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ON UNIVALENT FUNCTIONS DEFINED BY A GENERALIZED
SALAGEAN OPERATOR
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We introduce a class of univalent functions R" (A, x) defined by a new differential opera-
tor D" f(z), n € Ng = {0,1,2,...}, where DOf(z) = f(z), D1 f(z) = (1-A) f(2) +Azf (2) =
Dyf(z),A=0,and D" f(z) = Dy (D""! f(z)).Inclusion relations, extreme points of R (A, &),
some convolution properties of functions belonging to R (A, ), and other results are given.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions of the form

f(2)=z+> axzk, (1.1)

k=2

analytic in the unit disc A = {z: |z| < 1}.
We denote by R(«x) the subclass of A for which Ref’(z) > & in A. For a function f in
A, we define the following differential operator:

Df(2) = f(2), (1.2)
D'f(z) = (1-A)f(z)+Azf'(z) =Daf(z), A=0, (1.3)
D" f(z) = DA(D" 1 f(2)). (1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that
D"f(z)=z+ Z 1+ (k=1)A]"axzk. (1.5)

When A = 1, we get Salagean’s differential operator [8].
Let R" (A, ) denote the class of functions f € A which satisfy the condition

Re(D"f(z2)) >, zeA, (1.6)

forsome 0 <x<1,A=0,and n € Ny = {0,1,2,...}. It is clear that R%(A,x) = R(x) =
R™(0,x) and that R} (A, @) = R(A, «), the class of functions f € A satisfying

Re(f'(z)+Azf"(2)) > &, z€A, (1.7)

studied by Ponnusamy [5] and others.
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The Hadamard product or convolution of two power series f(z) = >¢_,axz* and
9(z) = 3 p_obrz* is defined as the power series (f * g)(z) = X p.oarbrzX, z € A.

The object of this paper is to derive several interesting properties of the class R" (A, )
such as inclusion relations, extreme points, some convolution properties, and other
results.

2. Inclusion relations. Theorem 2.3 shows that the functions in R" (A, &) belong to
R(x) and hence are univalent. We need the following lemmas.

LEMMA 2.1. Ifp(z) is analyticin A, p(0) =1 and Rep(z) > 1/2, z € A, then for any
function F analytic in A, the function p x F takes its values in the convex hull of F(A).

The assertion of Lemma 2.1 follows by using the Herglotz representation for p. The
next lemma is due to Fejér [3].

A sequence agp,ai,...,dny,... of nonnegative numbers is called a convex null sequence
if a,, - 0 as n — o and

aAp—a1=2a;—az=---=>Aan—Aans+1 = -+ = 0. (2.1)

LEMMA 2.2. Let {cx};_, be a convex null sequence. Then the function p(z) = co/2 +
Sroickzk, z € A, s analytic and Rep(z) > 0 in A.

Now we prove the following theorem.

THEOREM 2.3.
R™N(A, @) c R™(A, x). (2.2)

PROOF. Let f belong to R™*1(A, ) and let it be given by (1.1). Then from (1.5), we
have

00

_ n+1 k=1 l
Re( 2(1_ g [1+(k-1)A]"" arz )>2. (2.3)
Now
(D"f(2)) = Z [1+(k—1)A]"arz""
_ - n+1 k—1
_( 2(17 % [T+ (k=DA]" " axz ) (2.4)
d k-1
(”2 § +(k 1)2\)
Applying Lemma 2.2, with co =1 and ¢y = 1/(1 +kA), k=1,2,..., we get
o k=1
Re<1+2(1—0( Zl-‘r(kl))\]) > K. (25)

Applying Lemma 2.1 to (D" f(z))’, we get the required result. |
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We also have a better result than Theorem 2.3.

THEOREM 2.4. Let f € R"*1(A,«x). Then f € R™(A,B), where

2/\2+(1+3A)(x
b= (1 +/\)(1+22\) (2.6)
PROOF. Let f € R" (A, x). It is shown in [9], as an example, that if A > 0 and
9@ =2+ 2 T RATEY 2.7)
then
g(z) 402 +3A+1
R > S v +2n) (2.8)
Hence
> zk-1 202+ (1430«
(“2 (1-« gz 1+ (k- 1)/\) A+ +20) (2.9)

Now an application of Lemma 2.1 to (D" f(z))’ in the previous theorem completes
the proof. |

REMARK 2.5. If we put n =1 in Theorem 2.4, then we have

2A24+(1+3A0) «x

Re(f'(2) +Azf"(2)) > ¢ = Ref'(2) > ‘- ~va 0

(2.10)

which is an improvement of the result of Saitoh [7] for A > 1, where he shows that, for
A>0,

200+ A
2+A

Re(f'(z) +Azf"(z)) > x = Ref'(z) > (2.11)

Using Theorem 2.4 ((n —m) times ) we get, after some calculations, the following
theorem.

THEOREM 2.6. Let f € R"(A,x) and letn >m > 0. Then f € R™(A,B) if

8- 1+3A B 2a2 "‘g‘l( 1+3A >k>
“la+na+2n T AT a+20) TERGEN A

k=0
(2.12)

If we put m = 0 in Theorem 2.6, we obtain the following interesting result.

COROLLARY 2.7. Let f € R"(A,x). ThenRef’(z) > B, where B is given by (2.12) with
m = 0.
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REMARK 2.8. Since D, (given by (1.3)) is a linear function of A, it is clear that

R™(A, &) c R*(A/, ), (2.13)
where A > A/.

The following theorem deals with the partial sum of the functions in R (A, «). For
the proof we need the following result, due to Ahuja and Jahangiri [2]

LEMMA 2.9. Let -1 <t<S=4.567802. Then

m Zk-1 1
Re(k%kﬂ—l) > Ty ZE4

THEOREM 2.10. Let S,,(z,f) denote the mth partial sum of a function f in R" (A, x)
If fER"(A,x) and A = 1/s = 0.21892, then S, (z, f) € R* 1 (A, B), where

(2.14)

200+A -1
b= A+1

(2.15)
PROOF. Let f € R"(A, ) and let it be given by (1.1). Then from (1.5) we have
Re<1 + > k[1+ (k- 1)/\]”akz’<—1) > o (2.16)
k=2
or
2 < ) 2a+A-1
Re(1+)\+1}§2 [1+(k-1)A]"axz* >> R (2.17)
Now
m
(D" Sm(z,f)) z k[1+(k—1)A]" agzh!
= ( Z [1+(k-1)A]"arz* 1) (2.18)
A+l k=2
A+l & k-1
( gl/iw(k 1)) A>0.

From Lemma 2.9, we see that, for A > 1/s =0.21892

m k-1 A

; /2\+(k 1) CA+T] (2.19)

hence
i - >3, (2.20)
= 1/2\+(k 1)

and the result follows by application of Lemma 2.1
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Now we prove the following theorem.
THEOREM 2.11. The set R"(A, x) is convex.

PROOEF. Let the functions
filz)=z+ > anz" (i=1,2) (2.21)
k=2
be in the class R™(A, ). It is sufficient to show that the function h(z) = u f1(z) +

Uz f>(z), with p; and p nonnegative and py + pp = 1, is in the class R™ (A, ).
Since

h(z) =z+ D (man +peak)zk, (2.22)
k=2
then from (2.4) we have
(D"h(2)) =1+ > k(max +Hoak2) [1+ (k—1)A]"z51, (2.23)
k=2

hence

Re(D"h(z)) = Re(l + U Z k[1+ (k- 1)/\]"aklzk1)
k=2

. (2.24)
+Re<l +up > k[1+ (k- 1))\]"ak22k1).
k=2
Since f1, f> € R"(A, ), this implies that
Re(l +ui Y k[1+ (k—l))\]"akizk“) >1+p(x—=1) (i=1,2). (2.25)
k=2
Using (2.25) in (2.24), we obtain
Re(D"h(2)) > 1+ a&(py +p2) = (1 +2), (2.26)
and since y; + u2 = 1, the theorem is proved. O
Hallenbeck [4] showed that
, f(z)
Ref'(z) > x = Re > > (20—1)+2(1—x)log?2. (2.27)
Using Theorem 2.3 and (2.27), we obtain the following theorem.
THEOREM 2.12. Let f € R"(A,x). Then
n
Re% > 2x—1)+2(1-x)log?2. (2.28)

This result is sharp as can be seen by the function f, given by (3.1).
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3. Extreme points. The extreme points of the closed convex hull of R(«x) were de-
termined by Hallenbeck [4]. We denote the closed convex hull of a family F by clcoF,
and we make use of some results in [4] to determine the extreme points of R™(A, x).

THEOREM 3.1. The extreme points of R" (A, x) are

xk—lzk

m, IX‘=1, z €A. (31)

fe(2)=z+2(1-x) Z

PROOF. Since D": f — D" f is an isomorphism from R" (A, ) to R(x), it preserves
the extreme points and, in [4], it is shown that the extreme points of R(«x) are

k=lzk x| =1, z€A. (3.2)

?rl»—‘

z+2(1-w) Z

Hence from (1.5), we see that the extreme points of clcoR" (A, x) are given by (3.1).
Since the family R (A, ) is convex (Theorem 2.6) and therefore equal to its convex hull,
we get the required result. |

As consequences of Theorem 3.1, we have the following corollary.

COROLLARY 3.2. Let f belong to R" (A, ) and let it be given by (1.1). Then

2(1-«x)

T (- DT k>2. (3.3)

lax| <

This result is sharp as shown by the function fx(z) given by (3.1).

COROLLARY 3.3. If f € R"(A,x), then

ad 2(1-x) X 3
f(@)|<r+ g—H(k DA =

- (3.4)
|f'(2)] < Z A2 ket g2,

[1+(k-1)A]"
This result is sharp as shown by the function fx(z) given by (3.1) at z = X7.

4. Convolution properties. Ruscheweyh and Sheil-Small [6] verified the Polya-
Schoenberg conjecture and its analogous results, namely, CxC c C, CxS* C §*, and
C %K c K, where C, S*, and K denote the classes of convex, starlike, and close-to-
convex univalent functions, respectively. In the following, we prove the analogue of the
Polya-Schoenberg conjecture for the class R" (A, ).

THEOREM 4.1. Let f € R"(A,x) and g € C. Then fxg € R" (A, x).

PROOF. It is known that if g is convex univalent in A, then

Reﬁ >
z

(4.1)

N | =
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Using convolution properties, we have
n - n  g(z)
Re(D™(f*49)(2)) =Re((D"f(2)) * =), (4.2)

and the result follows by application of Lemma 2.1. |
THEOREM 4.2. Let f and g belong to R"(A,x). Then f x g € R"(A,B), where

CAQa+1)+4x—1 -

B 2(A+1) (4.3)
PROOE. Let g(z) =z+> 4., brz¥ € R*(A,x), then
Re(l + > k[1+ (k- 1)A]"bkz’<1) > . (4.4)
k=2
Letcp =1 and
A+1
%= Rrnikan K )
Then {ci};_, is a convex null sequence. Hence, by Lemma 2.2, we have
= A+1 1
Re| 1+ — gkl —. 4.6
e( gzk[u(kq);\]"z >>2 (4.6)
Now we take the convolution of (4.4) and (4.6) and apply Lemma 2.1 to obtain
Re(l +(A+1) > bkzkl) > o 4.7)
k=2
or
g(z) o k1) L At
Re=— —Re<1 +k§2hkz VIR (4.8)
Hence
g9(z) 2(x+2\—1) 1
R ( z 2+ )72 (4.9)
Since f € R"(A, ), by applying Lemma 2.1, we obtain
n / g(z)_20(+2\—1>)
Re((D f(2)) % (—z D011 > (4.10)
or
n , g(z)) AQa+1)+4x—-1
Re((D f(2)) = e > AT D) =B, (4.11)

and by (4.2), the result follows. O
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REMARK 4.3. If we put A = 0 in Theorem 4.2, we get the corresponding result for
functions in R(x), given by Ahuja [1].
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