n2
j . The hole is bounded by the circle |z−nc| = c and the Goursal’s

functions are

kφ(s)=A1(s)+ 2cΓ
1+s ,

ψ(s)=A2(s)+B1(s)+ 2c
(
Γ −kΓ)
1+s .

(5.8)

6. Examples. (I) For k = −1, Γ = p/4, Γ∗ = −(1/2)pe−2iθ , and x = y = f = 0, the

Goursat functions for our transformation take the form

φ(s)= pc
1+s exp(2iθ)+

n∑
j=1

m+n2
j(

s+aj
)(

1−n2
j
)[pc−2n2

jJ1jJ2jLj
]
,

ψ(s)= pc
1+s −pc exp(−2iθ)+

2∑
j=1

m+n2
j(

s+aj
)(

1−n2
j
)

+ pexp(2iθ)
2(1+s)2

2∑
j=1

(
1−nj

)2(s+aj+2
)

−
2∑
j=1

n2
j
(
s+3aj

)(
m+n2

j
)

(
s+aj

)2

[
pc(

1−nj
)2J0j

+ 2n2
jJ1jJ2jLj(

1−nj
)2J0j

]
,

(6.1)
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where

J1j =
[
n2
j
(
m+n2

j
)−J0j

]−1,

J2j =
[−n2

j
(
m+n2

j
)−J0j

]−1,

Lj =
[(

1−n2
j
)2

exp(−2iθ)−(m+n2
j
)]pc

2
J0j

− cpn
2
j
(
m+n2

j
)

2

[(
m+n2

j
)−(1−n2

j
)2

exp(2iθ)
]
.

(6.2)

In the previous example, we have an infinite plate stretched at infinity by the application

of a uniform tensile of intensity p, making an angle θ with the x-axis. The plate is

weakened by a curvilinear hole cj , which is free from stress. If we put n1 = n, n2 = 0

(or n1 = 0, n2 =n) in (6.1), then the results agree with [5].

(II) For k=−1, X = Y = Γ = Γ∗ = 0, and f = pt, the complex functions φ(s) and ψ(s)
take the form

φ(s)=−2cp
2∑
j=1

nj
(
m+n2

j
)

(
1−n2

j
)(
s+aj

)(
nj−nk

) − 2∑
j=1

2n2
j
(
m+n2

j
)
J1jJ2jLj(

s+aj
)(

1−nj
)2 ,

ψ(s)=−
2∑
j=1

2n4
j
(
s+3aj

)(
m+n2

j
)2J1jJ2jLj(

1−nj
)2(s+aj)2J0j

.

(6.3)

The previous results give the solution of the first fundamental problem for an isotro-

pic infinite plate with a curvilinear hole when there are no external forces and the edge

of the hole is subject to a uniform pressure p. If p = −iT , we have the case when the

edge of the hole is subject to a uniform tangential stress T .

(III) If Γ = Γ∗ = f = 0 and k= χ, then the two complex functions are transformed to

φ(s)=
2∑
j=1

ajnj
(
m+n2

j
)(
XJ1j−iYJ2j

)
J0j

π(1+χ)(s+aj) ,

ψ(s)=
2∑
j=1

ajn2
j
(
s+3aj

)(
m+n2

j
)2(XJ1j−iYJ2j

)
π(1+χ)(1+mn2

j
)(
s+aj

)2 ,

(6.4)

where

J1j =
[
χJ0j+n2

j
(
m+n2

j
)]−1,

J2j =
[
χJ0j−n2

j
(
m+n2

j
)]−1,

Lj = 0.

(6.5)

Therefore, we have the solution of the second fundamental problem when a force (x,y)
acts on the curvilinear hole.
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