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1. Introduction. Conley is mostly known for his fundamental theorem of dynami-

cal systems and his homotopy index theory [1]. In the former, he proved that every

continuous flow on a compact metric space admits a Lyapunov function which strictly

decreases along nonchain recurrent orbits. This result has been developed by Franks

for homeomorphisms [3] and Hurley for noncompact metric spaces [5, 6, 7, 8]. In the

latter, Conley defined a homotopy invariant for any isolated invariant set for a contin-

uous flow. This invariant gives some valuable information about the behavior of the

isolated invariant set. This paper concerns a combination of these two masterpieces.

Indeed, we show the existence of Conley’s Lyapunov function on every index pair in

the sense of Conley index theory. We also conclude the existence of a regular index

filtration for every Morse decomposition.

2. Conley index theory. Let ϕt be a continuous flow on a metric space X. An iso-

lated invariant set is a subset S ⊂ X which is the maximal invariant set in a compact

neighborhood of itself. Such a neighborhood is called an isolating neighborhood. A

Morse decomposition for S is a collection {Mi}ni=1, where each Mi is an isolated invari-

ant subset of S and for all x ∈ S−⋃ni=1Mi, there exist i,j ∈ {1, . . . ,n} such that i > j,
α(x)∈Mi, and ω(x)∈Mj . A pair (A,A∗) of subsets of S is called an attractor-repeller

pair if {A,A∗} is a Morse decomposition for S, that is, α(x) ∈ A∗ and ω(x) ∈ A for

every x ∈ S−(A∪A∗).
Let S be an isolated invariant set with an isolating neighborhood V and a Morse

decomposition {Mi}ni=1. In [11], it is proved that if ϕ[0,+∞)(x)⊂ V , then ω(x)⊂Mi for

some 1 ≤ i ≤ n. Similarly, if ϕ(−∞,0](x) ⊂ V , then α(x) ⊂Mi for some 1 ≤ i ≤ n. Now,

for j = 0, . . . ,n, we define

I+j = I+j (V)=
{
x ∈ V |ϕ[0,∞)(x)⊂ V, ω(x)⊂Mj+1∪···∪Mn

}
,

I−j = I−j (V)=
{
x ∈ V |ϕ(−∞,0](x)⊂ V, α(x)⊂M1∪···∪Mj

}
,

S∗j =
{
x ∈ S |ω(x)⊂Mj+1∪···∪Mn

}
,

Sj =
{
x ∈ S |α(x)⊂M1∪···∪Mj

}
.

(2.1)
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Moreover, if (A,A∗) is an attractor-repeller pair for S, we set

I+A∗ =
{
x ∈ V |ϕ[0,∞)(x)⊂ V, ω(x)⊂A∗},

I−A =
{
x ∈ V |ϕ(−∞,0](x)⊂ V, α(x)⊂A}. (2.2)

In [2, 11], it is proved that I+j and I−j are compact and (Sj,S∗j ) is an attractor-repeller

pair for S. This fact allows us to prove our results for an attractor-repeller pair and

then extend them to every Morse decomposition.

In order to define the concept of index pair, we follow [9, 11]. Given a compact pair

(N,L) with L⊂N ⊂X, we define the induced semiflow on N/L by

ϕt
# :N/L �→N/L, ϕt

#(x)=


ϕt(x) if ϕ[0,t](x)⊂N−L,
[L] otherwise.

(2.3)

In [9], it is proved that ϕt
# is continuous if and only if

(i) L is positively invariant relative to N, that is,

x ∈ L, t ≥ 0, ϕ[0,t](x)⊂N �⇒ϕ[0,t](x)⊂ L, (2.4)

(ii) every orbit which exits N goes through L first, that is,

x ∈N, ϕ[0,∞)(x) 
⊂N �⇒∃t ≥ 0, ϕ[0,t](x)⊂N, ϕt(x)∈ L, (2.5)

or equivalently if x ∈N−L, then there is a t > 0 such that ϕ[0,t](x)⊂N.

Definition 2.1. An index pair for an isolated invariant set S ⊂X is a compact pair

(N,L) in X such that N−L is an isolating neighborhood for S and the semiflow ϕt
#

induced by ϕt is continuous.

In [1, 2, 9, 11], it has been shown that every isolated invariant set S admits an index

pair (N,L) and the homotopy type of the pointed space N/L is independent of the

choice of the index pair. The Conley index of S is the homotopy type of (N/L,[L]).

Note 2.2. We will not distinguish between N−L and N/L−{[L]}.
Definition 2.3. An index pair (N,L) is called regular if the exit time map defined

by

τ+ :N �→ [0,+∞], τ+(x)=



sup
{
t |ϕ[0,t](x)⊂N−L} if x ∈N−L,

0 if x ∈ L, (2.6)

is continuous.

Proposition 2.4. An index pair (N,L) is regular provided that ϕ[0,t](x) 
⊂N−L for

every x ∈ L and t > 0.
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The above result provides a criterion for the regularity of index pairs. The reader

is referred to [11] for the details about regular index pairs and the proof of this useful

criterion.

Definition 2.5. Let S be an isolated invariant set with a Morse decomposition

{Mi}ni=1. An index filtration is a sequence N0 ⊂ N1 ⊂ ··· ⊂ Nn of closed subsets of

X such that (Nk,Nk−1) is an index pair for Mk for every 1 ≤ k ≤ n and (Nn,N0) is an

index pair for S. When each (Nk,Nk−1) is regular, then the above filtration is called a

regular index filtration.

It is well known that every Morse decomposition admits an index filtration [11]. We

desire to show that every Morse decomposition admits a regular index filtration.

3. Conley’s fundamental theorem. In this section, we construct a Lyapunov function

on an index pair by modifying Conley’s original argument [1, 10]. The key point is that

one should work with I+A∗ and [L]∪I−A instead of the attractor-repeller pair (A,A∗). The

following lemma is the main idea in the proof of the continuity of Conley’s Lyapunov

function.

Lemma 3.1. Let S be an isolated invariant set with an attractor-repeller pair (A,A∗),
an index pair (N,L), and the isolating neighborhood V =N−L. If B is a compact subset

of N/L− I+A∗ and U is a neighborhood of [L]∪ I−A , then there exists T ∈ R+ such that

ϕ[T,+∞)
# (B)⊂U .

Proof. We may assume that U is a compact neighborhood of [L]∪ I−A with U ∩
I+A∗ = �. Now, suppose that there are xn ∈ B and tn → ∞ such that ϕtn

# (xn) 
∈ U .

Since B is compact, we may choose xn’s in N − L so that xn → x ∈ B. It is easy

to see that ϕ[0,+∞)(x) ⊂ N − L. Since B ∩ I+A∗ = �, we have ω(x) ⊂ A, hence there

is a t ∈ R+ such that ϕ[t,+∞)(x) ∈ ◦
U . Since xn → x, there are t′n ∈ [t,tn] such that

t′n−t→∞, ϕ[t,t′n)(xn)⊂
◦
U , and ϕt′n(xn)∈ ∂U for every sufficiently large n∈N. There-

fore, the sequenceϕt′n(xn) has a limit point y ∈ ∂U such thatϕ(−∞,0](y)⊂U∩(N−L)
and y ∈ ω(B) ⊂ S. Thus, α(y) ⊂ A, which means that y ∈ I−(A). This contradicts

y ∈ ∂U .

Theorem 3.2. Let S be an isolated invariant set with an attractor-repeller pair (A,A∗)
and an index pair (N,L). There exists a continuous function g :N/L→ [0,1] such that

(i) g−1(0)= [L]∪I−A and g−1(1)= I+A∗ ,

(ii) g(ϕt
#(x)) < g(x) for every x 
∈ [L]∪I−A∪I+A∗ and t ∈R+.

Proof. Let ρ : N/L → [0,1] be a continuous function with ρ−1(0) = [L]∪ I−A and

ρ−1(1) = I+A∗ . We define h : N/L → [0,1] by h(x) = supt≥0ρ(ϕt
#(x)). It is not hard

to see that h−1(0) = [L]∪ I−A , h−1(1) = I+A∗ . We show that h is upper-semicontinuous.

For every x ∈ N/L and ε > 0, there is a t ∈ R+ such that ρ(ϕt
#(x)) > h(x)−ε. Now,

there is a neighborhood U such that ρ(ϕt
#(y)) > h(x)−ε for every y ∈ U . Therefore,

h(y) > h(x)− ε for every y ∈ U , which proves the upper-semicontinuity of h. As a

result, h is continuous in h−1(1). Now, suppose that x 
∈ h−1(1)= I+A∗ and ε < 1−h(x).
If we set B = ρ−1[0,h(x)+ε] and U = ρ−1[0,h(x)+ε) in the above lemma, we obtain
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a T ∈R+ with ρ(ϕt
#(y)) < h(x)+ε for every y ∈ B and t ≥ T . Now, the by continuity of

ϕ#, there exists an open set V ⊂N/L such that x ∈ V and ρ(ϕt
#(y)) < h(x)+ε for every

t ∈ [0,T ] and y ∈ V . Therefore, h(y) < h(x)−ε for every y ∈U∩V , which shows that

h is lower-semicontinuous in x. Now, it is left to check that g := ∫+∞0 e−th(ϕt
#(x))dt is

the desired function.

Theorem 3.3. Let S be an isolated invariant set with an index pair (N,L) and a Morse

decomposition {Mi}ni=1. There is a continuous function g :N/L→ [0,n+1] such that

(i) g−1(0)= [L] and g(Mi)= i for every 1≤ i≤n,

(ii) if x ∈N−L−⋃ni=1Mi and t > 0, then g(ϕt
#(x)) < g(x).

Proof. Consider the attractor-repeller pairs (Sj,S∗j ) for 0≤ j ≤n. By Theorem 3.2,

there are continuous functions gi : N/L → [0,1] with g−1
i (0) = [L]∪ I−j , g−1

i (1) = I+j ,

and gj(ϕt(x)) < gj(x) for every x 
∈ [L]∪I−j ∪I+j . Now, g := g0+···+gn is the desired

function.

Corollary 3.4. Every Morse decomposition admits a regular index filtration.

Proof. Let f be the above Lyapunov function. If we set Nk := π−1(f−1[0,k+1/2])
for 0 ≤ k ≤ n and Nn := N, then, by Proposition 2.4, (Nk,Nk−1) is a regular index pair

for Mk, for every 1≤ k≤n.

Definition 3.5. Let ϕt be a continuous flow on a compact metric space X. An ε-
chain forϕt is a sequence x0, . . . ,xn in X and t1, . . . , tn in [1,+∞) such that d(ϕti(xi−1),
xi) < ε. A point x ∈ X is called chain-recurrent if for every ε > 0, there is an ε-chain

with x0 = xn = x. The set of all chain recurrent points for ϕt is denoted by R(ϕt).

It is not hard to check that R(ϕt) is a closed invariant subset of X containing the

nonwandering set Ω(ϕt). In [1, 10], it has been shown that R(ϕt|R(ϕt)) = R(ϕt) and

R(ϕt) = ⋂(A∪A∗), where the intersection is taken over all attractor-repeller pairs

(A,A∗) in X. It is also known that the number of all attractor-repeller pairs in a compact

metric space is at most countable.

Theorem 3.6. Let S be an isolated invariant set with an index pair (N,L). Then there

is a continuous function g :N/L→ [0,1] such that

(i) g−1(0)= [L] and g(ϕt
#(x))≤ g(x) for every x ∈N/L and t ≥ 0,

(ii) if x ∈N−L−R(ϕt|S) and t ≥ 0, then g(ϕt
#(x)) < g(x).

Proof. Let {(Ai,A∗i )}∞i=1 be the sequence of all attractor-repeller pairs in S including

(�,S) and (S,�). Now, by Theorem 3.2, there are continuous functions gi :N/L→ [0,1]
such that g−1

i (0) = [L]∪ I−Ai , g−1
i = I+A∗i , and gi(ϕt

#(x)) < gi(x) for every t ∈ R+ and

x 
∈ [L]∪I+A∗i ∪I
−
Ai . Now, g =∑∞

i=1 2−igi is the desired function.

The above result can be considered as a generalization of Conley’s fundamental the-

orem of dynamical systems. A similar result for discrete dynamical systems can be

obtained by following [4, 12].
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