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We derive explicit stability conditions for time-dependent difference equations with several
delays in Cn (the set of n complex vectors) and estimates for the size of the solutions. The
growth rates obtained here are not necessarily decay rates.
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1. Introduction. Stability of systems of difference equations with delays has been

discussed by many authors, for example, see Gil’ and Cheng [6], Zhang [11], Elaydi and

Zhang [5], Pituk [10], Agarwal [1], and the references therein.

In the stability literature, one can find two major trends; stability using the first

approximation Lyapunov method and the direct Lyapunov functional method. For this

latter trend, see Zhang and Chen [12], Crisci et al. [4], Lakshmikantham and Trigiante

[7], and Agarwal and Wong [2]. By this method many very strong results are obtained.

But finding Lyapunov functionals is usually a difficult task.

In this note, we consider a class of perturbed difference equations with several delays

and, by means of a Gronwall inequality and the recent estimates for the powers Ak of a

constant matrixA established in Corduneanu [3], we derive explicit stability conditions.

Further, we suppose that the unperturbed linear difference equations have a bounded

growth. Actually, this work is an extension of Medina [8] to time-dependent difference

equations with several delays.

2. Preliminary facts. Let Cn be the set of n complex vectors endowed with a norm

‖·‖. Let Ak (k= 1,2, . . .) be n×n-complex matrices.

Consider in Cn the equation

uj+1 =Ajuj+fj
(
uj−σ1 , . . . ,uj−σp

)
, j = 0,1, . . . , (2.1)

where p ≥ 1, σ1,σ2, . . . ,σp are nonnegative integers such that 0 = σ1 < σ2 < ··· <
σp,σi ∈ Z+, and Z+ is the set of nonnegative integers, fj , j = 0,1,2, . . . , maps Cnp

into Cn.

We will consider (2.1) subject to the initial conditions

uj = τj, j =−σp,−σp+1, . . . ,0. (2.2)

http://dx.doi.org/10.1155/S016117120430801X
http://dx.doi.org/10.1155/S016117120430801X
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


1448 RIGOBERTO MEDINA

It is assumed that there are nonnegative sequences ql (l= 1,2,3, . . . ,p) such that

∥∥fj(uj−σ1 , . . . ,uj−σp
)∥∥≤ p∑

l=1

ql(j)
∥∥uj−σl∥∥m, j = 0,1, . . . , (2.3)

and m is a fixed positive real number.

Unlike differential equations, discrete equations with the given initial conditions al-

ways have a solution.

In order to establish our main result, we will use the following discrete Gronwall-type

inequality.

Theorem 2.1 [9]. Assume that

z(k)≤ C+
k−1∑
i=0

p∑
j=1

aj(i)z
(
i−σj

)m, k∈ Z+, (2.4)

where m > 0, 0 = σ1 < σ2 < ··· < σp, p ≥ 1, C > 0, aj(k) ≥ 0 for j = 1,2, . . . ,p and

k∈ Z+, and z(k)≤ C for k=−σp,−σp+1, . . . ,0.
(a) If 0<m< 1 and C ≤ 1, then

z(k)≤ Cmk
k−1∏
i=0

[
1+

p∑
j=1

aj(i)
]
, k∈ Z+. (2.5)

(b) If m= 1, then

z(k)≤ C
k−1∏
i=0

[
1+

p∑
j=1

aj(i)
]
, k∈ Z+. (2.6)

(c) If m> 1, then

z(k)≤ C{
1−(m−1)Cm−1 ·∑k−1

i=0

∑p
j=1aj(i)

}1/(m−1) , k∈ Z+, (2.7)

provided that

1−(m−1)Cm−1
k−1∑
i=0

p∑
j=1

aj(i) > 0, k∈ Z+. (2.8)

Assumption 2.2. It is assumed that the unperturbed linear difference equation

uj+1 =Ajuj, j = 0,1, . . . , (2.9)

has a bounded growth, that is, there exist real constants γ ≥ 1 and α> 0 such that

∥∥Φ(j,i)∥∥≤ γαj−i, ∀j ≥ i≥ 0, (2.10)

where Φ(k,l)=∏k−1
j=l Aj , k > l, is the fundamental matrix solution of (2.9).
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3. Main results. Now, we are in a position to establish our main results pertaining

to the bounded growth and the zero convergence properties of the solutions of (2.1)

subject to the conditions (2.2).

Theorem 3.1. Assume that conditions (2.3) and (2.10) hold. In addition, assume that

∞∑
i=0

p∑
l=1

α(m−1)i−mσlql(i) <∞. (3.1)

Then,

(a) if 0<m ≤ 1 and C = γ‖τ0‖ ≤ 1, every solution uj of (2.1), (2.2), such that ‖uj‖ ≤
Cαj for j =−σp,−σp+1, . . . ,0, satisfies

∥∥uj∥∥≤αj(γ∥∥τ0

∥∥)mj exp

(
γ

∞∑
i=0

p∑
l=1

βl(i)
)
, j = 1,2, . . . , (3.2)

where βl(i)=α(m−1)i−mσl−1ql(i),
(b) if m> 1 and

∥∥τ0

∥∥≤ { η
(m−1)λγm

}1/(m−1)
, λ=

∞∑
i=0

p∑
l=1

βl(i), (3.3)

for some η∈ (0,1) and C = γ‖τ0‖, every solution uj of (2.1), (2.2) such that ‖uj‖ ≤ Cαj
for j =−σp,−σp+1, . . . ,0, satisfies

∥∥uj∥∥≤ γαj

(1−η)1/(m−1)

∥∥τ0

∥∥, j = 0,1,2, . . . . (3.4)

Proof. By inductive arguments, we can prove that the unique solution {uj}∞j=−σp
of (2.1), subject to given initial values u0 = τ0, u−1, . . . ,u−σp , satisfies

uj = Φ(j,0)τ0+
j−1∑
i=0

Φ(j,i+1)fi
(
u(i−σ1), . . . ,u(i−σp)

)
, j ∈ Z+. (3.5)

Hence, by conditions (2.3) and (2.10),

∥∥uj∥∥≤ γαj∥∥τ0

∥∥+γ j−1∑
i=0

p∑
l=1

αj−i−1ql(i)
∥∥ui−σl∥∥m. (3.6)

This yields

α−j
∥∥uj∥∥≤ γ∥∥τ0

∥∥+γ j−1∑
i=0

p∑
l=1

α−i−1ql(i)
∥∥ui−σl∥∥m. (3.7)

By setting z(j)=α−j‖uj‖ and βl(i)=α(m−1)i−mσl−1ql(i), it follows that

z(j)≤ C+γ
p∑
l=1

j−1∑
i=0

βl(i)zm
(
i−σl

)
, (3.8)

where C = γ‖τ0‖ and z(j)≤ C for j =−σp,−σp+1, . . . ,0.
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Case 1. If 0<m≤ 1 and C ≤ 1, then by Theorem 2.1(a) it follows that

z(j)≤ Cmj
j−1∏
i=0

[
1+γ

p∑
l=1

βl(i)
]
≤ Cmj exp

(
γ

∞∑
i=0

p∑
l=1

βl(i)
)
, (3.9)

and the proof of Case 1 is complete.

Case 2. If m> 1, proceeding in a similar way to Case 1, we arrive at the inequality

(3.8). Hence, by Theorem 2.1(b), it follows that

z(j)≤ C{
1−(m−1)γCm−1

∑j−1
i=0

∑p
l=1βl(i)

}1/(m−1) , (3.10)

provided that

1−(m−1)γCm−1
j−1∑
i=0

p∑
l=1

βl(i) > 0. (3.11)

Let η∈ (0,1) be an arbitrary number. We will prove that the condition (3.11) holds for

all τ0 satisfying

∥∥τ0

∥∥≤ { η
(m−1)λγm

}1/(m−1)
=: R, (3.12)

where λ=∑∞
i=0

∑p
l=1βl(i) <∞.

Indeed, for all such a τ0, we have

(m−1)γm
∥∥τ0

∥∥m−1
j−1∑
i=0

p∑
l=1

βl(i)≤ (m−1)γm
∥∥τ0

∥∥m−1
∞∑
i=0

p∑
l=1

βl(i)≤ η. (3.13)

Thus,

1−(m−1)γm
∥∥τ0

∥∥m−1
j−1∑
i=0

p∑
l=1

βl(i)≥ 1−η > 0. (3.14)

Consequently, for all τ0 such that ‖τ0‖ ≤ R, we have

∥∥uj∥∥≤ Cαj
∥∥τ0

∥∥{
1−(m−1)γCm−1

∑j−1
i=0

∑p
l=1βl(i)

}1/(m−1)

≤ γαj

(1−η)1/(m−1)

∥∥τ0

∥∥, j ∈ Z+.
(3.15)

Hence the proof of Case 2 is complete.

Remark 3.2. We want to point out the explicit dependence of the growth constants

of the perturbed equation (2.1) upon the growth constants of the unperturbed equation

(2.9) and the estimate for the perturbation f . Further, the growth rates obtained here

are not necessarily decay rates.
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Corollary 3.3. Under the assumptions of Theorem 3.1, with α in the open interval

(0,1), we have

(i) if 0<m≤ 1 and C = γ‖τ0‖ ≤ 1, every solution uj with sufficiently small initial data

tends to zero as j→∞,

(ii) if m > 1 and ‖τ0‖ ≤ R, then the zero solution uj of (2.1), (2.2) is asymptotically

stable.

Indeed, the inequality ‖uj‖ ≤ γαj/(1−η)1/(m−1)‖τ0‖ :=Kαj‖τ0‖, j ∈ Z+, shows that

for any ε > 0, we can choose a suitable number 0< δ<min{R,ε/K} and a numberN > 0

such that for all k >N and ‖τ0‖< δ, we have ‖uj‖< ε.
Remark 3.4. If Ak ≡ A is a constant matrix, whose spectral radius is less than 1,

then the zero solution of (2.9) is uniformly asymptotically stable. However, this result

cannot be extended to nonautonomous equations (see [7, Theorem 4.4.1]).

4. Special cases. If the system (2.9),

uj+1 =Ajuj, (4.1)

has slowly varying coefficients, then the condition (2.10) concerning growth of the

solutions can be avoided in the case

∥∥Ak−Aj∥∥≤ qk−j (
qk = q−k = const> 0, q0 = 0; j,k= 1,2, . . .

)
. (4.2)

On the other hand, Corduneanu [3] established that for any constant matrix A there

exists a constant Γ ≥ 1, independent of the integers j = 0,1,2, . . . such that

∥∥Aj∥∥≤ Γρj(A), j = 0,1, . . . , (4.3)

where ρ(A) is the spectral radius of A.

In particular, if A= (aij) is a triangular constant matrix, then Γ = 1.

Consider in Cn the equation

uj+1 =Ajuj+gj, j ∈ Z+, (4.4)

where Aj (j = 0,1, . . .) are n×n-complex matrices and gj , uj are vectors in Cn.

Theorem 4.1. Under condition (4.2), assume that

ρ0 = sup
l=0,1,...

(
Γlρ

(
Al
))
< 1,

S0(A)=
∞∑
k=0

qkρk0 < 1,

S1(A;g)=
∞∑
k=0

ρk0
∥∥gk∥∥<∞,

(4.5)
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where Γl and ρ(Al) have the same meaning as the quantities in (4.3) referring to A. Then

any solution {uj}∞j=0 of (4.4) satisfies the inequality

sup
j=1,2,...

∥∥uj∥∥≤ ρ0

∥∥u0

∥∥+S1(A;g)
1−S0(A)

. (4.6)

Proof. Rewrite (4.4) as

uj+1−Aluj =
(
Aj−Al

)
uj+gj (4.7)

with a fixed integer l. The variation of parameters formula yields

ul+1 =Al+1
l u0+

l∑
j=0

Al−jl
[(
Aj−Al

)
uj+gj

]
. (4.8)

It follows from (4.2) and (4.3) that

∥∥ul+1

∥∥≤ ρl+1
0

∥∥u0

∥∥+ l∑
j=0

∥∥Al−jl ∥∥[ql−j∥∥uj∥∥+∥∥gj∥∥]

≤ ρ0

∥∥u0

∥∥+ max
j=0,1,2,...,l

∥∥uj∥∥
l∑
j=0

∥∥Ajl∥∥[qj+∥∥gl−j∥∥]

≤ ρ0

∥∥u0

∥∥+ max
j=0,1,2,...,l

∥∥uj∥∥·
∞∑
j=0

qj sup
l=0,1,2,...

∥∥Ajl∥∥+
∞∑
j=0

∥∥gj∥∥ sup
l=0,1,2,...

∥∥Ajl∥∥.

(4.9)

Consequently,

max
j=0,1,2,...,l+1

∥∥uj∥∥≤ ρ0

∥∥u0

∥∥+S0(A)· max
j=0,1,...,l+1

∥∥uj∥∥+S1(A;g), (4.10)

and we infer that

sup
j=1,2,...

∥∥uj∥∥≤ ρ0

∥∥u0

∥∥+S1(A;g)
1−S0(A)

, (4.11)

concluding the proof.

Consider the equation

uj+1 =Ajuj+fj
(
uj
)
, j = 0,1,2, . . . . (4.12)

Assume that there are constants ν , µ ≥ 0 such that

∥∥fj(u)∥∥≤ ν‖u‖+µ, j = 0,1,2, . . . . (4.13)

Denote

θ0 = µ
1−ρ0

, ρ0 = sup
l=0,1,...

(
Γlρ

(
Al
))
. (4.14)

Now we are in a position to formulate the next result of this paper.
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Theorem 4.2. Under conditions (4.2) and (4.13), assume that

ρ0 < 1, ψ(A;f)=
∞∑
j=0

(
qj+ν

)
ρj0 < 1. (4.15)

Then any solution {uj}∞j=0 of (4.12) satisfies the inequality

sup
j=1,2,...

∥∥uj∥∥≤ ρ0

∥∥u0

∥∥+θ0

1−ψ(A;f)
. (4.16)

Proof. It can be proved in a similar way to Theorem 4.1, so we will omit the proof.
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