ON UNIVALENT FUNCTIONS DEFINED BY A GENERALIZED SĂLĂGEAN OPERATOR

F. M. AL-OBOUDI

Received 17 August 2001 and in revised form 18 March 2002

We introduce a class of univalent functions $R^n(\lambda, \alpha)$ defined by a new differential operator $D^n f(z)$, $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$, where $D^0 f(z) = f(z)$, $D^1 f(z) = (1 - \lambda) f(z) + \lambda z f'(z) = D_\lambda f(z)$, $\lambda \ge 0$, and $D^n f(z) = D_\lambda (D^{n-1} f(z))$. Inclusion relations, extreme points of $R^n(\lambda, \alpha)$, some convolution properties of functions belonging to $R^n(\lambda, \alpha)$, and other results are given.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad (1.1)$$

analytic in the unit disc $\Delta = \{z : |z| < 1\}.$

We denote by $R(\alpha)$ the subclass of A for which $\text{Re}f'(z) > \alpha$ in Δ . For a function f in A, we define the following differential operator:

$$D^{0}f(z) = f(z), (1.2)$$

$$D^{1}f(z) = (1-\lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z), \quad \lambda \ge 0,$$
(1.3)

$$D^{n}f(z) = D_{\lambda}(D^{n-1}f(z)).$$
(1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that

$$D^{n}f(z) = z + \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda\right]^{n} a_{k} z^{k}.$$
(1.5)

When $\lambda = 1$, we get Sălăgean's differential operator [8].

Let $R^n(\lambda, \alpha)$ denote the class of functions $f \in A$ which satisfy the condition

$$\operatorname{Re}(D^n f(z))' > \alpha, \quad z \in \Delta,$$
 (1.6)

for some $0 \le \alpha \le 1$, $\lambda \ge 0$, and $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$. It is clear that $R^0(\lambda, \alpha) \equiv R(\alpha) \equiv R^n(0, \alpha)$ and that $R^1(\lambda, \alpha) \equiv R(\lambda, \alpha)$, the class of functions $f \in A$ satisfying

$$\operatorname{Re}(f'(z) + \lambda z f''(z)) > \alpha, \quad z \in \Delta, \tag{1.7}$$

studied by Ponnusamy [5] and others.

The Hadamard product or convolution of two power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ is defined as the power series $(f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k$, $z \in \Delta$.

The object of this paper is to derive several interesting properties of the class $R^n(\lambda, \alpha)$ such as inclusion relations, extreme points, some convolution properties, and other results.

2. Inclusion relations. Theorem 2.3 shows that the functions in $R^n(\lambda, \alpha)$ belong to $R(\alpha)$ and hence are univalent. We need the following lemmas.

LEMMA 2.1. If p(z) is analytic in Δ , p(0) = 1 and $\operatorname{Re}p(z) > 1/2$, $z \in \Delta$, then for any function F analytic in Δ , the function p * F takes its values in the convex hull of $F(\Delta)$.

The assertion of Lemma 2.1 follows by using the Herglotz representation for p. The next lemma is due to Fejér [3].

A sequence $a_0, a_1, \dots, a_n, \dots$ of nonnegative numbers is called a *convex null sequence* if $a_n \rightarrow 0$ as $n \rightarrow \infty$ and

$$a_0 - a_1 \ge a_1 - a_2 \ge \dots \ge a_n - a_{n+1} \ge \dots \ge 0.$$

$$(2.1)$$

LEMMA 2.2. Let $\{c_k\}_{k=0}^{\infty}$ be a convex null sequence. Then the function $p(z) = c_0/2 + \sum_{k=1}^{\infty} c_k z^k$, $z \in \Delta$, is analytic and $\operatorname{Rep}(z) > 0$ in Δ .

Now we prove the following theorem.

THEOREM 2.3.

$$R^{n+1}(\lambda,\alpha) \subset R^n(\lambda,\alpha). \tag{2.2}$$

PROOF. Let *f* belong to $R^{n+1}(\lambda, \alpha)$ and let it be given by (1.1). Then from (1.5), we have

$$\operatorname{Re}\left(1+\frac{1}{2(1-\alpha)}\sum_{k=2}^{\infty}k[1+(k-1)\lambda]^{n+1}a_{k}z^{k-1}\right) > \frac{1}{2}.$$
(2.3)

Now

$$(D^{n}f(z))' = 1 + \sum_{k=2}^{\infty} k [1 + (k-1)\lambda]^{n} a_{k} z^{k-1}$$

$$= \left(1 + \frac{1}{2(1-\alpha)} \sum_{k=2}^{\infty} k [1 + (k-1)\lambda]^{n+1} a_{k} z^{k-1}\right)$$

$$* \left(1 + 2(1-\alpha) \sum_{k=2}^{\infty} \frac{z^{k-1}}{1 + (k-1)\lambda}\right).$$
 (2.4)

Applying Lemma 2.2, with $c_0 = 1$ and $c_k = 1/(1+k\lambda)$, k = 1, 2, ..., we get

$$\operatorname{Re}\left(1+2(1-\alpha)\sum_{k=2}^{\infty}\frac{z^{k-1}}{\left[1+(k-1)\lambda\right]}\right) > \alpha.$$
(2.5)

Applying Lemma 2.1 to $(D^n f(z))'$, we get the required result.

We also have a better result than Theorem 2.3.

THEOREM 2.4. Let $f \in \mathbb{R}^{n+1}(\lambda, \alpha)$. Then $f \in \mathbb{R}^n(\lambda, \beta)$, where

$$\beta = \frac{2\lambda^2 + (1+3\lambda)\alpha}{(1+\lambda)(1+2\lambda)} \ge \alpha.$$
(2.6)

PROOF. Let $f \in \mathbb{R}^{n+1}(\lambda, \alpha)$. It is shown in [9], as an example, that if $\lambda \ge 0$ and

$$g(z) = z + \sum_{k=2}^{\infty} \frac{z^k}{1 + (k-1)\lambda},$$
(2.7)

then

$$\operatorname{Re}\frac{g(z)}{z} > \frac{4\lambda^2 + 3\lambda + 1}{2(1+\lambda)(1+2\lambda)}.$$
(2.8)

Hence

$$\operatorname{Re}\left(1+2(1-\alpha)\sum_{k=2}^{\infty}\frac{z^{k-1}}{1+(k-1)\lambda}\right) > \frac{2\lambda^2+(1+3\lambda)\alpha}{(1+\lambda)(1+2\lambda)}.$$
(2.9)

Now an application of Lemma 2.1 to $(D^n f(z))'$ in the previous theorem completes the proof.

REMARK 2.5. If we put n = 1 in Theorem 2.4, then we have

$$\operatorname{Re}(f'(z) + \lambda z f''(z)) > \alpha \Longrightarrow \operatorname{Re}f'(z) > \frac{2\lambda^2 + (1+3\lambda)\alpha}{(1+\lambda)(1+2\lambda)},$$
(2.10)

which is an improvement of the result of Saitoh [7] for $\lambda \ge 1$, where he shows that, for $\lambda > 0$,

$$\operatorname{Re}(f'(z) + \lambda z f''(z)) > \alpha \Longrightarrow \operatorname{Re}f'(z) > \frac{2\alpha + \lambda}{2 + \lambda}.$$
(2.11)

Using Theorem 2.4 ((n - m) times) we get, after some calculations, the following theorem.

THEOREM 2.6. Let $f \in \mathbb{R}^n(\lambda, \alpha)$ and let $n > m \ge 0$. Then $f \in \mathbb{R}^m(\lambda, \beta)$ if

$$\beta = \left[\left(\frac{1+3\lambda}{(1+\lambda)(1+2\lambda)} \right)^{n-m} \alpha + \frac{2\lambda^2}{(1+\lambda)(1+2\lambda)} \sum_{k=0}^{n-m-1} \left(\frac{1+3\lambda}{(1+\lambda)(1+2\lambda)} \right)^k \right] \ge \alpha.$$
(2.12)

If we put m = 0 in Theorem 2.6, we obtain the following interesting result.

COROLLARY 2.7. Let $f \in \mathbb{R}^n(\lambda, \alpha)$. Then $\operatorname{Re} f'(z) > \beta$, where β is given by (2.12) with m = 0.

REMARK 2.8. Since D_{λ} (given by (1.3)) is a linear function of λ , it is clear that

$$R^{n}(\lambda,\alpha) \subset R^{n}(\lambda',\alpha), \qquad (2.13)$$

where $\lambda > \lambda^{/}$.

The following theorem deals with the partial sum of the functions in $R^n(\lambda, \alpha)$. For the proof we need the following result, due to Ahuja and Jahangiri [2].

LEMMA 2.9. Let $-1 < t \le S = 4.567802$. Then

$$\operatorname{Re}\left(\sum_{k=2}^{m} \frac{z^{k-1}}{k+t-1}\right) > -\frac{1}{1+t}, \quad z \in \Delta.$$
(2.14)

THEOREM 2.10. Let $S_m(z, f)$ denote the *m*th partial sum of a function f in $\mathbb{R}^n(\lambda, \alpha)$. If $f \in \mathbb{R}^n(\lambda, \alpha)$ and $\lambda \ge 1/s = 0.21892$, then $S_m(z, f) \in \mathbb{R}^{n-1}(\lambda, \beta)$, where

$$\beta = \frac{2\alpha + \lambda - 1}{\lambda + 1}.$$
(2.15)

PROOF. Let $f \in R^n(\lambda, \alpha)$ and let it be given by (1.1). Then from (1.5) we have

$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} k [1 + (k-1)\lambda]^n a_k z^{k-1}\right) > \alpha$$
(2.16)

or

$$\operatorname{Re}\left(1+\frac{2}{\lambda+1}\sum_{k=2}^{\infty}k\left[1+(k-1)\lambda\right]^{n}a_{k}z^{k-1}\right) > \frac{2\alpha+\lambda-1}{\lambda+1}.$$
(2.17)

Now

$$(D^{n-1}S_m(z,f))' = 1 + \sum_{k=2}^m k [1 + (k-1)\lambda]^{n-1} a_k z^{k-1}$$

= $\left(1 + \frac{2}{\lambda+1} \sum_{k=2}^\infty k [1 + (k-1)\lambda]^n a_k z^{k-1}\right)$ (2.18)
 $* \left(1 + \frac{\lambda+1}{2\lambda} \sum_{k=2}^m \frac{z^{k-1}}{1/\lambda + (k-1)}\right), \quad \lambda > 0.$

From Lemma 2.9, we see that, for $\lambda \ge 1/s = 0.21892$,

$$\operatorname{Re}\sum_{k=2}^{m} \frac{z^{k-1}}{1/\lambda + (k-1)} > -\frac{\lambda}{\lambda+1},$$
(2.19)

hence

$$\operatorname{Re}\left(1 + \frac{\lambda+1}{2\lambda} \sum_{k=2}^{m} \frac{z^{k-1}}{1/\lambda + (k-1)}\right) > \frac{1}{2},\tag{2.20}$$

П

and the result follows by application of Lemma 2.1.

1432

Now we prove the following theorem.

THEOREM 2.11. The set $R^n(\lambda, \alpha)$ is convex.

PROOF. Let the functions

$$f_i(z) = z + \sum_{k=2}^{\infty} a_{ki} z^k \quad (i = 1, 2)$$
(2.21)

be in the class $R^n(\lambda, \alpha)$. It is sufficient to show that the function $h(z) = \mu_1 f_1(z) + \mu_2 f_2(z)$ $\mu_2 f_2(z)$, with μ_1 and μ_2 nonnegative and $\mu_1 + \mu_2 = 1$, is in the class $\mathbb{R}^n(\lambda, \alpha)$. Since

$$h(z) = z + \sum_{k=2}^{\infty} (\mu_1 a_{k1} + \mu_2 a_{k2}) z^k, \qquad (2.22)$$

then from (2.4) we have

$$(D^{n}h(z))' = 1 + \sum_{k=2}^{\infty} k (\mu_{1}a_{k1} + \mu_{2}a_{k2}) [1 + (k-1)\lambda]^{n} z^{k-1}, \qquad (2.23)$$

hence

$$\operatorname{Re}(D^{n}h(z))' = \operatorname{Re}\left(1 + \mu_{1}\sum_{k=2}^{\infty}k[1 + (k-1)\lambda]^{n}a_{k1}z^{k-1}\right) + \operatorname{Re}\left(1 + \mu_{2}\sum_{k=2}^{\infty}k[1 + (k-1)\lambda]^{n}a_{k2}z^{k-1}\right).$$
(2.24)

Since $f_1, f_2 \in \mathbb{R}^n(\lambda, \alpha)$, this implies that

$$\operatorname{Re}\left(1+\mu_{i}\sum_{k=2}^{\infty}k[1+(k-1)\lambda]^{n}a_{ki}z^{k-1}\right) > 1+\mu_{i}(\alpha-1) \quad (i=1,2).$$
(2.25)

Using (2.25) in (2.24), we obtain

$$\operatorname{Re}(D^{n}h(z))' > 1 + \alpha(\mu_{1} + \mu_{2}) - (\mu_{1} + \mu_{2}), \qquad (2.26)$$

and since $\mu_1 + \mu_2 = 1$, the theorem is proved.

Hallenbeck [4] showed that

$$\operatorname{Re} f'(z) > \alpha \Longrightarrow \operatorname{Re} \frac{f(z)}{z} > (2\alpha - 1) + 2(1 - \alpha)\log 2.$$
(2.27)

Using Theorem 2.3 and (2.27), we obtain the following theorem.

THEOREM 2.12. Let $f \in R^n(\lambda, \alpha)$. Then

$$\operatorname{Re}\frac{D^{n}f(z)}{z} > (2\alpha - 1) + 2(1 - \alpha)\log 2.$$
(2.28)

This result is sharp as can be seen by the function f_x given by (3.1).

F. M. AL-OBOUDI

3. Extreme points. The extreme points of the closed convex hull of $R(\alpha)$ were determined by Hallenbeck [4]. We denote the closed convex hull of a family *F* by clco*F*, and we make use of some results in [4] to determine the extreme points of $R^n(\lambda, \alpha)$.

THEOREM 3.1. The extreme points of $R^n(\lambda, \alpha)$ are

$$f_{x}(z) = z + 2(1 - \alpha) \sum_{k=2}^{\infty} \frac{x^{k-1} z^{k}}{k [1 + (k-1)\lambda]^{n}}, \quad |x| = 1, \ z \in \Delta.$$
(3.1)

PROOF. Since $D^n : f \to D^n f$ is an isomorphism from $R^n(\lambda, \alpha)$ to $R(\alpha)$, it preserves the extreme points and, in [4], it is shown that the extreme points of $R(\alpha)$ are

$$z + 2(1 - \alpha) \sum_{k=2}^{\infty} \frac{1}{k} x^{k-1} z^k, \quad |x| = 1, \ z \in \Delta.$$
(3.2)

Hence from (1.5), we see that the extreme points of $clcoR^n(\lambda, \alpha)$ are given by (3.1). Since the family $R^n(\lambda, \alpha)$ is convex (Theorem 2.6) and therefore equal to its convex hull, we get the required result.

As consequences of Theorem 3.1, we have the following corollary.

COROLLARY 3.2. Let f belong to $\mathbb{R}^n(\lambda, \alpha)$ and let it be given by (1.1). Then

$$|a_k| \leq \frac{2(1-\alpha)}{k[1+(k-1)\lambda]^n}, \quad k \ge 2.$$
 (3.3)

This result is sharp as shown by the function $f_x(z)$ given by (3.1).

COROLLARY 3.3. If $f \in \mathbb{R}^n(\lambda, \alpha)$, then

$$|f(z)| \leq r + \sum_{k=2}^{\infty} \frac{2(1-\alpha)}{k[1+(k-1)\lambda]^n} r^k, \quad |z| = r,$$

$$|f'(z)| \leq 1 + \sum_{k=2}^{\infty} \frac{2(1-\alpha)}{[1+(k-1)\lambda]^n} r^{k-1}, \quad |z| = r.$$

(3.4)

This result is sharp as shown by the function $f_x(z)$ given by (3.1) at $z = \overline{x}r$.

4. Convolution properties. Ruscheweyh and Sheil-Small [6] verified the Polya-Schoenberg conjecture and its analogous results, namely, $C * C \subset C$, $C * S^* \subset S^*$, and $C * K \subset K$, where C, S^* , and K denote the classes of convex, starlike, and close-to-convex univalent functions, respectively. In the following, we prove the analogue of the Polya-Schoenberg conjecture for the class $R^n(\lambda, \alpha)$.

THEOREM 4.1. Let $f \in \mathbb{R}^n(\lambda, \alpha)$ and $g \in C$. Then $f * g \in \mathbb{R}^n(\lambda, \alpha)$.

PROOF. It is known that if *g* is convex univalent in Δ , then

$$\operatorname{Re}\frac{g(z)}{z} > \frac{1}{2}.$$
(4.1)

Using convolution properties, we have

$$\operatorname{Re}(D^{n}(f \ast g)(z))' = \operatorname{Re}\left(\left(D^{n}f(z)\right)' \ast \frac{g(z)}{z}\right), \tag{4.2}$$

and the result follows by application of Lemma 2.1.

THEOREM 4.2. Let f and g belong to $\mathbb{R}^n(\lambda, \alpha)$. Then $f * g \in \mathbb{R}^n(\lambda, \beta)$, where

$$\beta = \frac{\lambda(2\alpha+1) + 4\alpha - 1}{2(\lambda+1)} \ge \alpha.$$
(4.3)

PROOF. Let $g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in R^n(\lambda, \alpha)$, then

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}k[1+(k-1)\lambda]^{n}b_{k}z^{k-1}\right)>\alpha.$$
(4.4)

Let $c_0 = 1$ and

$$c_k = \frac{\lambda + 1}{(k+1)[1+k\lambda]^n}, \quad k \ge 1.$$
(4.5)

Then $\{c_k\}_{k=0}^{\infty}$ is a convex null sequence. Hence, by Lemma 2.2, we have

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}\frac{\lambda+1}{k[1+(k-1)\lambda]^{n}}z^{k-1}\right) > \frac{1}{2}.$$
(4.6)

Now we take the convolution of (4.4) and (4.6) and apply Lemma 2.1 to obtain

$$\operatorname{Re}\left(1+(\lambda+1)\sum_{k=2}^{\infty}b_{k}z^{k-1}\right) > \alpha \tag{4.7}$$

or

$$\operatorname{Re}\frac{g(z)}{z} = \operatorname{Re}\left(1 + \sum_{k=2}^{\infty} b_k z^{k-1}\right) > \frac{\lambda + \alpha}{\lambda + 1}.$$
(4.8)

Hence

$$\operatorname{Re}\left(\frac{g(z)}{z} - \frac{2\alpha + \lambda - 1}{2(\lambda + 1)}\right) > \frac{1}{2}.$$
(4.9)

Since $f \in R^n(\lambda, \alpha)$, by applying Lemma 2.1, we obtain

$$\operatorname{Re}\left(\left(D^{n}f(z)\right)'*\left(\frac{g(z)}{z}-\frac{2\alpha+\lambda-1}{2(\lambda+1)}\right)\right)>\alpha$$
(4.10)

or

$$\operatorname{Re}\left(\left(D^{n}f(z)\right)'*\frac{g(z)}{z}\right) > \frac{\lambda(2\alpha+1)+4\alpha-1}{2(\lambda+1)} = \beta,$$
(4.11)

and by (4.2), the result follows.

REMARK 4.3. If we put $\lambda = 0$ in Theorem 4.2, we get the corresponding result for functions in $R(\alpha)$, given by Ahuja [1].

REFERENCES

- O. P. Ahuja, Univalent functions whose derivatives have a positive real part, Rend. Mat. (7) 2 (1982), no. 1, 173-187.
- [2] O. P. Ahuja and M. Jahangiri, On the derivatives of a family of analytic functions, Math. Japon. 47 (1998), no. 1, 67-72.
- [3] L. Fejér, Über die positivität von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten. I, Acta Szeged 2 (1925), 75-86 (German).
- [4] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192 (1974), 285–292.
- [5] S. Ponnusamy, Differential subordination and starlike functions, Complex Variables Theory Appl. 19 (1992), no. 3, 185–194.
- [6] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.
- H. Saitoh, Properties of certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 131-134.
- [8] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis—Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362–372.
- [9] Z. Zhongzhu and S. Owa, Convolution properties of a class of bounded analytic functions, Bull. Austral. Math. Soc. 45 (1992), no. 1, 9–23.

F. M. Al-Oboudi: Mathematics Department, Science Sections, Girls College of Education, Sitteen Street, Malaz, Riyadh 11417, Saudi Arabia

E-mail address: rytelmi@gcpa.edu.sa