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Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗�λ

A∗)∗ twisted by an element �λ ∈ A∗⊗Aop corresponding to a Hopf algebra morphism λ :
A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming
from �λ when λ2 = idA, generalizing the quantum double construction which corresponds
to the case λ= idA.
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1. Introduction. LetA be a Hopf algebra over a field k, and � the canonical element in

A⊗kA∗ corresponding to the identity map idA :A→A. Let A∗ be the dual Hopf algebra

of A, and Aop the Hopf algebra with the multiplication opposite to that of A, that is, if

µA : A⊗A→ A and SA : A→ A are the multiplication and the antipode of A, then Aop

has the multiplication µAop and the antipode SAop defined by µAop(x⊗y) := µA(y⊗x)
and SAop(x) := S−1

A (x) for x,y ∈ A, while other structures are the same. Then one

can define a Hopf algebra structure on the tensor product A∗ ⊗k Aop by defining the

comultiplication and the antipode twisted by � as

∆(ξ⊗x)=�41∆A
∗

13 (ξ)∆
Aop
24 (x)�

−1
41 ,

S(ξ⊗x)=�−1
21

(
SA∗(ξ)⊗SAop(x)

)
�21.

(1.1)

Other structures, that is, multiplication, unit, and counit, are the usual ones on the

tensor product.

Let D(A) = (A∗⊗Aop)∗ and let R ∈D(A)⊗D(A) be the image of � under the map-

ping Aop ⊗A∗ → Aop ⊗ 1A∗ ⊗ 1A ⊗Aop → D(A)⊗D(A). Then D(A) turns out to be a

quasitriangular Hopf algebra with the universal R-matrix R.

This is the quantum double construction due to Drinfel’d [2], and it provides an ex-

plicit solution to the quantum Yang-Baxter equation (QYBE). The important example is

the universal R-matrix of the quantized universal enveloping algebra Uh(g) which is

obtained as the homomorphic image of the universal R-matrix of the quantum double

D(U≥0
h (g)) (see [2, 4]). To avoid subtleties concerning Hopf algebra duals or topolo-

gies on tensor products for infinite-dimensional algebras and make the basic argument

clear, we assume finite dimensionality of Hopf algebras throughout this paper. How-

ever, the necessary modifications for some infinite-dimensional cases are standard and

will be treated in a subsequent paper.
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Although a QYBE a priori has infinitely many solutions, certain uniqueness results

can be obtained for R-matrix of the form Σei⊗ei as in the quantum double construction

(see [3, 4]). Hence, to generalize the quantum double construction, we want to consider

general elements �λ in Aop⊗kA∗ corresponding to maps λ :A→A. Following the same

construction as above using �λ in place of �, we arrive atDλ(A)= (Aop⊗�λ A∗)∗ which

unfortunately fails to be a quasitriangular Hopf algebra for general λ. The purpose of

this paper is to show the following theorem.

Theorem 1.1. If λ is a bialgebra endomorphism of A such that λ ◦ λ = idA, then

Dλ(A) = (Aop⊗�λ A∗)∗ becomes a quasitriangular Hopf algebra with the universal R-

matrix given by the image of �λ under the mapping Aop⊗A∗ →Aop⊗1A∗ ⊗1A⊗Aop →
D(A)⊗D(A).

For a Hopf algebra example, if A is commutative and cocommutative, then the an-

tipode SA : A→ A becomes a bialgebra isomorphism satisfying SA ◦SA = idA. Another

class of examples of such order-2 bialgebra automorphisms may come from the Weyl

group acting as a group of reflections on the Cartan subalgebra of a simple Lie group

g. In fact, this action lifts to an action of a finite covering of the Weyl group on the

universal enveloping algebra U(g) as a group of automorphisms.

The proof would look fairly complicated in the usual formalism of tensor manipu-

lations because of the abundance of tensor components and indices involved. So, we

want to present the proof using diagrams representing contraction of indices of vari-

ous tensors. These diagrams will make the proof more visible and understandable since

duality and other symmetry properties of the arguments become rather obvious. So,

we begin with writing Hopf algebra structures using these diagrams.

2. Diagrams representing Hopf algebra structures. We write fixed basis elements

of A and the dual basis elements of A∗ as and respectively. Hence, A has a basis

{ei = (i)
}i∈I and A∗ has the dual basis {ej =

(j)
}i∈I : 〈 (i)

,
(j)
〉 = δij .

The multiplication µA : A⊗A → A and the unit ι = ιA : k → A are expressed as

µA(
(i) ⊗ (j)

) = (i) (j)
and ι(1) = 1A =

∑
i ιiei = �

ι
. Hence, the diagram

(k)

(i) (j)
represents

the coefficient µijk in µA(ei⊗ej)=
∑
k µ

ij
k ek.

The comultiplication ∆A : A→ A⊗A and the counit ε = εA : A→ k are expressed as

∆A (
(i)

) = ⊗
(i)

and ε (
(i)

) = εi = �

ε

(i)
. Hence, the diagram

(i)

(j) (k)
represents the coefficient

∆ijk in ∆A(ei)=
∑
j,k∆ijkej⊗ek.

Associativity and unitality, coassociativity and counitality may be expressed in a form

where duality is obvious:

=


=:


 ,

�
ι

= �
ι
= ,

=


=:


 ,

�

ε

=
�

ε

= .

(2.1)
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Compatibility of algebra and coalgebra structures is

= ,
�

ε

=
�

ε
�

ε

,
�
ι

= �
ι

�
ι
. (2.2)

The antipode SA :A→A is written as �S and satisfies

�S = �

�

ε
ι

= �S, (2.3)

where S is an antiautomorphism of the Hopf algebra A:

�S
= �S �S ,

�S = �S �S,

�

�S

ι
= �

ι
,

�

�S

ε

=
�

ε

.

(2.4)

In general, a linear map f :A→A is written as f (
(i)

)= f �

(i)
, expressing f(ei)=∑i f ij ej .

A linear map f is an algebra homomorphism when

�f
= �f �f,

�

�f

ι
=

�

ι
. (2.5)

A linear map f is a coalgebra homomorphism when

�f =
�f �f

,
�

�f

ε

=
�

ε

. (2.6)

Note that related Hopf algebras A∗, Aop, Aop, and so forth can be expressed by us-

ing the same components of the diagram for A. For example, the multiplication µA∗
of the dual Hopf algebra A∗ is the transpose of the comultiplication ∆A of A which is

specified by the coefficients
(i)

(j) (k)
of ∆A(ei). Hence, µA∗ (

(j)
⊗

(k)
) =

(j) (k)
. Similarly, ∆A∗

(
(i)

) = (
(i)

), and µAop (
(j)⊗(k) ) = (j)(k)

, and so forth.

3. Proof of the theorem. Let λ : A→ A be a bialgebra endomorphism and let �λ ∈
A⊗A∗ be the element corresponding to λ : �λ =

∑
λji ei⊗ej . Diagrammatically, �λ =

⊗�
λ

.
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Lemma 3.1. The element �λ is an invertible element of Aop⊗A∗ satisfying the follow-

ing relations:

(
id⊗∆A∗

)(
�λ
)= (�λ

)
13

(
�λ
)

12,
(
∆Aop⊗ id

)(
�λ
)= (�λ

)
13

(
�λ
)

23,(
id⊗SA∗−1

)(
�λ
)=�−1

λ ,
(
SAop⊗ id

)(
�λ
)=�−1

λ .
(3.1)

Proof.

(
id⊗∆A∗

)(
�λ
)= ⊗ ⊗

�

λ
= ⊗ ⊗

�

λ
�

λ

= ⊗ ⊗
�λ �λ = (�λ

)
13

(
�λ
)

12.

(3.2)

This proves the first equality.

(
SAop⊗ id

)(
�λ
)
�λ =


 ⊗

�
S−1

�

λ





 ⊗

�

λ


= ⊗

�S−1
�λ �λ

= ⊗

�S−1

�λ
=

�
ι

⊗
�λ
�

ε

=
�
ι

⊗
�

ε
= 1Aop⊗A∗ .

(3.3)

Here we used
�S−1 =

�

�

ε
ι .

The remaining equalities may be similarly verified.

On the tensor product A∗⊗kAop we define the multiplication �, the comultiplication

∆λ, the unit �, the counit �, and the antipode Sλ as follows:

�
(
(ξ⊗x)⊗(η⊗y))= (ξ⊗x)(η⊗y)= µA∗(ξ⊗x)⊗µAop(η⊗y),

∆λ(ξ⊗x)=
(
�λ
)

41∆
A∗
13 (ξ)∆

Aop
24 (x)

(
�λ
)−1

41 ,

�(1)= εA⊗ιA = 1A∗⊗Aop , �(ξ⊗x)= ξ(1A
)
εA(x),

Sλ(ξ⊗x)=
(
�−1
λ
)

21

(
SA∗(ξ)⊗SAop(x)

)(
�λ
)

21,(
for ξ,η∈A∗, x,y ∈Aop

)
.

(3.4)

Hence, the comultiplication and the antipode are twisted by λ, while other structures

are the usual ones on the tensor product.
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As �−1
λ = ⊗�

S−1

�

λ
from Lemma 3.1, the twisted comultiplication may be written dia-

grammatically as

∆λ




(i)

⊗
(j)



= ⊗ ⊗ ⊗

(i)

(j)

�

λ

�
λ

�S−1

. (3.5)

Similarly,

Sλ




(i)

⊗
(j)



=

�λ
(i)

⊗

�S−1

(j)

�

λ�λ

�S−1

. (3.6)

Proposition 3.2 (see [1, 2, 4]). The system (A∗⊗Aop,�,�,∆λ, �, Sλ) is a Hopf alge-

bra.

Proof. This is a standard fact. More generally, if an invertible element � ∈ C ⊗B
satisfies the conclusion of Lemma 3.1, namely,

(
id⊗∆B)(�)=�13�12,

(
∆C⊗ id

)
(�)=�13�23,

(
id⊗(SB)−1

)
(�)=�−1,

(
SC⊗ id

)
(�)=�−1,

(3.7)

then B⊗C becomes a Hopf algebra with the structures defined as above. The verification

of Hopf algebra conditions may be a little tedious but can be done without difficulty.

Hence we omit it.

Let Dλ(A) = ((A∗⊗�λ Aop)∗,�D, �D,∆D, �D, SD) be the dual Hopf algebra of (A∗⊗
Aop,�, �,∆λ, �, Sλ) and let Rλ ∈Dλ(A)⊗Dλ(A) be the image of �λ ∈A⊗A∗ under the

map A⊗A∗ →A⊗1∗A⊗1A⊗A∗ →Dλ(A). We now assume λ◦λ= idA. We want to show

that (Dλ(A), RA) is quasitriangular, that is, we need to check the following conditions:

(
id⊗∆D)(Rλ

)= (Rλ
)

13

(
Rλ
)

12,
(
∆D⊗ id

)(
Rλ
)= (Rλ

)
13

(
Rλ
)

23,

Rλ∆D(x)=∆Dop(x)Rλ for x ∈Dλ(A),
(3.8)

where ∆Dop is the opposite of the comultiplication ∆D .

We will give a proof for the last equality. The first two equalities can be verified easily.
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Noting that the multiplication �D of Dλ(A) is the dual of the comultiplication ∆λ of

A∗⊗Aop, whose diagrammatic description is given at the end of Section 2, we see that

∆Dop




(b)

⊗
(a)



Rλ

=




⊗ ⊗ ⊗

(a)

(b)







⊗ ⊗ ⊗
�λ

ε
�

ι
�




=

(a)

λ

λ
λ λ

ι

λ
S−1S−1

(b)

ε

⊗ ⊗ ⊗

= λ

λ
λ λ

ι

λ
S−1

(b)

(a)

ι

S−1S−1

(b)

ε ε
ε

⊗ ⊗ ⊗

(by the counitality of the multiplication)
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=

λ λ

λ
S−1

⊗ ⊗ ⊗

(b)

(a)

=

l

(a)

λ λ

λ λ
S−1

⊗ ⊗ ⊗

(b)

=

(b)

(a)

λ
λ

λ
λ

S−1⊗ ⊗ ⊗

(by associativity and coassociativity)
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=

λ

λ
ι

ε

(b)

(a)

⊗ ⊗ ⊗




here we used

�λ
�S−1

�λ = �ε

�ι




=

λ

λ λ

(b)

(a)

⊗ ⊗ ⊗
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=

λ

λ

λ

(b)

(a)

⊗ ⊗ ⊗

=
λ

(b)

(a)

⊗ ⊗ ⊗

(
by the hypothesis λ2 = id

)
.

(3.9)

The other side of the desired equality is diagrammatically

Rλ∆D




(b)

⊗
(a)




=
λ

λ
λ

λ

λ
S−1 S−1

ε

(a)

(b)

⊗ ⊗ ⊗

ι

.

(3.10)
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From the symmetry between this diagram and the first one and using the duality

between the associativity and coassociativity, and so forth, we can modify this diagram

in exactly the same way and obtain the same final diagram as above. This completes

the proof of Theorem 1.1.
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