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ON THE DENSENESS OF JACOBI POLYNOMIALS
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Let X represent either a space C[−1,1] or L
p
α,β(w), 1 ≤ p < ∞, of functions on [−1,1]. It

is well known that X are Banach spaces under the sup and the p-norms, respectively. We
prove that there exist the best possible normalized Banach subspaces Xkα,β of X such that the
system of Jacobi polynomials is densely spread on these, or, in other words, each f ∈ Xkα,β
can be represented by a linear combination of Jacobi polynomials to any degree of accuracy.
Explicit representation for f ∈ Xkα,β has been given.

2000 Mathematics Subject Classification: 41A10, 42C10, 46B25.

1. Introduction. Let 1≤ p ≤∞, w(x)= (1−x)α(1+x)β, α,β >−1, x ∈ [−1,1], and

let L
p
α,β(w) denote the Banach space of functions f : [−1,1]→� with ‖fxjw‖p <∞,

j = 0,1,2, . . . . If p = ∞, assume f is continuous. Let Xkα,β be the linear manifolds of

L
p
α,β(w) with parameters α, β, and k such that for all f ∈ Xkα,β, the following endpoint,

called “the pole” condition, is satisfied:

∫ t
0

∣∣f(cosϕ)−A∣∣ϕ2α+1dϕ = o(t2α+2). (1.1)

Also, for some k, the following additional condition, called “the antipole” condition, is

assumed to be satisfied:

∫ h
0

∣∣f(−cosϕ)
∣∣ϕβ−α+kdϕ = o(1). (1.2)

It may be noted that the first condition would have been satisfied by A = f(1), where

f is continuous at x = 1. Also, “the antipole” condition (1.2) is weaker than that in

[15, Theorem 9.1.4]. Let {gn} be a c-sequence in Xkα,β and let its limit be g. Then g
will satisfy (1.1) and (1.2), proving that g ∈ Xkα,β. Thus, the spaces Xkα,β are normalized

Banach subspaces of X≡ L
p
α,β(w) with norm

‖f‖Xkα,β
= c1‖f‖X

(
c1 ≥ 1

)
. (1.3)

In all, we are going to prove that Xkα,β for 1 ≤ p ≤ ∞ with given α, β, and k are

Banach spaces on which the set of Jacobi polynomials is densely spread for each p.

In other words, every element of Xkα,β is expressible as a linear combination of Jacobi

polynomials to any degree of accuracy. Our settings show that the subspaces Xkα,β are

the best possible in L
p
α,β(w). Our proof constructed for j = 0 works for all j = 0,1,2, . . . .
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We associate a Fourier-Jacobi expansion for all f ∈ Xkα,β as

f(x)∼
∞∑
n=0

f̂ (n)ω(α,β)n R(α,β)n (x), (1.4)

where

ω(α,β)n =
(∫ 1

−1

{
R(α,β)n (x)

}2
w(x)dx

)−1

= (2n+α+β+1)Γ(n+α+β+1)Γ(n+α+1)
2α+β+1Γ(n+β+1)Γ(n+1)Γ(α+1)Γ(α+1)


n2α+1L(n)
(
L(n)≡ 1+O

(
1
n

))
,

(1.5)

f̂ (n) is the nth Fourier-Jacobi transform of f given by

f̂ (n)=
∫ 1

−1
f(x)R(α,β)n (x)w(x)dx, (1.6)

R(α,β)n (x) is the normalized Jacobi polynomial such that

R(α,β)n (x)= P
(α,β)
n (x)
P(α,β)n (1)

, (1.7)

where P(α,β)n (x) is the nth Jacobi polynomial of degree n and order (α,β) (see [15]).

2. Preliminaries. We choose a linear combination σkn of Jacobi polynomials as

σkn
(
f ,cosϑ,Xkα,β

)= cn+cn−1R
(α,β)
1 (cosϑ)+cn−2R

(α,β)
2 (cosϑ)

+···+c0R
(α,β)
n (cosϑ)

≡
n∑
ν=0

cn−νR
(α,β)
ν (cosϑ),

(2.1)

where coefficients ci are given by

cn−ν ≡
(Akn−ν
Akn

)
f̂ (ν)ω(α,β)ν , (2.2)

ν = 0,1, . . . ,n and n= 0,1,2, . . . . Aki (i= 0,1,2, . . .) are binomial coefficients of xi in the

expansion of (1−x)−k−1. Thus, σkn(f ,cosϑ,Xkα,β) is the nth Cesàro mean of order k of

the Fourier-Jacobi expansion given in (1.4) (see [15, page 244]). Recently in [22], we have

proved the following result:

∥∥σ 1
n
(
f ,cosϑ,X1

α,β
)−f(cosϑ)

∥∥
X1
α,β

�→ 0 asn �→∞, (2.3)

for the case k = 1 under only the saturation-type condition (1.1) at the pole x = 1 for

α ≥ β = −1/2 and α ≥ β > −1/2 with α+β ≤ 0. The case α ≥ β > −1/2 with α+β > 0
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has also been solved in [18]. The best possible cases of general order k have not been

handled so far. We settle the problem by proving

∥∥σkn(f ,cosϑ,Xkα,β
)−f(cosϑ)

∥∥
Xkα,β

�→ 0 (2.4)

as n → ∞, by deciding the best possible span of k for α ≥ β ≥ −1/2. We settle the

complete problem in four steps given as Theorems 3.1, 3.2, 3.3, and 3.4. The subject

approximation of functions in terms of polynomials which indicate its denseness is an

important part of analysis with many notable contributions, such as Riesz [14], Pollard

[11, 12, 13], Newman and Rudin [10], Askey [1, 2], Badkov [3], Nevai [9], Máté et al. [7],

Xu [16, 17], Lasser and Obermaier [5], Li [6], Mhaskar [8], Yadav [18, 19, 20, 21, 22]. The

central ideas used in our proofs are the convolution structure for Jacobi series [2], and

endpoint convergence of Fourier-Jacobi expansions [15].

3. Main results. We prove the following with prior assumption that α≥ β≥−1/2.

Theorem 3.1. Statement (2.4) holds true for k ≥ α+β+1 only if the pole condition

(1.1) is satisfied.

Theorem 3.2. For β > −1/2, α+1/2 < k < α+β+1, statement (2.4) is true if “the

pole” condition (1.1) and “the antipole” condition (1.2) are satisfied.

Theorem 3.3. For k <α+1/2, statement (2.4) is not true, that is, there exist functions

f ∈ Xkα,β so that the norm in (2.4) tends to infinity.

Theorem 3.4. For α+1/2< k<α+β+1, but without “the antipole” condition (1.2),

statement (2.4) is not true. That is, there exist functions not satisfying (1.2), having their

kth Cesàro transform divergent.

4. Results to be used. The following formulae and lemmas have been used to com-

plete the proofs of our theorems:

P(α,β)n (1)=
(
n+α
n

)
(4.1)

(see [15, (4.1.1)]);

P(α,β)n (−x)= (−1)nP(β,α)n (x) (4.2)

(see [15, (4.1.3)]). For α, β arbitrary reals, c a fixed positive number, and n→∞,

P(α,β)n (cosθ)=



θ−α−1/2O

(
n−1/2), c

n
≤ θ ≤ π

2
,

O
(
nα
)
, 0≤ θ ≤ c

n

(4.3)

(cf. [15, (7.32.5)]), and

P(α,β)n (cosθ)=O(n−1/2) (4.4)

for 0< θ ≤π/2, α≤−1/2 (cf. [15, (7.32.7)]).
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For α>−1, β >−1, and c/n≤ θ ≤π−c/n,

P(α,β)n (cosθ)=n−1/2K(θ)
{

cos(Nθ+γ)+O(nsinθ
)−1

}
(4.5)

(see [15, Theorem 8.21.13]) and

P(α,β)n (cosθ)=n−1/2K(θ)cos(Nθ+γ)+O(n−3/2) (4.6)

for α, β arbitrary and 0< θ <π (see [15, Theorem 8.21.8]), where

K(θ)=π−1/2
(

sinθ
2

)−α−1/2(cosθ
2

)−β−1/2
, N =n+ α+β+1

2
, (4.7)

and γ =−(α+1/2)π/2. The error term in (4.6) holds uniformly in the interval [ε,π−ε],
for ε > 0. These formulae have been indirectly used with division by

[
P(α,β)n (1)=

(
n+α
n

)]
(4.8)

to substitute the value of R(α,β)n (cosϕ) in the following lemmas which are crucial in the

proofs of Theorems 3.1, 3.2, 3.3, and 3.4.

Lemma 4.1. Let f ∈ Xkα,β. Then, as n→∞,

∫ π
0
F(ϕ)R(α+k+1,β)

n (cosϕ)dϕ =




o
(
n−2α−2

)
, for k >α+ 1

2
,

o
(
n−α−k−3/2 logn

)
, for k=α+ 1

2
,

o
(
n−α−k−3/2), for k <α+ 1

2
,

(4.9)

where

F(ϕ)= {f(cosϕ)−A}(sinϕ
2

)2α+1(cosϕ
2

)2β+1

, (4.10)

provided that, for β > −1/2 and α+1/2 < k < α+β+1, the antipole condition (1.2) is

satisfied. For −1 < β ≤ −1/2 (or β > −1/2 but k ≥ α+β+1), no antipole condition is

necessary.

Proof of Lemma 4.1. Let n be large enough and

∫ π
0
F(ϕ)R(α+k+1,β)

n (cosϕ)dϕ =
∫ c/n

0
+
∫ δ
c/n
+
∫ π−δ́
δ

+
∫ π−c/n
π−δ́

+
∫ π
π−c/n

=
5∑
i=1

Ti, (4.11)

where c, δ, and δ́ are small but fixed positive reals. Now, the proof of the lemma follows

upon estimating (4.11) on the lines of [22, Lemma 1] using orders of R(α+k+1,β)
n (cosϕ),

the pole condition (1.1), and the antipole condition (1.2). Thus, the proof of Lemma 4.1

is complete.
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We denote the nth Cesàro mean of order k of the series (1.4) by σkn(f ,cosϑ,Xkα,β)
defined by (2.1). Lemma 4.2, which is basic in the proofs of Theorems 3.1, 3.2, 3.3, and

3.4, provides new convergence criteria for Jacobi series at the endpoints of the interval

[−1,1] (see [21]).

Lemma 4.2. If f ∈ Xkα,β (α > −1, β > −1), then the series (1.4) is (C,k)-summable to

A at x = 1, for k >α+1/2, or

lim
n→∞σ

k
n
(
f ,cosϑ,Xkα,β

)−A= 0 (4.12)

at ϑ = 0, for k >α+1/2, provided that in the case

β >−1
2
, α+ 1

2
< k<α+β+1, (4.13)

the antipole condition (1.2) is satisfied. (For −1 < β ≤ −1/2 or for k ≥ α+ β+ 1, no

antipole condition is necessary.) For k ≤ α+ 1/2 or for k > α+ 1/2, but without the

antipole condition (1.2), statement (4.12) is not true.

Proof of Lemma 4.2. We have

σkn(x)=
(
Akn
)−1

n∑
ν=0

Akn−ν f̂ (ν)ω
(α,β)
ν R(α,β)ν (x).

If A is any constant, then

σkn(x)−A=
(
Akn
)−1

n∑
ν=0

Ak−1
n−ν

[ ν∑
i=0

f̂ (ν)ω(α,β)i R(α,β)i (x)−A
]
.

Using (1.5), we get, at x = 1,

σkn(1)−A=
(
Akn
)−1

n∑
ν=0

Ak−1
n−ν

[ ν∑
i=0

f̂ (ν)ω(α,β)i R(α,β)i (1)−A
]

=
∫ π

0

{
f(cosϕ)−A}(Akn)−1

n∑
ν=0

α+1
2ν+α+β+1

. Ak−1
n−νω

(α+1,β)
ν R(α+1,β)

ν (cosϕ)ρ(α,β)(ϕ)dϕ,

(4.14)

where

ρ(α,β)(ϕ)≡
(

sinϕ
2

)2α+1(cosϕ
2

)2β+1

(4.15)

by the use of the summation formula of Szegö [15, page 71] and the orthogonality of

Jacobi polynomials. But the right-hand side of (4.14) tends to zero under the conditions

of Lemma 4.2 as detailed in [21, 22]. Thus, the proof of Lemma 4.2 is complete.
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5. Proofs

Proof of Theorem 3.1. We substitute ∆λn,ν =Ak−1
n−ν/Akn for ν ≤n and zero other-

wise in [19, equation (2.11)] to get

σkn
(
f ,(cosϑ),Xkα,β

)−f(cosϑ)

=
∫ π

0

[
Tψf(cosϑ)−f(cosϑ)

] n∑
ν=0

α+1
2ν+α+β+2

Ak−1
n−ν
Akn

ω(α+1,β)
ν R(α+1,β)

ν (cosψ)ρ(α,β)(ψ)dψ,

(5.1)

where Tψf(cosϑ) is the generalized translate of f(cosϑ) in the interval [0,π] (see [2]).

Also,

∥∥Tψf∥∥X ≤ ‖f‖X (5.2)

for α≥ β≥−1/2, and

lim
ψ→0

Tψf = f (5.3)

in the sense of strong limit. (See Bavinck [4, page 770].) But

∥∥Tψf −f∥∥X ≤ ∥∥Tψf −A∥∥X+‖f −A‖X ≤A6‖f −A‖X (5.4)

for some nonnegative constant A6. The constant A6 will be independent of f by the

Banach-Steinhaus theorem. Also,

∥∥Tψf −f∥∥X ≥ ∥∥Tψf −A∥∥X−‖f −A‖X ≥A7‖f −A‖X. (5.5)

Again, A7 will be independent of f . Thus, we have the asymptotic equality

∥∥Tψf −f∥∥X � ‖f −A‖X. (5.6)

Thus, we compare (5.1) and (4.14) to get

∥∥σkn(f ,cosϑ,Xkα,β
)−f(cosϑ)

∥∥
Xkα,β

≤A8

∥∥σkn(f ,1,Xkα,β)−A∥∥Xkα,β
(5.7)

for α≥ β≥−1/2 and an absolute constantA8. But the right-hand side of this inequality

tends to zero as n tends to ∞ by Lemma 4.2, for k ≥ α+β+1. Thus, statement (2.4)

follows. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. For β > −1/2, α+ 1/2 < k < α+β+ 1, statement (4.12)

holds if the antipole condition (1.2) is satisfied, that is, in Theorem 3.2, for all f ∈ Xkα,β
satisfying both linear conditions (1.1) and (1.2). Thus, the arguments of the proof of

Theorem 3.1 apply to the proof of Theorem 3.2 and statement (2.4) holds in this case

also. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. It is well known that (see Szegö [15, equation (9.41.17),

page 262]) there exist continuous functions such that for k=α+1/2,

σkn
(
f ,1,Xkα,β

)
>C logn (C > 0). (5.8)
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This is sufficient to conclude, because of the regularity that there exist functions f ∈
Xkα,β such that

∥∥σkn(f ,cosϑ,Xkα,β
)−f(cosϑ)

∥∥
Xkα,β

�→∞ (5.9)

for k≤α+1/2. Thus, in this case, statement (2.4) is not true. This completes the proof

of Theorem 3.3.

Proof of Theorem 3.4. Here, by an example, we show that there exist functions

such that the sequence {σkn(1)} given in (4.14) diverges showing that statement (2.4)

is not true. We consider a function f(x) = (1+x)µ given in [15, page 265]. Its Jacobi

series at the endpoint x = 1 is

∞∑
n=0

ω(α,β)n

∫ 1

−1
(1−x)α(1+x)β+µR(α,β)n (x)R(α,β)n (1)dx

≡
∞∑
n=0

(−1)nω(α,β)n

∫ 1

−1
(1−x)α+µ(1+x)βR(β,α)n (x)dx.

(5.10)

The principal part of the general term of the series (5.10) is approximately

(−1)nnα−β−2µ−1 or (−1)nAα−β−2µ−1
n (5.11)

as R(α,β)n (1)= 1. The expansion in (5.10) holds good for µ+β >−1 or−β−1< µ (see [15,

page 265]), but the antipole condition (1.2) is not satisfied if µ ≤ 1/2(α−β−k−1). So, for

−β−1< µ ≤ 1/2(α−β−k−1), the Fourier-Jacobi series exists for the function f(x)=
(1+x)µ , but it does not satisfy the antipole condition (1.2). Also, for k≤ (α−β−2µ−1),
the expansion in (5.10) is not (C,k)-summable for β > −1/2, α+1/2 < k < α+β+1

(see [15, page 265]). Thus, the sequence given in (4.14) diverges, which, by (5.1), leads

to the conclusion that statement (2.4) is not true. This proves Theorem 3.4.
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