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OPTICAL LEPTONS
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We obtain optical vortices with classical orbital momentum � = 1 and spin j = ±1/2 as
exact solutions of a system of nonlinear Maxwell equations (NMEs). Two kinds of Kerr-type
media, namely, those with and without linear dispersion of the electric and the magnet
susceptibility, are investigated. The electric and magnetic fields are represented as sums of
circular and linear components. This allows us to reduce the NME to a set of nonlinear Dirac
equations (NDEs). The vortex solutions in the case of media with dispersion admit finite
energy, while the solutions in case of media without dispersion admit infinite energy. The
amplitude equations are obtained from equations of nonstationary optical and magnetic
response (dispersion). This includes also the optical pulses with time duration of order
of and less than the time of relaxation of the media (femtosecond pulses). The possible
generalization of NME to a higher number of optical components and a higher number of �
and j is discussed.
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1. Introduction. Nonlinear wave processes appeared in different sections of the con-

temporary physics: nonlinear optics, plasma physics, hydrodynamics, and nonlinear

field theory. Specific problems and methods of investigation exist in all of these sec-

tions. However, it is possible to find a lot of regularities, connected with the evolution of

the nonlinear localized waves, in spite of their different physical interpretation. In the

last five decades, there has been considerable interest in the nonlinear generalizations

of the quantum field equations [12, 15, 18] and in the possibility of obtaining exact

stationary solitary solutions of the field equations [3, 11]. As a rule, the nonlinearity

has been introduced in an ad hoc fashion in the Klein-Gordon equation and also for

all four spinor components of the Dirac equations. For the usual case of a cubic non-

linearity, exact localized solutions are not found. Our present work, reported in this

paper, shows that the optical analogy of nonlinear Dirac equations (NDEs) leads to a

nonlinear part in only the first coupled equation of NDEs. This result allows to solve

the NDE by separation of variables and to obtain solutions representing optical vor-

tices with classical momenta one and spin one half. The initial investigation of optical

vortices began with a scalar theory, based on the well-known 2D+1 paraxial nonlinear

Schrödinger equation (NSE) [19, 22]. The existence of optical vortices was predicted in

the self-focusing regime, but as it was shown in many papers, the solutions obtained are

modulationally unstable. In spite of this, various interactions (attraction, repulsion, and

fusion) have been observed. The scalar paraxial approximation is valid for slowly vary-

ing amplitudes of the electrical field in weakly nonlinear media. As it was pointed out in

[10, 17], this theory is not valid for very intense narrow pulses. The first generalization
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of the scalar paraxial theory of optical vortices is based on the investigation of the

so-called spatiotemporal scalar evolution equations [4, 9, 21]. For all cited theories, no

exact solutions have been found, but numerical and energy momentum techniques are

used. The existence of exact stable vortex solutions of these types of nonlinear equa-

tions was finally discovered with the vector generalization of the 3D+1 NSE [2]. It has

also been shown numerically that these vortices are stable at distances comparable to

those where localized solutions of the one-component scalar equation are self-focusing

rapidly. All of these exact vortices are a combination of linearly polarized components

and have spin � = 1. To extend the theory to vortices with spin j = 1/2, we return to

an analogy between the Maxwell and Dirac equations. As it is shown in [8], this analogy

is possible only if the electrical and magnet components are represented as a sum of

linear and circularly polarized components.

2. Maxwell’s equations: nonstationary linear and nonlinear polarization (disper-

sion). Consider Maxwell’s equations in the next two cases:

(1) a source-free medium with nonstationary linear and nonlinear electric polariza-

tion and nonstationary magnetic polarization (the case with dispersion),

(2) a source-free medium with stationary linear and nonlinear electric polarization

and stationary magnetic polarization (the case without dispersion).

For these cases, Maxwell’s equations can be written as

∇× �E =−1
c
∂�B
∂t
, ∇× �H = 1

c
∂ �D
∂t
, ∇· �D = 0,

∇· �B =∇· �H = 0, �D = �P lin+4π �Pn�,
(2.1)

with the corresponding linear magnetic polarization [5, 16]

�B = �H+4π �Mlin, (2.2)

where �E and �H are the electric and magnetic intensity fields, �D and �B are the electric

and magnetic induction fields, �P lin and �Pn� are the linear and nonlinear polarization of

the medium, respectively, and �Mlin is the linear magnetic polarization. The magnetic

polarization (magnetization) �Mlin is written as the product of the linear magnetic sus-

ceptibility η(1) and the magnetic field �H. The nonstationary linear electric polarization

can be written as

�P lin =
∫ t
−∞

(
δ(t−τ)+4πχ(1)(t−τ))�E(τ,x,y,z)dτ

=
∫ t
−∞
ε0(t−τ)�E(τ,x,y,z)dτ,

(2.3)

where χ(1) and ε0 are the linear electric susceptibility and the dielectric constant, re-

spectively. A similar expression describes the dependence of �B on �H in the case of
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nonstationary linear magnetic polarization [14]:

�B =
∫ t
−∞

(
δ(t−τ)+4πη(1)(t−τ)) �H(τ,x,y,z)dτ

=
∫ t
−∞
µ0(t−τ) �H(τ,x,y,z)dτ,

(2.4)

where η(1) and µ0 are the linear magnetic susceptibility and the magnetic permeability,

respectively. The magnetic susceptibility of the main part of the dielectrics ranges from

10−6 to 10−4 and usually decreases with the increase of the frequency. In the following,

we will study such media with nonstationary cubic nonlinear polarization, where the

nonlinear polarization in the case of one carrying frequency can be expressed as

�P(3)nlin =
3
4

∫ t
−∞

∫ t
−∞

∫ t
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
× �E(τ1,x,y,z

)�E∗(τ2,x,y,z
)�E(τ3,x,y,z

)
dτ1dτ2dτ3.

(2.5)

The causality requires the next conditions on the response functions:

ε(t−τ)= 0, χ(3)
(
t−τ1, t−τ2, t−τ3

)= 0, t−τ < 0, t−τi < 0, i= 1,2,3. (2.6)

That is why we can prolong the upper integral boundary to infinity to use the stan-

dard Fourier presentation [16]:

∫ t
−∞
ε0(τ−t)exp(iωτ)dτ =

∫ +∞
−∞
ε0(τ−t)exp(iωτ)dτ,

∫ t
−∞

∫ t
−∞

∫ t
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
dτ1dτ2dτ3

=
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
dτ1dτ2dτ3.

(2.7)

The spectral presentation of linear optical susceptibility ε̂0(ω) is connected to the

nonstationary optical response function by the next Fourier transform:

ε̂0(ω)exp(iωt)=
∫ +∞
−∞
ε0(t−τ)exp(iωτ)dτ. (2.8)

Similar expressions for the spectral presentation of the nonstationary magnetic re-

sponse µ̂0(ω),

µ̂0(ω)exp(−iωt)=
∫ +∞
−∞
µ0(t−τ)exp(−iωτ)dτ, (2.9)

and nonlinear optical susceptibility χ(3),

χ̂(3) exp(−iωt)=
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞
χ(3)

(
t−τ1, t−τ2, t−τ3

)
×exp

(
i
(
ω
(
τ1+τ2+τ3

)))
dτ1dτ2dτ3,

(2.10)
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can be written. It is important to point out here the remark of Akhmanov et al. in

[1], that such nonstationary representation applied to slowly varying amplitudes of

electrical and magnet fields is valid as well when the optical pulse duration of the

pulses t0 is greater than the characteristic response time of the media τ0 (t0 � τ0), as

when the time duration of the pulses is less than or equal to the time response of the

media (t0 ≤ τ0). We will discuss this possibility in the process of deriving the amplitude

equations.

3. Derivation of the amplitude equations. In this section, we derive the slowly vary-

ing amplitude approximation in the standard way, as it was done in [13, 16]. For the case

of Maxwell’s equations with linear and nonlinear dispersion (2.1) and (2.2), we define

the electric and magnetic fields amplitudes by the following relations:

�E(x,y,z,t)= �A(x,y,z,t)exp
(
i
(
ω0t−g(x,y,z)

))
,

�H(x,y,z,t)= �C(x,y,z,t)exp
(−i(ω0t−q(x,y,z)

))
,

(3.1)

where �A, �C , ω0, g, and q are the amplitudes of the electric and magnetic fields, the

optical frequency, and the real spatial phase functions, respectively. In the case of

monochromatic and quasimonochromatic fields, the Stokes parameters can be con-

structed from transverse components of the wave field [5, 7]. This leads to two-compo-

nent vector fields in a plane, transverse to the direction of propagation. For electromag-

netic fields with spectral bandwidth (our case), the two-dimensional coherency tensor

cannot be used and the Stokes parameters cannot be found directly. As it was shown by

Carozzi et al. in [7], using a high order of symmetry (SU(3)), in this case, six indepen-

dent Stokes parameters can be found. This corresponds to a three-component vector

field. Here, this case is investigated. The increase of the spectral bandwidth of the vec-

tor wave also increases the depolarization term (component, normal to the standard

Stokes coherent polarization plane).

We use the Fourier representation of the response functions (2.8), (2.9), and (2.10) and

of the amplitude functions �A (and �C) to obtain next expressions for the first derivatives

in time of the linear polarization, nonlinear polarization, and magnetic induction fields:

1
c
∂ �P lin(x,y,z,t)

∂t
= iexp

(
i
(
ω0t−g(x,y,z)

))

×
∫ +∞
−∞
ωε̂0(ω)
c

�A
(
x,y,z,ω−ω0

)
exp

(
i
(
ω−ω0

)
t
)
dω,

(3.2)

4π
c
∂ �Pnlin(x,y,z,t)

∂t
= iexp

(
i
(
ω0t−g(x,y,z)

))

×
∫ +∞
−∞

3πωχ̂(3)(ω)
c

∣∣ �A(x,y,z,ω−ω0
)∣∣2 �A

(
x,y,z,ω−ω0

)
×exp

(
i
(
ω−ω0

)
t
)
dω,

(3.3)



OPTICAL LEPTONS 1407

−1
c
∂�B(x,y,z,t)

∂t
= iexp

(
i
(
ω0t−q(x,y,z)

))

×
∫ +∞
−∞
ωµ̂0(ω)
c

�C
(
x,y,z,ω−ω0

)
exp

(−i(ω−ω0
)
t
)
dω.

(3.4)

At this point, we restrict the spectrum of the amplitude of electrical and magnet fields

by writing the wave vectors k1,nlin,2 in a Taylor series:

k1(ω)= ωε̂0(ω)
c

= k0
1

(
ω0

)+ ∂
(
k1
(
ω0

))
∂ω

(
ω−ω0

)+ 1
2
∂2
(
k1
(
ω0

))
∂ω2

(
ω−ω0

)2+···

= k0
1

(
ω0

)+ 1
v1

(
ω−ω0

)+ 1
2
k′′1
(
ω−ω0

)2+··· ,
(3.5)

knlin(ω)= 3πωχ̂(3)(ω)
c

= k0
nlin

(
ω0

)+ ∂
(
knlin

(
ω0

))
∂ω

(
ω−ω0

)+···
= k0

nlin

(
ω0

)+ 1
vnlin

(
ω−ω0

)+··· ,
(3.6)

k2(ω)= ωµ̂0(ω)
c

= k0
2

(
ω0

)+ ∂
(
k2
(
ω0

))
∂ω

(
ω−ω0

)+ 1
2
∂2
(
k2
(
ω0

))
∂ω2

(
ω−ω0

)2+···

= k0
2

(
ω0

)+ 1
v2

(
ω−ω0

)+ 1
2
k′′2
(
ω−ω0

)2+··· ,
(3.7)

where vi and k′′i , i = 1,nlin,2, have dimensions of group velocity, and nonlinear ad-

dition to the group velocity and dispersion, respectively. The nonlinear wave vector is

expressed as

k0
nlin =

3πω0χ̂(3)
(
ω0

)
c

= ω0ε̂0

c
3πχ̂(3)

(
ω0

)
ε̂0

= k1n2, (3.8)

where

n2
(
ω0

)= 3πχ̂(3)
(
ω0

)
ε̂0

(3.9)

is the nonlinear refractive index. It is important to note here that we do not use any

approximation of the response function. There is only one requirement of the spec-

tral presentations (2.10), (2.8), and (2.9) of the response functions: to admit first- and

second-order derivatives in respect to frequency (to be smooth functions). The restric-

tion is only in respect of the relation between the main frequencyω0 and time duration

of the envelope functions t0 determinate from the relations (3.5), (3.6), and (3.7) (condi-

tions for slowly varying amplitudes). Putting (3.5) in (3.2), (3.7) in (3.4), and (3.6) in (3.3),

and keeping in mind the expressions for time derivatives of the spectral presentation

of the amplitude functions, the first derivatives (3.2), (3.3), and (3.4) are presented in
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the form

1
c
∂ �P lin(x,y,z,t)

∂t
=
(
ik0

1
�A+ 1
v1

∂ �A
∂t
− ik

′′
1

2
∂2 �A
∂t2

)

×exp
(
i
(
ω0t−g(x,y,z)

))
,

4π
c
∂ �Pnlin(x,y,z,t)

∂t
=
(
ik0

1n2

∣∣ �A∣∣2 �A+ 1
vnlin

∂
∣∣ �A∣∣2 �A
∂t

)

×exp
(
i
(
ω0t−g(x,y,z)

))
,

−1
c
∂�B(x,y,z,t)

∂t
=
(
ik0

2
�C+ 1
v2

∂ �C
∂t
− ik

′′
2

2
∂2 �C
∂t2

)

×exp
(
i
(
ω0t−q(x,y,z)

))
.

(3.10)

Finally, from Maxwell’s equations (2.1) and (2.2), using (3.10) and using the fact that∇·
�D ≈∇· �E ≈ 0 [2], we obtain the next system of vector amplitude NMEs:

∇× �A= ik0
2
�C− 1
v2

∂ �C
∂t
− ik

′′
2

2
∂2 �C
∂t2

,

∇× �C = ik0
1
�A+ 1
v1

∂ �A
∂t
− ik

′′
1

2
∂2 �A
∂t2

+ik0
1n2

( �A· �A∗) �A+(n2

v1
+k1

∂n2

∂ω

)
∂
( �A· �A∗) �A
∂t

,

∇· �A= 0, ∇· �C = 0,
(3.11)

if the gradient of the spatial phase functions g and q satisfy the relations

∇g× �A= 0, ∇q× �C = 0. (3.12)

The phase functions whichever satisfy (3.12) are determinate in Section 10.

We investigate the case when our vector fields are presented as a sum of circular and

linear polarizing components:

�A= �Alin+ �Acir, �C = �Clin+ �Ccir. (3.13)

The nonlinear polarization admits different nonlinear refractive indexes in the case of

linear and circular polarization [6] (nlin
2 ≠ ncir

2 ). We will include this difference in our

rescaled equations, defining the rescaled dependant variables

�A=Alin
0
�A′lin+Acir

0
�A′cir, �C = C0

( �C′lin+ �C′cir

)
,

(
Alin

0

)2 = n
cir
2

nlin
2

(
Acir

0

)2, (3.14)

and the independent variables

x = r0x′, y = r0y ′, z = r0z′, t = t0t′. (3.15)
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In addition, the next constants are determinate:

αi = k0
i r0, βi = k

′′
i r0

2t20
, γ1 = r0k1ncir

2

∣∣A0

∣∣2,

γ2 =ncir
2

∣∣A0

∣∣2, γ3 = v1ncir
2

∣∣A0

∣∣2

c
,

δ= v1

v2
≤ 1, v1 ≈ r0

t0
, i= 1,2.

(3.16)

The NMEs (3.11) in rescaled variables are transformed into the following (the primes

have been omitted for clarity):

∇× �A= iα2 �C−δ∂
�C
∂t
−iβ2

∂2 �C
∂t2

,

∇× �C = iα1 �A+ ∂
�A
∂t
−iβ1

∂2 �A
∂t2

+iγ1
( �A· �A∗) �A+(γ2+γ3

)∂(( �A· �A∗) �A)
∂t

,

∇· �A= 0, ∇· �C = 0.

(3.17)

We consider the case of slowly varying amplitudes approximation when the nonlin-

ear constant is γ1 = 1. Then the constants in front of the last term on the right-hand

side are γ2 ≈ γ3 ≈ 10−2–10−3, while the constants αi have typical values α ≈ 102–103

(αi ∼ r0ki) and the dispersion constants βi have very small values β1 ∼ 10−5–10−6 for

picosecond and subpicosecond pulses in the transparency region of nonlinear optical

media. Neglecting the small dispersion terms βi 	 1 and the last nonlinear term for

which γ2 ≈ γ3 	 1, the NMEs system (3.17) can be rewritten as

∇× �A= iα2 �C−δ∂
�C
∂t
,

∇× �C = iα1 �A+ ∂
�A
∂t
+iγ1

( �A· �A∗) �A,
∇· �A= 0, ∇· �C = 0.

(3.18)

4. Dirac representation of NME. To solve the NMEs (3.18), we apply the method of

separation of variables. The slowly varying amplitude vectors of the electric field �A and

the magnetic field �C are represented as

�A(x,y,z,t)= �F(x,y,z)exp(i∆αt),

�C(x,y,z,t)= �G(x,y,z)exp(i∆αt).
(4.1)

Substituting these forms into the NMEs (3.18), we obtain

∇× �F =−iν2 �G,

∇× �G = iν1 �F+iγ1
(�F · �F∗)�F,

∇· �F = 0, ∇· �G = 0,

(4.2)

where ν1 = α1+∆α, ν2 = δ∆α−α2 > 0. In a Cartesian coordinate system, the vector

equations (4.2) are reduced to a scalar system of eight nonlinear wave equations. When
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the electric and magnetic fields are represented as a sum of a linear polarization com-

ponent and a circular polarized one, it is possible to reduce (4.2) to a system of four

nonlinear equations. Substituting [8]

ψ1 = iFl = iFz,
ψ2 = Fc = iFx−Fy,
ψ3 =Gl =−Gz,
ψ4 =Gc =−Gx−iGy

(4.3)

into the nonlinear system (4.2), we obtain a stationary system of NDEs:

(
∂
∂x

−i ∂
∂y

)
Ψ4+ ∂

∂z
Ψ3 =−i

(
ν1+γ1

2∑
i=1

∣∣Ψi∣∣2

)
Ψ1,

(
∂
∂x

+i ∂
∂y

)
Ψ3− ∂

∂z
Ψ4 =−i

(
ν1+γ1

2∑
i=1

∣∣Ψi∣∣2

)
Ψ2,

(
∂
∂x

−i ∂
∂y

)
Ψ2+ ∂

∂z
Ψ1 =−iν2Ψ3,(

∂
∂x

+i ∂
∂y

)
Ψ1− ∂

∂z
Ψ2 =−iν2Ψ4.

(4.4)

This substitution allows to reduce the system of eight equations (4.2) to a system of

four scalar complex equations (4.4). System (4.4) is the optical analog of the NDEs. Note

that the optical NDEs are significantly different from the NDEs in the field theory. The

nonlinear part appears only in the first two coupled equations of the system.

5. Vortex solutions with orbital momentum l= 1 and spin j = 1/2. The symmetries

of the NDEs (4.4) are used to obtain exact vortex solutions. The NDEs (4.4) have both

spherical and spinor symmetries only in the case where the nonlinear part does not

manifest the angular dependence on the radial variable
∑2
i=1 |Ψi(r ,θ,ϕ)|2 = F(r). This

type of solutions can be found using the following technique. Using Pauli matrices, we

write the NDEs system (4.4) as

(
�σ · �P)φ=−i

(
ν1+γ1

2∑
i=1

∣∣ηi∣∣2

)
η, (5.1)

(
�σ · �P)η=−iν2φ, (5.2)

where

�σ =
[(

0 1

1 0

)
,
(

0 −i
i 0

)(
1 0

0 −1

)]
(5.3)

are the Pauli matrices, �P = (∂/∂x,∂/∂y,∂/∂z) is the differential operator, and

η=
(
Ψ1

Ψ2

)
, φ=

(
Ψ3

Ψ4

)
(5.4)
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are the corresponding spinors. After substituting (5.2) into (5.1), we obtain

(
�σ · �P)(�σ · �P)η=−ν2

(
ν1+γ1

2∑
i=1

∣∣ηi∣∣2

)
η. (5.5)

When there is no external electric or magnetic field, the operator on the left-hand side

of (5.5) is the Laplacian operator ∆,

P2 = (�σ · �P)(�σ · �P)=∆. (5.6)

From (5.5) and (5.6) we obtain

ν2ν1η+ν2γ1

2∑
i=1

∣∣ηi∣∣2η+∆η= 0. (5.7)

In the case of spherical representation of the spinor equations (5.5), there are two

possibilities, l= 0 and l= 1, that will permit only a radial dependence of the nonlinear

part:

2∑
i=1

∣∣ηi(r ,θ,ϕ)∣∣2 = F(r). (5.8)

For the l= 0 case, equations (5.7) are transformed to equations with radial parts:

ν2ν1η+ν2γ1

2∑
i=1

∣∣ηi∣∣2η+ ∂
2η
∂r 2

+ 2
r
∂η
∂r

= 0. (5.9)

The scalar variant of these equations has been investigated in many papers, but exact

localized solutions have not been found. In the case l = 1, we look for spinors in the

next two forms:

η=
(

η̃(r)cos(θ)
η̃(r)sin(θ)exp(iϕ)

)
, η=

(
η̃(r)sin(θ)exp(−iϕ)

−η̃(r)cos(θ)

)
. (5.10)

As it will be seen later, these correspond to two opposite directions of the intrinsic

orbital momentum j =±1/2 (opposite charges). After substituting solutions (5.10) into

(5.7), the following equation describing the radial dependence is obtained:

ν2ν1η̃+ν2γ1

∣∣η̃∣∣2η̃+ ∂
2η̃
∂r 2

+ 2
r
∂η̃
∂r
− 2
r 2
η̃= 0. (5.11)

The angular parts are the standard spherical harmonics with l= 1. Using the fact that

∣∣∣∣exp
(
i
√
ν1ν2r

)
r

∣∣∣∣=
√
ν1ν2

r
, (5.12)

it is straightforward to show that the radial part (5.11) admits exact vortex de Broglie

soliton solutions [3] in the form

η̃(r)=
√

2
i

exp
(
i
√
ν1ν2r

)
r

or η̃(r)=
√

2
i

sin
(√
ν1ν2r

)
r

(5.13)
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if ν2γ1 = 1. The complete solutions for these two cases are written as

η=




√
2
i

exp
(
i
√
ν1ν2r

)
r

cos(θ)
√

2
i

exp
(
i
√
ν1ν2r

)
r

sin(θ)exp(iϕ)


 , (5.14)

φ=



√

2
iν2

(
i
√
ν1ν2 exp

(
i
√
ν1ν2r

)
r

+ expi
(√
ν1ν2r

)
r 2

)

0


 ; (5.15)

η=



√

2
i

exp
(
i
√
ν1ν2r

)
r

sin(θ)exp−(iϕ)
−√2
i

exp
(
i
√
ν1ν2r

)
r

cos(θ)


 , (5.16)

φ=




0

−√2
iν2

(
i
√
ν1ν2 exp

(
i
√
ν1ν2r

)
r

+ expi
(√
ν1ν2r

)
r 2

)

 . (5.17)

There is another more direct way for separating the variables of the spinor equations

(5.1) and (5.2). To illustrate this, we represent the NDEs (4.4) in spherical variables:

exp(−iϕ)
(

sinθ
∂
∂r
+ cosθ

r
∂
∂θ
− i
r sinθ

∂
∂ϕ

)
Ψ4+

(
cosθ

∂
∂r
− sinθ

r
∂
∂θ

)
Ψ3

=−i
(
ν1+γ1

2∑
i=1

∣∣Ψi∣∣2

)
Ψ1,

exp(iϕ)
(

sinθ
∂
∂r
+ cosθ

r
∂
∂θ
+ i
r sinθ

∂
∂ϕ

)
Ψ3−

(
cosθ

∂
∂r
− sinθ

r
∂
∂θ

)
Ψ4

=−i
(
ν1+γ1

2∑
i=1

∣∣Ψi∣∣2

)
Ψ2,

exp(−iϕ)
(

sinθ
∂
∂r
+ cosθ

r
∂
∂θ
− i
r sinθ

∂
∂ϕ

)
Ψ2+

(
cosθ

∂
∂r
− sinθ

r
∂
∂θ

)
Ψ1

=−iν2Ψ3,

exp(iϕ)
(

sinθ
∂
∂r
+ cosθ

r
∂
∂θ
+ i
r sinθ

∂
∂ϕ

)
Ψ1−

(
cosθ

∂
∂r
− sinθ

r
∂
∂θ

)
Ψ2

=−iν2Ψ4.

(5.18)

We make the following two ansatzes for solutions to the system of nonlinear equations

(5.18):

Ψ1 = a(r)cos(θ), Ψ2 = a(r)sin(θ)eiϕ, Ψ3 =−ib(r), Ψ4 = 0; (5.19)

Ψ1 = a(r)sin(θ)e−iϕ, Ψ2 =−a(r)cos(θ), Ψ3 = 0, Ψ4 =−ib(r). (5.20)
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Put (5.19) or (5.20) in (5.18). We separate the variables. The following system of equa-

tions describing the radial dependence of the amplitudes is obtained:

∂a(r)
∂r

+ 2
r
a(r)=−ν2b(r),

∂b(r)
∂r

= ν1a(r)+γ1

∣∣a(r)∣∣2a(r).
(5.21)

In the system of (5.21), the nonlinearity appears only in the radial part, while for the

angular part, we have standard spherical spinors with spin j = ±1. Solving (5.21), we

straightforwardly show that when ν2γ = 1, these equations admit the localized de

Broglie solitons of (5.14).

6. Hamiltonian representation of the NDE. First integrals for vortex solutions with

spin j =±1/2. It is not difficult to show that for the NDEs system of (4.4), a Hamiltonian

of the form

H = (�σ · �P)+γ 2∑
i=1

∣∣Ψi∣∣2
(6.1)

can be written. Using this, (4.4) can be rewritten in the form

HΨ = εΨ , (6.2)

where γ = (γ1,γ1,0,0) and ε = (−iν1,−iν1,−iν2,−iν2) is the energy operator. Here,

we investigate the case where the nonlinear part of the equation is represented as a

number of spinors with a scalar sum that depends only on the radial component:

2∑
i=1

∣∣Ψi(r ,θ,ϕ)∣∣2 = F(r). (6.3)

We also introduce here the well-known orbital momentum operator �L, intrinsic orbital

(spin) momentum �S, and the full momentum �J, as well as

�L= �r × �P, 1
2
�S = 1

2

(
�σ 0

0 �σ

)
, �J = �L+ 1

2
�S. (6.4)

It is straightforward to show that the Hamiltonian (6.1) of (6.2) commutes with the

operators �J 2 and Jz (the z-projections must be x or y). Using these symmetries and

the condition that the nonlinearity is of Kerr type, we can solve the NDE (6.2) by a

separation-of-variables technique. We look for solutions in the form

Ψ1 = a(r)ΩjlM , Ψ2 = a(r)ΩjlM , Ψ3 = ib(r)Ωjl′M, Ψ4 = ib(r)Ωjl′M, (6.5)

where Ωjlm is the spherical spinor, l+ l′ = 1, and a(r) and b(r) are arbitrary radial

functions. Using the symmetries of (6.2) and the fact that the nonlinear parts depend



1414 LUBOMIR M. KOVACHEV

on r , we separate variables and obtain the following system of equations for the radial

part:

∂a(r)
∂r

+ 1+χ
r
a(r)=−ν2b(r),

∂b(r)
∂r

+ 1−χ
r
b(r)= ν1a(r)+γ

∣∣a(r)∣∣2a(r),
(6.6)

where

χ = l(l+1)−j(j+1)− 1
4
. (6.7)

Excluding b(r) from system (6.6), we obtain the next equation for a(r):

ν1ν2a(r)+ ∂
2a
∂r 2

+ 2
r
∂a
∂r
− (1+χ)χ

r 2
a+ν2γ|a|2a= 0. (6.8)

Formally, this equation admits exact “de Broglie” soliton solutions for an arbitrary

number of χ. But, as we remember, our solutions are limited by condition (6.3) with the

nonlinear part depending only on the radial components. Condition (6.3) for a number

χ ≥ 1 can be fulfilled also for a higher number of fields on different frequencies. This

case includes also the parametric processes. The case of one carrying frequencies cor-

responds to localized solutions with χ = 1, angular components l= 1, and j =±1/2. In

this case, system (6.6) becomes

∂a(r)
∂r

+ 2
r
a(r)=−ν2b(r),

∂b(r)
∂r

= ν1a(r)+γ
∣∣a(r)∣∣2a(r).

(6.9)

As shown above, this system has exact radial solutions of the form (5.13), (5.14), and

(5.15).

7. Experimental conditions. There are some differences between the nonlinear con-

ditions for localized solutions of the vector nonlinear Schrodinger equation (VNLS) and

the localized conditions for the nonlinear Maxwell equations (NMEs). The nonlinear

parameter for the VNLS is written [2] as

γvnls = k2
0r

2
0n2

∣∣A0

∣∣2 = 1. (7.1)

For localized solutions in optical region, the constant α2 ranges between

α2 = k2
0r

2
0 ≈ 104–106, (7.2)

which corresponds to a required nonlinear refractive index change of the order of

n2

∣∣A0

∣∣2 ≈ 10−4–10−6. (7.3)



OPTICAL LEPTONS 1415

On the other hand, the nonlinear condition for localized solutions of the normalized

NDEs (3.18) is

γNDE = ν2γ1 ≈
(
δ∆α−α2

)
k1r0n2

∣∣A0

∣∣2 = 1. (7.4)

For the typical value of the constant ν2 ≈ 1, the next required nonlinear refractive index

change appears:

n2

∣∣A0

∣∣2 ≈ 10−2–10−3. (7.5)

Another difference between these two cases is that the solutions of the VNLS are

comprised of linearly polarized components and that the dispersion of the nonlinear

medium plays an important role. This leads to the fact that vortex solutions of the VNLS

may be observed only in special dispersion regions of nonlinear media. The vortices of

the NDEs are a combination of linear and circular polarization components, do not have

this marked dependence on the dispersion, and may be observed in the transparency

region of nonlinear media.

8. Vortex solutions in nonlinear Kerr-type media without dispersion. The case

without linear dispersion of the electrical and magnetic susceptibility will correspond

to χ(1) = const and η(1) = const. We suppose now that the amplitude functions do not

depend on time and will look for 3D+1 monochromatic electric and magnet fields of

the kind

�E(x,y,z,t)= �M(x,y,z)exp
(
iω0t

)
,

�H(x,y,z,t)= �N(x,y,z)exp
(−iω0t

)
,

(8.1)

where �M , �N, and ω0 are the amplitudes of the electric and magnetic fields and the

optical frequency, respectively.

Substituting the relations (8.1), one obtains the next amplitude equations in the case

of dispersionless media:

∇× �M = iα2 �N,

∇× �N = iα1 �M+γ
( �M · �M∗) �M,

∇· �M = 0, ∇· �N = 0.

(8.2)

Again, the electric and magnetic fields are represented as a sum of a linear polariza-

tion component and a circular polarized one. Substituting

ψ1 = iMl = iMz,
ψ2 =Mc = iMx−My,
ψ3 =Nl =−iNz,
ψ4 =Nc =−Nx−iNy

(8.3)
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into the nonlinear system (8.2), we obtain the same kind of stationary system of NDEs

as (4.4),

(
∂
∂x

−i ∂
∂y

)
Ψ4+ ∂

∂z
Ψ3 =−i

(
κ1+ζ

2∑
i=1

∣∣Ψi∣∣2

)
Ψ1,

(
∂
∂x

+i ∂
∂y

)
Ψ3− ∂

∂z
Ψ4 =−i

(
κ1+ζ

2∑
i=1

∣∣Ψi∣∣2

)
Ψ2,

(
∂
∂x

−i ∂
∂y

)
Ψ2+ ∂

∂z
Ψ1 =−iκ2Ψ3,

(
∂
∂x

+i ∂
∂y

)
Ψ1− ∂

∂z
Ψ2 =−iκ2Ψ4,

(8.4)

but with different coefficients κ1 =ω0ε0/c, κ2 =ω0µ0/c, and ζ = 4πω0χ(3)/c. Natu-

rally, the NDEs (8.4) admit the same kind of solutions (5.14) and (5.15).

9. Conditions for finiteness of the energy of the vortex solutions. In this section,

we will investigate the localized energy in both cases, with and without linear disper-

sion. These correspond to two kinds of optical vortices, with and without spectral

bandwidth. In dielectric media without dispersion, the expression for the linear part

of energy density is

Wlin = 1
8π

(
ε
∣∣�E∣∣2+µ∣∣ �H∣∣2

)
, (9.1)

where ε and µ are constants. Substituting the vortex solutions (5.14) and (5.15) in (9.1)

and integrating over 3D space, one obtains that quasimonochromatic vortices in dielec-

tric media without dispersion admit infinite energy. Now, we come to the case of slowly

varying amplitude approximation and calculation of energy of the vortex solutions of

media with linear electric and magnet dispersion. To prove the finiteness of energy of

the vortex solutions (5.14) and (5.15), we start with the equations for averaged-in-time

balance of energy density of electrical and magnet fields [14]:

〈
∂W
∂t

�
= 1

16π

(
�E · ∂ �D

∗

∂t
+ �E∗ · ∂ �D

∂t
+ �B · ∂�B

∗

∂t
+ �B∗ · ∂�B

∂t

)
, (9.2)

where �D = �Plin+4π �Pnlin is a sum of the linear induction and the nonlinear induction

of the electrical field. The calculations of the averaged energy of the optical waves in

dispersive media are worked out considering the first order of slowly varying amplitude

approximation of electrical induction (the same as in the NDEs). The result comes to

the old result of Brillouin (1921) for energy density of electrical field:

〈
Wlin

〉= 1
8π

(
∂
(
ωε̂0

)
∂ω

∣∣ �A∣∣2+ ∂
(
ωµ̂0

)
∂ω

∣∣ �C∣∣2
)
. (9.3)

The condition of electric constant

ε̂0 > 0,
∂
(
ωε̂0

)
∂ω

> 0 (9.4)
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is fulfilled in most of the dielectrics. The conditions of the magnetic constant can be

present in two cases. In the first one is

µ̂0 > 0,
∂
(
ωµ̂0

)
∂ω

> 0. (9.5)

This condition corresponds to the case when there are not any magnet relaxation pro-

cesses included. To include these processes is possible only for ultrashort optical pulses

with time duration of dimension of local structure of one paramagnetic medium. The

real part of magnet susceptibility in this case is a symmetric function in respect to

the paramagnetic resonance, and the derivative in respect to the frequency is always

negative,

µ̂0 > 0,
∂µ̂0(ω)
∂ω

< 0. (9.6)

Under appropriate conditions, this leads to

µ̂0 > 0,
∂
(
ωµ̂0(ω)

)
∂ω

< 0. (9.7)

We can find spectral region and dispersion parameters when the next condition is

satisfied:

∂
(
ωµ̂0

)
∂ω

=−∂
(
ωε̂0

)
∂ω

. (9.8)

Thus, the linear (infinity) part of energy density is zero. The nonlinear part of aver-

aged energy density is expressed in [20] and for the vortex solutions (5.14) and (5.15)

becomes

〈
Wnlin

〉=n2|Ψ |2�
(
Ψ2)+ω0

∂n2

∂ω0
|Ψ |2�(Ψ2). (9.9)

These results give the conditions for the finiteness of energy of the vortices. Integrating

Wnlin in the 3D space, we obtain a finite value proportional to the main frequency ω0.

10. Spatial phase functions, Poynting vector, and flow of energy. The kind of the

phase functions which satisfy (3.12) is determinate for vortex solutions (5.19) with

spin j = 1/2. Using again the relations between the spinors of NDEs and the amplitude

functions (4.3), we have

Fx = ψ2−ψ∗2
2i

, Fy = ψ2+ψ∗2
2

, Fz = ψ1−ψ∗1
2i

,

Gx =−ψ4+ψ∗4
2

, Gy =−ψ4−ψ∗4
2i

, Gz =−ψ3−ψ∗3
2i

.
(10.1)
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Substituting the solutions (5.19) with spin j = 1/2 in (10.1) for the real radial solutions

of kind sin(αr)/r , we obtain

Fx =−sin(αr)
r

x
r
, Fy =−sin(αr)

r
y
r
, Fz =−sin(αr)

r
z
r
, (10.2)

Gx = 0, Gy = 0, Gz = αcos(αr)
r

+ sin(αr)
r 2

. (10.3)

We rewrite again the conditions for the spatial phase functions

∇g× �F = 0, ∇q× �G = 0. (10.4)

These relations for solutions of kind (10.2) and (10.3) are satisfied only when

g = k0r or g = k0f(r),

q = k0r , q = k0z, or q = f(z), (10.5)

where k0 is the carrying wave number. The spatial phase functions of kind g = k0r and

q = k0z correspond to spectral limited pulses which satisfy additional relations


k
r = const. (10.6)

The spatial phase functions of kind g = k0f(r) and q = k0f(z) correspond to phase

modulated pulses and for them the relations (10.6) are not satisfied. The Poynting vector

can be expressed by the amplitude functions of the electrical and magnet fields:

�S = �E(x,y,z,t)× �H(x,y,z,t)
= exp

(
i
(
W(t)−K(r)))�F(x,y,z,t)× �G(x,y,z,t), (10.7)

whereW and K are scalar phase functions. Substituting the solutions with spin j = 1/2
in the above expression, we find that

�S = exp
(
i
(
W(t)−K(r)))(−a(r)b(r)y

r
;a(r)b(r)

x
r

;0
)
. (10.8)

We see that the Poynting vector �S is a one-circulation vector for solutions with spin

j = 1/2 and its divergency is zero,

∇· �S = 0. (10.9)

The relation (10.9) determines that the energy flow through arbitrary closed surface

around our vortex solutions with spin j = 1/2 is zero. The relation (10.8) shows that

flow of energy of our solutions circulates inx,y plane. Now, we can generalize the above

results for solutions with spin j = 1/2: the vortex solutions with spin j = 1/2 without

external fields are immovable and electromagnetic energy oscillates in x,y plane. The

electrical field oscillates spherically, in “r” direction, while the magnet field oscillates

in z direction. In the same way was calculated the Poynting vector for solutions with

spin j = −1/2. For them, we obtain that ∇ · �S ≠ 0 and we expect that they are not

stable. One exact investigation of stability request investigation is also the perturbation
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Figure 10.1. Radial distribution of the envelop solutions F(r) of NDEs (dotted
line) and the corresponding real electrical field E(r) (solid line). The real field
tends to zero in the origin.

of the Poynting theorem and will be discussed in a next paper. We will discuss here

more accurately the connection between the spatial shapes of the envelop functions

for electrical (10.2) and magnetic (10.3) fields with the spatial shapes of the real (sin)

part of the electric and magnetic fields. Investigating the shape of the envelope function

of magnetic field (10.3), it is straightforward to show that the solutions tend to zero in

infinity and are indeterminate in the origin.

It is a well-known fact that the envelop solutions (10.2) and (10.3) are only imaginary

functions around the real electrical and magnetic fields which are presented in this

case by

Ei = Fi sin
(
k0r

)
, Hz =Gz sin

(
k0r

)
, (10.10)

where k0 is the normalized carrying wave number, i= x,y,z, and

k0 �α. (10.11)

Concerning the real fields (10.10) in the origin and infinity, it can be seen that they

admit finite value in the origin and tend to zero at infinity. Practically, the envelop

approximation gives unique possibility to study envelopes, which are indefinite in one

point or on a line. This is shown on Figures 10.1 and 10.2 where the shapes of radial part

of electric envelopes Fi and the envelop of magnetic field Gz (dotted line) are plotted

together with the real electrical Ei and magnetic field Hz (solid line). In Figure 10.1 , the

radial part of the envelop solutions of NDEs is presented by

F(r)= sin
((
v1v1

)1/2 ·r)
r

, (10.12)
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Figure 10.2. Radial distribution of the envelop solutions G(r) of NDEs (dot-
ted line) and the corresponding real magnetic field H(r) (solid line). The real
field tends to finite value in the origin.

and the electrical field is presented by

E(r)= F(r)·sin
(
k0 ·r

)
,

k0 = 1000, v1v2 = 100.
(10.13)

As for Figure 10.2, the envelop solutions of NDEs for the magnetic field are presented

by

G(r)=
(
v1v2

)1/2
cos

((
v1v2

)1/2r
)

r
+ sin

((
v1v2

)1/2r
)

r
, (10.14)

while the magnetic field is presented by

H(r)=G(r)∗ sin
(
k0r

)
. (10.15)

It is clearly seen that the amplitude functions are only imaginary functions around the

real field with 2π -accuracy. The corresponding real fields are well determined and have

no singularities at the origin and at infinity it tends to zero.

If we multiply the radial functions of the electrical field Ei with the corresponding

angular spherical harmonics, we see that the complete solution for the electrical fields

is determined in the origin also. We use the following normalized wave vectors α= 100,

k0 = 1000 for electrical field and k0 = 100, k1 = 50 for the magnetic field, and in this

way we keep the correlation between these and the real wave vectors.

Such kinds of problems, with indefiniteness of the functions in the origin, arise also

in the field theory. When solutions of the linear Dirac and Schrödinger equations are

products of the spherically symmetric radial Bessel functions and the usual angular

spherical functions, the solution is indefinite in the zero. However, in the theory of

the envelopes, this problem can be solved by multiplying the envelopes by periodic

function.
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11. Conclusion. In this paper, we derive a set of amplitude nonlinear Maxwell equa-

tions (NMEs) for nonlinear optical media with and without dispersion of the electric

and magnetic susceptibility. We have shown that in cases of linear and circularly po-

larized components of the electric and magnetic fields, the NMEs reduce to the system

of Nonlinear Dirac equations (NDEs). The equations are represented in a spinor form.

Using the method of separation of variables, exact vortex solutions for both cases have

been obtained. The optical vortex solutions admit classical orbital momentum l = 1

and classical own momentum j = ±1/2. Here, I would like to explain more about the

differences between solutions obtained by separation of variables of the usual linear

Dirac equation with potential depending only on “r” (e.g., hydrogen atom) and solu-

tions of the NDEs. In the case of linear Dirac equations with potential, a higher order

of radial spherical Bessel functions corresponds to higher-order spherical spinors. On

the other hand, for NDEs, a higher number of field components and higher value of

localized energy correspond to a higher order of spherical spinors (l= 1,2, . . . ). For all

radial solutions of NDEs, the zero spherical radial Bessel function (sinαr)/r is valid.

The optical vortices in media without dispersion admit infinite energy integral. The

energy integral of the vortex solutions is finite only in some special cases of paramag-

netic media with suitable conditions on linear electric and magnet dispersion. Using the

Poynting vector for solutions with spin j = 1/2, we find that the energy flow through

arbitrary closed surface around our vortex solutions is zero and the localized energy

of our solutions circulates in x,y plane. Another important result is that the vortex

solutions with spin j = 1/2 without external fields are immovable. The electrical field

in the vortices oscillates spherically, while the magnet field oscillates in z direction.

The initial investigations on stability of these solutions show the following: while the

vortices with spin j = 1/2 are stable, the vortices with opposite spin (charge) j =−1/2
are not.

All of the above results will be discussed later in relation to nonlinear field theory.
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