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We introduce a class of univalent functions Rn(λ,α) defined by a new differential opera-
tor Dnf(z), n∈N0 = {0,1,2, . . .}, where D0f(z)= f(z), D1f(z)= (1−λ)f(z)+λzf ′(z)=
Dλf(z),λ≥0, andDnf(z)=Dλ(Dn−1f(z)). Inclusion relations, extreme points ofRn(λ,α),
some convolution properties of functions belonging to Rn(λ,α), and other results are given.
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1. Introduction. Let A denote the class of functions of the form

f(z)= z+
∞∑
k=2

akzk, (1.1)

analytic in the unit disc ∆= {z : |z|< 1}.
We denote by R(α) the subclass of A for which Ref ′(z) > α in ∆. For a function f in

A, we define the following differential operator:

D0f(z)= f(z), (1.2)

D1f(z)= (1−λ)f(z)+λzf ′(z)=Dλf(z), λ � 0, (1.3)

Dnf(z)=Dλ
(
Dn−1f(z)

)
. (1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that

Dnf(z)= z+
∞∑
k=2

[
1+(k−1)λ

]nakzk. (1.5)

When λ= 1, we get Sălăgean’s differential operator [8].

Let Rn(λ,α) denote the class of functions f ∈A which satisfy the condition

Re
(
Dnf(z)

)′ >α, z ∈∆, (1.6)

for some 0 ≤ α ≤ 1, λ � 0, and n ∈ N0 = {0,1,2, . . .}. It is clear that R0(λ,α) ≡ R(α) ≡
Rn(0,α) and that R1(λ,α)≡ R(λ,α), the class of functions f ∈A satisfying

Re
(
f ′(z)+λzf ′′(z))>α, z ∈∆, (1.7)

studied by Ponnusamy [5] and others.
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The Hadamard product or convolution of two power series f(z) = ∑∞
k=0akzk and

g(z)=∑∞
k=0bkzk is defined as the power series (f ∗g)(z)=∑∞

k=0akbkzk, z ∈∆.

The object of this paper is to derive several interesting properties of the classRn(λ,α)
such as inclusion relations, extreme points, some convolution properties, and other

results.

2. Inclusion relations. Theorem 2.3 shows that the functions in Rn(λ,α) belong to

R(α) and hence are univalent. We need the following lemmas.

Lemma 2.1. If p(z) is analytic in ∆, p(0)= 1 and Rep(z) > 1/2, z ∈ ∆, then for any

function F analytic in ∆, the function p∗F takes its values in the convex hull of F(∆).

The assertion of Lemma 2.1 follows by using the Herglotz representation for p. The

next lemma is due to Fejér [3].

A sequence a0,a1, . . . ,an, . . . of nonnegative numbers is called a convex null sequence

if an→ 0 as n→∞ and

a0−a1 �a1−a2 � ···�an−an+1 � ···� 0. (2.1)

Lemma 2.2. Let {ck}∞k=0 be a convex null sequence. Then the function p(z) = c0/2+∑∞
k=1 ckzk, z ∈∆, is analytic and Rep(z) > 0 in ∆.

Now we prove the following theorem.

Theorem 2.3.

Rn+1(λ,α)⊂ Rn(λ,α). (2.2)

Proof. Let f belong to Rn+1(λ,α) and let it be given by (1.1). Then from (1.5), we

have

Re

(
1+ 1

2(1−α)
∞∑
k=2

k
[
1+(k−1)λ

]n+1akzk−1

)
>

1
2
. (2.3)

Now

(
Dnf(z)

)′ = 1+
∞∑
k=2

k
[
1+(k−1)λ

]nakzk−1

=
(

1+ 1
2(1−α)

∞∑
k=2

k
[
1+(k−1)λ

]n+1akzk−1

)

∗
(

1+2(1−α)
∞∑
k=2

zk−1

1+(k−1)λ

)
.

(2.4)

Applying Lemma 2.2, with c0 = 1 and ck = 1/(1+kλ), k= 1,2, . . . , we get

Re

(
1+2(1−α)

∞∑
k=2

zk−1[
1+(k−1)λ

]
)
>α. (2.5)

Applying Lemma 2.1 to (Dnf(z))′, we get the required result.
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We also have a better result than Theorem 2.3.

Theorem 2.4. Let f ∈ Rn+1(λ,α). Then f ∈ Rn(λ,β), where

β= 2λ2+(1+3λ)α
(1+λ)(1+2λ)

� α. (2.6)

Proof. Let f ∈ Rn+1(λ,α). It is shown in [9], as an example, that if λ � 0 and

g(z)= z+
∞∑
k=2

zk

1+(k−1)λ
, (2.7)

then

Re
g(z)
z

>
4λ2+3λ+1

2(1+λ)(1+2λ)
. (2.8)

Hence

Re

(
1+2(1−α)

∞∑
k=2

zk−1

1+(k−1)λ

)
>

2λ2+(1+3λ)α
(1+λ)(1+2λ)

. (2.9)

Now an application of Lemma 2.1 to (Dnf(z))′ in the previous theorem completes

the proof.

Remark 2.5. If we put n= 1 in Theorem 2.4, then we have

Re
(
f ′(z)+λzf ′′(z))>α �⇒ Ref ′(z) >

2λ2+(1+3λ)α
(1+λ)(1+2λ)

, (2.10)

which is an improvement of the result of Saitoh [7] for λ≥ 1, where he shows that, for

λ > 0,

Re
(
f ′(z)+λzf ′′(z))>α �⇒ Ref ′(z) >

2α+λ
2+λ . (2.11)

Using Theorem 2.4 ((n−m) times ) we get, after some calculations, the following

theorem.

Theorem 2.6. Let f ∈ Rn(λ,α) and let n>m� 0. Then f ∈ Rm(λ,β) if

β=
[(

1+3λ
(1+λ)(1+2λ)

)n−m
α+ 2λ2

(1+λ)(1+2λ)

n−m−1∑
k=0

(
1+3λ

(1+λ)(1+2λ)

)k]
�α.

(2.12)

If we put m= 0 in Theorem 2.6, we obtain the following interesting result.

Corollary 2.7. Let f ∈ Rn(λ,α). Then Ref ′(z) > β, where β is given by (2.12) with

m= 0.
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Remark 2.8. Since Dλ (given by (1.3)) is a linear function of λ, it is clear that

Rn(λ,α)⊂ Rn(λ/,α), (2.13)

where λ > λ/.

The following theorem deals with the partial sum of the functions in Rn(λ,α). For

the proof we need the following result, due to Ahuja and Jahangiri [2].

Lemma 2.9. Let −1< t � S = 4.567802. Then

Re

( m∑
k=2

zk−1

k+t−1

)
>− 1

1+t , z ∈∆. (2.14)

Theorem 2.10. Let Sm(z,f ) denote themth partial sum of a function f in Rn(λ,α).
If f ∈ Rn(λ,α) and λ≥ 1/s = 0.21892, then Sm(z,f )∈ Rn−1(λ,β), where

β= 2α+λ−1
λ+1

. (2.15)

Proof. Let f ∈ Rn(λ,α) and let it be given by (1.1). Then from (1.5) we have

Re

(
1+

∞∑
k=2

k
[
1+(k−1)λ

]nakzk−1

)
>α (2.16)

or

Re

(
1+ 2

λ+1

∞∑
k=2

k
[
1+(k−1)λ

]nakzk−1

)
>

2α+λ−1
λ+1

. (2.17)

Now

(
Dn−1Sm(z,f )

)′ = 1+
m∑
k=2

k
[
1+(k−1)λ

]n−1akzk−1

=
(

1+ 2
λ+1

∞∑
k=2

k
[
1+(k−1)λ

]nakzk−1

)

∗
(

1+ λ+1
2λ

m∑
k=2

zk−1

1/λ+(k−1)

)
, λ > 0.

(2.18)

From Lemma 2.9, we see that, for λ≥ 1/s = 0.21892,

Re
m∑
k=2

zk−1

1/λ+(k−1)
>− λ

λ+1
, (2.19)

hence

Re

(
1+ λ+1

2λ

m∑
k=2

zk−1

1/λ+(k−1)

)
>

1
2
, (2.20)

and the result follows by application of Lemma 2.1.
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Now we prove the following theorem.

Theorem 2.11. The set Rn(λ,α) is convex.

Proof. Let the functions

fi(z)= z+
∞∑
k=2

akizk (i= 1,2) (2.21)

be in the class Rn(λ,α). It is sufficient to show that the function h(z) = µ1f1(z)+
µ2f2(z), with µ1 and µ2 nonnegative and µ1+µ2 = 1, is in the class Rn(λ,α).

Since

h(z)= z+
∞∑
k=2

(
µ1ak1+µ2ak2

)
zk, (2.22)

then from (2.4) we have

(
Dnh(z)

)′ = 1+
∞∑
k=2

k
(
µ1ak1+µ2ak2

)[
1+(k−1)λ

]nzk−1, (2.23)

hence

Re
(
Dnh(z)

)′ = Re

(
1+µ1

∞∑
k=2

k
[
1+(k−1)λ

]nak1zk−1

)

+Re

(
1+µ2

∞∑
k=2

k
[
1+(k−1)λ

]nak2zk−1

)
.

(2.24)

Since f1,f2 ∈ Rn(λ,α), this implies that

Re

(
1+µi

∞∑
k=2

k
[
1+(k−1)λ

]nakizk−1

)
> 1+µi(α−1) (i= 1,2). (2.25)

Using (2.25) in (2.24), we obtain

Re
(
Dnh(z)

)′ > 1+α(µ1+µ2
)−(µ1+µ2

)
, (2.26)

and since µ1+µ2 = 1, the theorem is proved.

Hallenbeck [4] showed that

Ref ′(z) > α �⇒ Re
f(z)
z

> (2α−1)+2(1−α) log2. (2.27)

Using Theorem 2.3 and (2.27), we obtain the following theorem.

Theorem 2.12. Let f ∈ Rn(λ,α). Then

Re
Dnf(z)
z

> (2α−1)+2(1−α) log2. (2.28)

This result is sharp as can be seen by the function fx given by (3.1).
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3. Extreme points. The extreme points of the closed convex hull of R(α) were de-

termined by Hallenbeck [4]. We denote the closed convex hull of a family F by clcoF ,

and we make use of some results in [4] to determine the extreme points of Rn(λ,α).

Theorem 3.1. The extreme points of Rn(λ,α) are

fx(z)= z+2(1−α)
∞∑
k=2

xk−1zk

k
[
1+(k−1)λ

]n , |x| = 1, z ∈∆. (3.1)

Proof. Since Dn : f →Dnf is an isomorphism from Rn(λ,α) to R(α), it preserves

the extreme points and, in [4], it is shown that the extreme points of R(α) are

z+2(1−α)
∞∑
k=2

1
k
xk−1zk, |x| = 1, z ∈∆. (3.2)

Hence from (1.5), we see that the extreme points of clcoRn(λ,α) are given by (3.1).

Since the family Rn(λ,α) is convex (Theorem 2.6) and therefore equal to its convex hull,

we get the required result.

As consequences of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let f belong to Rn(λ,α) and let it be given by (1.1). Then

∣∣ak∣∣� 2(1−α)
k
[
1+(k−1)λ

]n , k � 2. (3.3)

This result is sharp as shown by the function fx(z) given by (3.1).

Corollary 3.3. If f ∈ Rn(λ,α), then

∣∣f(z)∣∣� r + ∞∑
k=2

2(1−α)
k
[
1+(k−1)λ

]n rk, |z| = r ,

∣∣f ′(z)∣∣� 1+
∞∑
k=2

2(1−α)[
1+(k−1)λ

]n rk−1, |z| = r .
(3.4)

This result is sharp as shown by the function fx(z) given by (3.1) at z = xr .

4. Convolution properties. Ruscheweyh and Sheil-Small [6] verified the Polya-

Schoenberg conjecture and its analogous results, namely, C∗C ⊂ C , C∗S� ⊂ S�, and

C ∗K ⊂ K, where C , S�, and K denote the classes of convex, starlike, and close-to-

convex univalent functions, respectively. In the following, we prove the analogue of the

Polya-Schoenberg conjecture for the class Rn(λ,α).

Theorem 4.1. Let f ∈ Rn(λ,α) and g ∈ C . Then f ∗g ∈ Rn(λ,α).
Proof. It is known that if g is convex univalent in ∆, then

Re
g(z)
z

>
1
2
. (4.1)
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Using convolution properties, we have

Re
(
Dn(f ∗g)(z))′ = Re

((
Dnf(z)

)′ ∗ g(z)
z

)
, (4.2)

and the result follows by application of Lemma 2.1.

Theorem 4.2. Let f and g belong to Rn(λ,α). Then f ∗g ∈ Rn(λ,β), where

β= λ(2α+1)+4α−1
2(λ+1)

� α. (4.3)

Proof. Let g(z)= z+∑∞
k=2bkzk ∈ Rn(λ,α), then

Re

(
1+

∞∑
k=2

k
[
1+(k−1)λ

]nbkzk−1

)
>α. (4.4)

Let c0 = 1 and

ck = λ+1
(k+1)[1+kλ]n , k � 1. (4.5)

Then {ck}∞k=0 is a convex null sequence. Hence, by Lemma 2.2, we have

Re

(
1+

∞∑
k=2

λ+1

k
[
1+(k−1)λ

]n zk−1

)
>

1
2
. (4.6)

Now we take the convolution of (4.4) and (4.6) and apply Lemma 2.1 to obtain

Re

(
1+(λ+1

) ∞∑
k=2

bkzk−1

)
>α (4.7)

or

Re
g(z)
z

= Re

(
1+

∞∑
k=2

bkzk−1

)
>
λ+α
λ+1

. (4.8)

Hence

Re
(
g(z)
z

− 2α+λ−1
2(λ+1)

)
>

1
2
. (4.9)

Since f ∈ Rn(λ,α), by applying Lemma 2.1, we obtain

Re
((
Dnf(z)

)′ ∗(g(z)
z

− 2α+λ−1
2(λ+1)

))
>α (4.10)

or

Re
((
Dnf(z)

)′ ∗ g(z)
z

)
>
λ(2α+1)+4α−1

2(λ+1)
= β, (4.11)

and by (4.2), the result follows.
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Remark 4.3. If we put λ = 0 in Theorem 4.2, we get the corresponding result for

functions in R(α), given by Ahuja [1].
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[8] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis—Fifth Romanian-Finnish
Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin,
1983, pp. 362–372.

[9] Z. Zhongzhu and S. Owa, Convolution properties of a class of bounded analytic functions,
Bull. Austral. Math. Soc. 45 (1992), no. 1, 9–23.

F. M. Al-Oboudi: Mathematics Department, Science Sections, Girls College of Education, Sitteen
Street, Malaz, Riyadh 11417, Saudi Arabia

E-mail address: rytelmi@gcpa.edu.sa

mailto:rytelmi@gcpa.edu.sa

