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AN EXTENSION OF THE CLARK-OCONE FORMULA
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A white noise proof of the classical Clark-Ocone formula is first provided. This formula is
proven for functions in a Sobolev space which is a subset of the space of square-integrable
functions over a white noise space. Later, the formula is generalized to a larger class of
operators.

2000 Mathematics Subject Classification: 60H40, 60H20, 60HO05, 60G15.

1. Introduction. Consider a probability space (QQ,%,P). Let B(t) be a Brownian mo-
tion, 0 <t <1, and ¥ = o{B(s) | 0 < s <t} the filtration it generates. In [1, 7], the
following results are considered. If F(B(t)) is any finite functional of Brownian motion,
then it can be represented as a stochastic integral. This representation is not unique.
However, if E(F2(B(-))) < oo, then according to Martingale representation theory, F
does have a unique representation as the sum of a constant and an Ito stochastic inte-
gral:

1
F=]:"(F)+J’0 ¢ (t)dB(t), (1.1)

where the process ¢ belongs to the space L%([0,1] x Q;R) and, for all t € [0,1], the
random variable ¢ (t) is F;-measurable. It is also shown in the same papers that if F is
Fréchet-differentiable and satisfies certain technical regularity conditions, then F has
an explicit expression as a stochastic integral in which the integrand consists of the
conditional expectations of the Fréchet differential. It is this explicit representation for
the integrand that gives rise to the well-known Clark-Ocone formula.

In the white noise setup, if we replace Fréchet differentiability with white noise differ-
entiation, then we need the condition that F € W1/2, a Sobolev space which is a subset
of the space of square-integrable functions, for the result to have a meaning. In [5],
the authors extended the Clark-Ocone formula to generalized Wiener functionals. The
formula is the same and only the space on which it holds is enlarged. In this paper, we
generalize the formula by using the differential operators D,, and their adjoints D}t for
any families of temperate distributions {e;};cr and {f;};cr satisfying certain technical
conditions. In so doing, we regard the formula as the equality of two operators and
extend it to a larger class of operators. When e; = f; = §; (the Dirac measure at t), for
all t € R, we obtain the classical Clark-Ocone formula. For purposes of continuity of
our argument, we first verify the results in [1, 7] using the S-transform, which really
looks similar to the one found in [5].
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2. Background and notations. In [4], various constructions of Gel'’fand triples are
presented. We will be using in this paper the triples ¥(R) c L2(R) ¢ ¥’ (R) and (¥(R)) C
(L?) C (9(R))*, where ¥(R) is the Schwartz space and (L%) = L2(¥’ (R)).

For any 6; € ¥’ (R), according to the notations in [4, 6], the white noise differential
operator d; and its adjoint 9/ are defined by the duality between (¥(R)) and (¥(R))*
as

(37 ®,@)) = ((2,8:)), ®e(F(R)", @ e(SR)). (2.1)

In the same references, for any x € ¥(R)., the exponential function : e*’ : is defined
by the formula

- 1

Colex) L L. en.

exrzm@www, (2.2)
n=0

where
[n/2] n
XM= E:( )(2k1nu1%x®012”®r®k (2.3)
= \2k

with T being the trace operator from ¥(R) ® ¥(R) into C.
Moreover, the S-Transform of ® is the function S(®) : ¥(R). — C defined by

S@)(E) = ((®,:e"¥ 1)), E€F(R). (2.4)
Note also that
S(PoV¥Y)=(SP)(SY), (2.5)

where ¢ denotes the Wick product.

DEFINITION 2.1. Let @ :[a,b] — (¥(R))* be Pettis-integrable. The white noise inte-
gral ff 0/ @ (t)dt is called the Hitsuda-Skorokhod integral of @ if it is a random variable
in (L?).

The following theorem is due to Kubo and Takenaka [3]. (See also [4].)

THEOREM 2.2. Let @ (t) be a stochastic process in the space L*([a,b]x ¥’ (R)) which
is nonanticipating and ff lp(t) H(Z)dt < o0. Then the function 3; @ (t), t € [a,b], is Pettis-
integrable and

b b
[Cerpwat- [ pwasw, (2.6)

where the right-hand side is the Ité integral of .

It is noted from the above theorem that the Hitsuda-Skorokhod integral is an exten-
sion of the It6 integral. (See [4] for examples of the Hitsuda-Skorokhod integral.)
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DEFINITION 2.3. For @ = >7_(: -®":, f,), define

Me

N = n(:-*": fu). (2.7)

n=1

The operator N is called the number operator. Moreover, the power N, » € R, of the
number operator is defined in the following way: for @ = >._(: -®":, fu),

N'p= Z n" (B ). (2.8)
n=1

For any v € R, N" is a continuous linear operator from (¥(R)) into itself and from
(P(R))* into itself. Let W''/2 be the Sobolev space of order 1/2 for the Gel'fand triple
($(R)) C (L?) c ($(R))*. In other words, W/2 will denote the set of @ € (L?) such that
(0:@)ter € L2(R;(L?)). Thus
Wiz = {cp € (L?) | J o @|lodt < oo}. (2.9)
R
The norm on W'/2 will be defined as

III3 5 = ||<p||3+jR||atq9H§dt. (2.10)

OBSERVATION 2.4. If @ € (L?), then

[ lepliiae = N 2o . (.11
PROOF. The proof can be found in [4]. O
LEMMA 2.5. (¥(R)) c W/,
PROOF. See [4, 6]. |

3. An extension of the Clark-Ocone formula. In what follows, we deal with an arbi-
trary Gel'fand triple € C E C €.

NOTATION 3.1. Let K be a closed subspace of E and K, the complexification of K.
Let (L,2<) be the subspace of (L?) consisting of all functions @ = > ,_,(: -®":, f,) such
that f, € K&" for all n > 0.

For p = 0, define
(€x), ={@ € (Lg) | l@ll, < oo} (3.1)

Let (éx)-p be the completion of (L,2<) with respect to the norm || - ||-,. Thus, for all
p € R, we have (€k), < (€),. Let

(k) = ) (€x), = (@), (&) = (), = (@*. (3.2)

p=0 p=0
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DEFINITION 3.2. A function ¢ € (€)* is said to be supported by K if ¢ € (€x)*.

LEMMA 3.3. Let H, and H» be two orthogonal closed subspaces of E. Suppose ¢ and
W € (L2) are supported by H, and H», respectively. Then ¢ o @ = ¢ - @ and

lpowlo=lldlo-llylo. (3.3)
PROOF. This can be done via the ¥-transform. See [4]. O

DEFINITION 3.4. LetB:E — Ebeabounded linear operator. The second quantization
operator of B, T(B) : (L?) — (€)* for ¢ = >;_o(: -®":, fn), is defined as

I(B)p = > (:-°":B®"f,). (3.4)
n=0

It is easy to see that
Ir(B)llg < Z B | - (3.5)

Therefore, if |B|| < 1, then I'(B) is a bounded linear operator from (L?) into (L?) of
norm less than or equal to 1.

On the other hand, if ||B|| > 1, then I'(B) is a bounded linear operator from (L?)
into (€-,), choosing p > 0 sufficiently large such that A’f > ||B]|.

OBSERVATION 3.5. If B: E — E is a bounded linear operator and & € E,, then

[(B) e =8O . (3.6)
PROOF.
o1
A L /..en. xen
[(B):e%: = (En DO >)
— 1 . .8n . B®n§®n> (3 7)
_n : ; .

Shc

o1 (BE)®M) =188 ;,

3\»—4

We now switch back to the Gel'fand triple ¥(R) ¢ L2(R) € ¥’ (R).

If g € L*(R), then g can be identified with the multiplication operator Ty : L2(R) —
L?(R) defined by T, f = g.f. This is a bounded operator of norm equal to [ gl . We will
denote I'(T,) simply by I'(g).

Let B(S'(R)) be the o-field generated by the open subsets of S’ (R). If {fi}ics is a
family of complex-valued %(S’(R))-measurable functions defined on S’(R), then we
denote by o {f; | i € I} the smallest o-field % contained in #(S’'(R)) such that, for all
i €1, f; is ¥-measurable.

If ¥ is a sub-o-field of B(S’(R)) and @ € (L?), then we denote by E(@|%) the condi-
tional expectation of @ with respect to &
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Let

.1 if t >
By = o) =0, (3.8)
—<',1[t,0]> if t <O.

It is shown in [4] that {B(t)};cr iS a Brownian-motion process.

LEMMA 3.6. Let @ € (L?) andt € R. Let F; = 0 {B(s) | s < t}. Then
E(@IF) =T(1(-0u)) P- (3.9)

PROOF. For the proof plus other related properties of the second quantization op-
erator, see [2, 8]. O

The following theorem provides a white noise proof of the Clark-Ocone formula for
functions in the Sobolev space W1/2,

THEOREM 3.7 (the Clark-Ocone formula). Let W2 be the Sobolev space from the
Gel’fand triple (¥(R)) C (L?) C ($(R))*. Suppose B(t) is the Brownian motion given by
B(t) = (-, 1j041), t € R, withF; = 0 {B(s) | s < t} the filtration it generates. Then, for any
¢ € W12, the following formula holds:

= E@)+ | E(@upIF)dB(0). (3.10)
PROOF. We can rewrite the stochastic integral in the above equation as
| E@ipiFaB) - [ orE@lzar. (3.11)

Since E(0;p|F;) =T (1(~w,11)0r P, (3.10) is equivalent to

d):E(qS)+J[Rat*r(1(,m,t])at¢dt, (3.12)

where the integral in (3.12) is regarded as a white noise integral in the Pettis sense. We
will prove formula (3.12) using the S-transform.

Let ¢ € W'/2 be fixed. Because [ [|0;¢p||3dt < o, we conclude that there exists a
subset N of R, of Lebesgue measure zero, such that for all t € R\ N, ||0;¢llg < co. This
means that for all t € R\ N, d;¢ € (L?). By the boundedness of the operator I'(1(_w]),
we conclude that for all t € R\N, T'(1(_w;])0rp € (L?) and 9T (1 (—w])0rp € (F(R))*.
We define the function f:R — (¥(R))* by

f

. .
(t)_{atr(l(m,t])atqs if t € R\N, 313

0 if t € N.

By abuse of notation, we will write f(t) = 0T (1(_«])0:¢ for all t € R. First, we will
check that the function f is Pettis-integrable. To see this, we observe first that for any
@ € (9(R)), the function t — ((0;T(1(—x1)0r ¢, P)), which is the same as the function
t— ((T(1(—w,t1)0r P, 0rP)), is measurable. Thus, f is weakly measurable. It is also easy
to see that ((f(-),@)) € L}(R) for all ¢ € (¥(R)). Hence, f is Pettis-integrable.
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We start proving (3.10) first for exponential functions ¢ = F, = >0 (1/n!)(: -®"
n®m"y, n € L?(R).. First, we note that F,, € W'/2 because

hnd en
> nnl ’ n_
n=1 n!

2 (oo}
n 2n
:Zw””o
0 n=1""
00

zlnlég o 1),

— |n|5em\0 < 0.

In |2(n 1) (3.14)

Second, to show that F;, = E(F,) + [g 0 T(1(—w,)0tFydt, we have to check that the
S-transforms of the two sides are equal:

S(EE) + | arT(1camatdt) @ = SEED @ +5( | 0rT0wmardt) @
=SME+ | EOST(1Can)arky) @de
=1+ L« EWST(1—w,)) (N Fy)) (E)dt

=1 +JR5(””(“5(f(1<—w,n)Fr,)<§>dt.

(3.15)
Using the fact that I'(1(— ) Fy = Fy_yn» We obtain
( (Fp) + J 0T (1~ atFndt)(E) = 1+J EMNW)S(Fr_, ,n)(E)dt
(3.16)
=1+ [ EONOF g Fe)dt
Now, using the fact that ({Fy,F,)) = e, for all x,y € L>(R), we get
S(E(E) + [ 07T (1 cwiFyde) €)= 14+ | E@n(@et=mar
=1+ JR E(t)n(t)el e nEWs gy
-1+ [; % <ejﬁmn<s)§<sms>dt
= 1+el wn®sds |° 51

— 14 nsEs)ds _q
= oS n()E(s)ds
= ond®

= ((Fn. Fg))
:S(Fn)(g)-

Thus, Fy, = E(Fy) + [z 0} E(0:F,|%,)dt.
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Now, the vector space spanned by the set {F, | n € L2(R).} is dense in W2, There-
fore, for any ¢ € W'/2, there exists a sequence {@y}n>1 in the span of {F, | n € L?(R).}
such that @, — ¢ in W'/2, The norm of W'/ is stronger than the norm of (L?).
Thus, @, — ¢ in (L?) and E(@,) — E(¢p). We will show that [z 0/ E(d;@n|F¢)dt —
Jr 0F E(0rp|F¢)dt, weakly. Let @ € (¥(R)). Then we have

(] @@= ®)F0dtw) )| = | (@ EG(@n-d) 50,0t

< [ 1(E@ (@n-¢) 10),00)) dt

18)
< [ 112 (@n— )l 2cwlloae
< /] ton )1t [ oyl
— 0.
Since, for all n € N, we have
®n =E(pn) +J[R 0T (1 (—eoyt]) Ot Pndt, (3.19)
passing to the limit weakly, as n — o, we get
¢ :E(qb)+Jkat*r(1(,oo,t])at¢dt. (3.20)
O

In what follows, we generalize the space W/2 to the space W4'* by introducing the
weight g°" in calculating the norm of this new space. In [5], the Clark-Ocone formula
was extended to generalized Wiener functionals.

DEFINITION 3.8. Let g > 0. Define

Wy'? = {(p e(FMR) if@=> (:-®":fy), then > nnlg® | fo | < 00}. (3.21)
n=0

n=1

If @ e Wy ?, then we define

N@llgie = | S nnig2n| fals. (3.22)
n=1

THEOREM 3.9. Let v be a measure on the Borel subsets of R. If v is absolutely con-
tinuous with respect to the Lebesgue measure dt and its Radon-Nikodym derivative
g=dv/dt € L*(R), then, for all functions @ € Wﬁ;ﬂw,

I :r<o>cp+jRa;r(l(,w,t]g)atmdv<t>. (3.23)
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PROOF. If g(x) = 0 almost everywhere, then v = 0 and the theorem is trivially true.
We assume that [|glle > 0. For all ¢ € (¥(R)), the function t — ((3;T(1(—x.19)0: P,
g)) is measurable. Therefore, the function t — 8; T (1 (_«,19)0: @ is weakly measurable.
Also, for all ¢ € (¥(R)), we have

[ 1@ acnngaew) avi

- |, @ Cono)ap.20)) [dvie)
(3.24)
< [ P ng)alolioewllody 0

<[ [Iraceogaoliavo] | [ lawiiavo]
Let @ = 5% (: -7, £,). Then we have
[ Iraceagaeliava - Jmil("_ D (Lwng) ™ fult,) [odv(D)
= JR i n2n=D! (1cwn9) "™ ) [dv(t) (3.25)
<. Znn'||1< wnglZ7V |t v,

Since dv(t) = g(t)dt, we obtain

00

j IT(1wn1g)c@|lodv(t) <j Z |1 Congl 2" | fu(t, ) ol glldt

8

J Z RG22V | fult, ) |2 1G] wdt

_ | 2n-1
Enn gl f | fa(t,) | 5dt (3.26)

= > gl tnnt| £l
Pt
IIgH |||Q9|\|H9Hm1/2

< 00,

Similarly, we have
jmllatwllédvu) < fRHatwlléugnmm < ||g||mjm eyl <. (327)

Thus, [z 0/ T(1(—w,g)0:@ dv(t) exists in the Pettis sense.
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For any 0 € ¥ (R). we denote Fp =: 9 ;. We will prove first the theorem for an
exponential function F,, where n € L%(R).. To prove the above equality, we use the
S-transform. Let & € ¥'(R). We have

S(rOF+ [ oT(nngadvn)©
R
=S(1"(O)F,,)(§)+S(J a;fr(1(_m,”g)atF,,dv(t))(g)
R
- 1+J S@FT(1w1g)3cFy) (E)dV(D)
N (3.28)
=1 +JR (66,8)S(T(1(—00,119)0cFy) (E)AV (1)

=1 +JR§(t)S(r(1(—wyt]g)<5t,rl>Fn)(§)dV(t)

-1 +J[R”(t)g(t)s(r(h—w,ng)ﬁ)(E)dv(t).

But I'(1(-w,nng) Fy = Fl(fw,t]g,,. Hence, we get

S(F(O)F,, + L@ a;kr(l(,w,t]g)atFndv(t)) (€)
=14 | nOFOS(F o) (E1AV(D)
=1+ J{R n(OEW@) ((F1 ., gn, Fe))dv (D)
=1+Lﬂﬂwgaw“vwwmadwﬂ

1+ [ nEmetcmamIgnar
N (3.29)

-1+ J{Rg(t)rl(t)E(t)eﬁmg(sm(s)i(smsdt
— 14 el wd©nsE)ds e

— 11l aon©Eds _q

— olgn®

= S(Fgy) (&)
=S(I(g)F,)(8).

The theorem can then be checked to hold for all Wﬁ éyzum -functions by a limiting process

in the same way as classical Clark-Ocone formula. O
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OBSERVATION 3.10. If we think of 1(_.,; as being a multiplication operator, then
the following equality holds:

t
Loy = Jﬁ (85,-)0ds, (3.30)

in the following sense:
t
VAGEIR), [ 1anf©9@ds= [ (Gu)Boglds.  (331)

If we regard 1(_,) and ffoo<63, -)0ds as elements of the space B(¥(R) x ¥(R),R),
then the above observation says that these two operators are the same. We may also
write ffoo(65, -)8¢ds in the form ffoo ¥ osds.

Let {er}rer € ¥ (R) and {fi}ier C ' (R) such that, for all h € ¥(R), the functions
t — (et,h) and t — (ft, h) are measurable and there exist two positive numbers u and
M such that, for all h € $(R), we have [ [{e;,h)|?dt < M - |h|? and [g |{ft,h)|?dt <
M - |h|2. Then we may define the operator T € B(¥(R) x $(R),R) by the formula

T(g,h) = JR (et,g) - (fr,h)dt. (3.32)

T is a continuous operator and, since ¥(R) is a nuclear space, by the abstract kernel
theorem, there exists a unique bounded linear operator P : ¥(R) — ¥’ (R) such that for
all g, h € ¥(R), we have

T(g,h) =(Pg,h). (3.33)
We will write
P= J (er, ) frdt (3.34)
R
or
pP= J fifeidt. (3.35)
R

The abstract kernel theorem further guarantees the existence of two positive numbers
p and g such that P : ¥(R), — ¥ (R), is a Hilbert-Schmidt operator, therefore bounded.
Thus, there exist p, q, and C > 0 such that

VgeSR), IPglq=<C-lgl,. (3.36)

We may define the second quantization operator of P asI'(P) : (¥(R)) — (¥(R))* in the
following way: if @ = S _o(: -®" 1, gn) € (#(R)), where for all n = 0, g, € ¥(R)", then

T(P)p=> (:-°":,P%"gy). (3.37)
n=0
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As an observation, I'(P) is a bounded linear operator from (¥(R)) into (¥(R))*. For any
t € R, we can also define the operator P; = ffoo(es, ) fsds as Pr = [g{es, ) fids, where

e; ifs<t, fs ifs<t,
el = L= (3.38)
$ {0 if s > t, fs {0 if s > t.

Now, we will define a bounded linear operator [, D}“[F(Pt)Deldt from (¥(R)) into
(¥(R))*. Before doing this, we find an estimation for the integral [ [|D, ¢ II%dt, where
k is a real number and ¢ € (#(R)). Let ¢ = > 7_o(: -®" 1, hy,), where h, € E?", for all
n > 0. Each h,, can be written as

M= D Qijiyin€}, €5, - € (3.39)

11,0250 in

where a;,i,...i, € R and e],e5,... is an orthonormal basis of E = L?(R) given by eigen-

vectors of the operator A corresponding to the eigenvalues Aj,As,.... Also, for any

permutation o of the set {1,2,...,n}, we have Aig1yig):
Forall t € R and n € N, we have

igm) = Aijin---in-

2
Z Aijin--ein (ft,e;)eiz e | dt

11,12,emin k

[ n i |

=J > D, Qiripein @iz (i€l ) (frr€))
R 1,02 esin 1 j2,eenin
LR U RS L () RRRR CAN Y.

n"J2 12’ J2 in’

= J z zailiz...ina‘,‘liz...in <ft,e£1><ft,€31 A‘Ezk e Ai’:dt

i1,i2,0in J1

ZJR Z Afzk )\Zkzzalllz lnaJllZ ln<ftyell <ff’ejl>dt

12,m0in i1 J1

2

_ 2k 2k
_JIR‘Z ATV A2k

zai]iz...in <ft,e£1>
i

<ft,zaili2---in€§1>

i

AZkJ ‘ <ft,zlli1i2--~ine§1>
i

2

2

A dt

Il
=l
V]

-~
Lo
~ >v'

2
at

.....

A
M

e
Eed
=

’
i ...ineil
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_ 2k 2k 22
=M Z Afy AL Z'alllZ“'ln| Ayl
i

1250 in

<M Z )\lglmax(k,u))\lzzmax(k,u) . _Algyinax(k,u) Aiyiy..i
i1,02,0in
2
=M | hn |max(k,u}'
Let v = max(k,u). Then
[e] 2
2 _ ~
J ID s wllidt :J > (2 nfié1hy)|| dt
R Rilp=1 k

—

S (n-1)n?| fid1hn | dt
Ry=1

n=1 R
<> nnM|h, |

n=1

<> n2"M|hy, |3

n=1

<> nAZM|hy, |}
n=1

<> M ha .,
n=0
=Mllylls.,,

where [ is a large number chosen such that A3! > 2.
We consider the bilinear map A: (¥(R)) X (¥(R)) — C defined by

A@w) = | (D3I ()DL @, w))dt.

n

(3.40)

(3.41)

(3.42)

It turns out that A is a continuous bilinear map and, since (¥(R)) is a nuclear space,
by the abstract kernel theorem, there exists a unique bounded operator B: (¥(R)) —

((R))* such that, for all ,y € (¥(R)), we have

We denote this operator B by [ D}tr(Pt)Detdt.

THEOREM 3.11. Using the above notations,

[(P)=T(O)+ | DAT(P)D.,dt.

(3.43)

(3.44)
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PROOF. Since I'(P) and I'(0) + [ D}IF(PI)De[dt are continuous and linear operators,
to prove that they are equal, it is enough to check that they produce the same result
when they are applied to exponential functions. For any n € ¥(R)., we denote F, =:
el :. We want to prove that I['(P)F; =T(0)F, + [ D},T(Pt) D, dtFy. To do this, we will
use the S-transform. For all &€ € ¥(R)., we have

s(rF, + JRD;tF(Pt)Detthn) ®)
= SO F) ) +5( [ DAT (PO ALy ) @)
5@ +5( [ DAT(POD.,dLF, ) (E)
— ((1Fe)) + <<JRD}‘[F(Pt)De[thn,F§>>
=1+ JIR ((D$T(P)De, Fy, Fe) )dt
=14 | (0P DeFr, D Fe)) e
= 1 [ (TP et E (B Fe) )t

14 j (e0,n) (fo, E) ((T(Py) Fy, Fe))dt

(3.45)
= 1t | Cerm) (B ((Frun. Pt
1 [ (enm (fBetnar
R
=1+ J (et’ r,) (ft’ E)e.ﬁm(esﬂ)(f:yg)dfdt
R
=1+ eﬁoo(‘fsvﬂ)(fs,g)ds | t°°
— 14 el StesmifsErds _q
= ol & esm)fs E)ds
= o(PnE)
= ((Fpn, Fg))
= ((T(P)Fy, Fg))
=S(T(P)Fy) (&).
O

APPLICATION 3.12. Consider the following white noise initial value problem:

aQ
ar D}.QD,,

(3.46)
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where Q : [0,e) — L((S(R)),(S(R))*) and E[-] denotes the operator that associates
to each test function its expectation. Here, L((S(R)),(S(R))*) denotes the space of
bounded linear maps from (S(R)) into (S(R))*.

This initial value problem is similar to the classical birth-and-death differential equa-
tion

dp
ap = (BO=5)P, (3.47)

P(0) = P,

where P(t) denotes the size of a population at time t, f(t) is the birthrate at time t, and
O (t) is the death rate at time t. In the white noise problem, the birthrate S(t) is replaced
by the creation operator DJ’EI, while the death rate 6 (t) is replaced by the annihilation
operator D,,. Theorem 3.11 tells us that the solution of the above white noise initial
value problem, in the weak sense, is Q(t) =I'(P;), where P; = fé fFesds.
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