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We introduce r -fuzzy strongly preopen and r -fuzzy strongly preclosed sets in fuzzy topo-
logical space in view of the definition of Šostak (1985). We investigate some properties
of them. Moreover, the concepts of fuzzy SP-continuous, fuzzy SP-irresolute continuous,
fuzzy SP-irresolute open (closed) mappings, and a fuzzy SP-irresolute homeomorphism are
introduced and studied. Some of their characteristic properties are considered.
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1. Introduction and preliminaries. After the introduction of fuzzy sets by Zadeh

[20], Chang [1] was the first to introduce the concept of a fuzzy topology on a set X by

axiomatizing a collection T of fuzzy subsets of X, where he referred to each member

of T as an open set. In his definition of fuzzy topology, fuzziness in the concept of

openness of a fuzzy subset was absent. In [2, 4], the authors introduced the concept

of gradation of openness (closedness) of fuzzy subsets of X in two different ways and

gave definitions of a fuzzy topology on X. They referred to the fuzzy topology in the

sense of Chang as the topology of fuzzy subsets.

The gradation of openness on X, as introduced in [2], is a mapping τ : IX → I satisfy-

ing the following conditions:

(O1) τ(0)= τ(1)= 1,

(O2) τ(µ1∧µ2)≥ τ(µ1)∧τ(µ2), for any µ1,µ2 ∈ IX ,

(O3) τ(
∨
i∈Γ µi)≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX .

The pair (X,τ) is called a fuzzy topological space (FTS).

Historically, the fundamental idea of a topology itself being fuzzy, that is, a topology

being a fuzzy subset of a powerset, first appeared in 1980 in [5], a paper in which a

topology was a fuzzy subset of a traditional powerset of crisp subsets and in which

the axioms of the preceding paragraph appear for mappings defined on traditional

powersets. This was followed in 1985 by the independent and parallel generalizations

of Kubiak [11] and Šostak [15], papers in which a topology was a fuzzy subset of a

powerset of fuzzy subsets, and in [11, 15] appear exactly the axioms of the preceding

paragraph. Developments of this idea continued in [16, 17, 18] for the lattice L = I
of membership values, and significant generalizations of the restriction of L = I were

given in 1995 in [6] and again in 1997 in [12], where in the latter two, membership

lattices were used to describe such a topology, namely, a mapping from LX toM , where

L and M are appropriate lattices. Finally, we have the foundations of such topologies

developed in 1999: axiomatic foundations are laid in [7] for the original idea as given

in [11, 15] in which the base lattice L is fixed, and categorical foundations are laid in [7]
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for yet another significant generalization, the variable basis case, in which the lattice L
varies from space to space.

The board appeal of the notion of a topology as a fuzzy subset of a powerset of

fuzzy subsets is being independently considered by authors not aware of the historical

development of [5, 6, 7, 11, 12, 14, 15, 16, 17, 18], particularly its roots in [5, 11, 15],

including Chattopadhyay et al. [2], Ramadan [13], and Ying [19].

In this paper, we introduce r -fuzzy strongly preopen and r -fuzzy strongly preclosed

sets in an FTS of Šostak [15] as an extension of those of Krsteska [9, 10]. We inves-

tigate some properties of them. The classes of fuzzy strongly precontinuous, fuzzy

strongly preirresolute continuous, and fuzzy strongly preirresolute open (closed) map-

ping are introduced. We show that fuzzy continuity implies fuzzy strong precontinuity

and fuzzy strongly preirresolute continuity implies fuzzy strong precontinuity, but the

inverse of them is not true. Also, we obtain some properties of fuzzy strongly preirres-

olute continuous mappings.

Throughout this paper, let X be a nonempty set, I = [0,1], and I◦ = (0,1]. For α∈ I,
α(x)=α for all x ∈X.

Theorem 1.1 [3]. Let (X,τ) be an FTS. Then for each r ∈ I◦, λ ∈ IX , we define an

r -fuzzy closure operator Cτ : IX×I◦ → IX as follows:

Cτ(λ,r)=
∧{

µ ∈ IX : λ≤ µ, τ(1−µ)≥ r}. (1.1)

For λ,µ ∈ IX and r ,s ∈ I◦, the operator Cτ satisfies the following conditions:

(1) Cτ(0,r )= 0,

(2) λ≤ Cτ(λ,r),
(3) Cτ(λ,r)∨Cτ(µ,r)= Cτ(λ∨µ,r),
(4) Cτ(λ,r)≤ Cτ(λ,s) if r ≤ s,
(5) Cτ(Cτ(λ,r),r)= Cτ(λ,r).

Theorem 1.2 [8]. Let (X,τ) be an FTS. Then, for each r ∈ I◦, λ ∈ IX , we define an

r -fuzzy interior operator Iτ : IX×I◦ → IX as follows:

Iτ(λ,r)=
∨{

µ ∈ IX : λ≥ µ, τ(µ)≥ r}. (1.2)

For λ,µ ∈ IX and r ,s ∈ I◦, the operator Iτ satisfies the following conditions:

(1) Iτ(1−λ,r)= 1−Cτ(λ,r),
(2) Iτ(1,r )= 1,

(3) λ≥ Iτ(λ,r),
(4) Iτ(λ,r)∧Iτ(µ,r)= Iτ(λ∧µ,r),
(5) Iτ(λ,r)≥ Iτ(λ,s) if r ≤ s,
(6) Iτ(Iτ(λ,r),r)= Iτ(λ,r).

Definition 1.3 [8]. Let (X,τ) be an FTS, for λ∈ IX and r ∈ I◦.
(1) λ is called r -fuzzy semiopen (r -fso, for short) if and only if λ ≤ Cτ(Iτ(λ,r),r),

and λ is called r -fuzzy semiclosed (r -fsc, for short) if and only if 1−λ is r -fso.
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(2) λ is called r -fuzzy strongly semiopen (r -fsso, for short) if and only if λ ≤
Iτ(Cτ(Iτ(λ,r),r),r), and λ is called r -fuzzy strongly semiclosed (r -fssc, for

short) if and only if 1−λ is r -fsso.

(3) λ is called r -fuzzy preopen (r -fpo, for short) if and only if λ ≤ Iτ(Cτ(λ,r),r),
and λ is called r -fuzzy preclosed (r -fpc, for short) if and only if 1−λ is r -fpo.

(4) The r -fuzzy preinterior of λ, denoted by PIτ(λ,r), is defined by PIτ(λ,r) =∨{ν ∈ IX : ν ≤ λ, ν is r -fpo}.
(5) The r -fuzzy preclosure of λ, denoted by PCτ(λ,r), is defined by PCτ(λ,r) =∧{ν ∈ IX : ν ≥ λ, ν is r -fpc}.

Lemma 1.4. Let (X,τ) be an FTS for λ∈ IX and r ∈ I◦. Then,

(1) λ∨Cτ(Iτ(λ,r),r)≤ PCτ(λ,r),
(2) PIτ(λ,r)≤ λ∧Iτ(Cτ(λ,r),r),
(3) Iτ(PCτ(λ,r),r)≤ Iτ(Cτ(λ,r),r),
(4) Iτ(Cτ(Iτ(λ,r),r),r)≤ Iτ(PCτ(λ,r),r),
(5) PCτ(1−λ,r)= 1−PIτ(λ,r) and PIτ(1−λ,r)= 1−PCτ(λ,r).

Proof. (1) Since PCτ(λ,r) is r -fpc, we have

Cτ
(
Iτ(λ,r),r

)≤ Cτ(Iτ(PCτ(λ,r),r),r)≤ PCτ(λ,r). (1.3)

Thus, λ∨Cτ(Iτ(λ,r),r)≤ PCτ(λ,r).
(2) It can be shown as (1).

(3) It follows from the relation PCτ(λ,r)≤ Cτ(λ,r).
(4) From (1) we have

Iτ
(
PCτ(λ,r),r

)≥ Iτ(λ∨Cτ(Iτ(λ,r),r),r)≥ Iτ(Cτ(Iτ(λ,r),r),r). (1.4)

(5) It is straightforward.

Definition 1.5 [8, 15]. Let (X,τ) and (Y ,η) be FTS’s. Let f :X → Y be a mapping.

(1) f is called fuzzy continuous if and only if η(µ)≤ τ(f−1(µ)) for each µ ∈ IY .

(2) f is called fuzzy open if and only if τ(λ)≤ η(f(λ)) for each λ∈ IX .

(3) f is called fuzzy closed if and only if τ(1−λ)≤ η(1−f(λ)) for each λ∈ IX .

(4) f is called fuzzy strongly semicontinuous (resp., fuzzy semicontinuous and

fuzzy precontinuous) if and only if f−1(µ) is an r -fsso (resp., r -fso and r -fpo)

set of X for each µ ∈ IY , r ∈ I◦ with η(µ)≥ r .

2. r -fuzzy strongly preopen and r -fuzzy strongly preclosed sets

Definition 2.1. Let (X,τ) be an FTS for λ∈ IX and r ∈ I◦.
(1) λ is called r -fuzzy strongly preopen (r -fspo, for short) if and only ifλ≤ Iτ(PCτ(λ,

r),r).
(2) λ is called r -fuzzy strongly preclosed (r -fspc, for short) if and only if 1−λ is

r -fspo. Equivalently, Cτ(PIτ(λ,r),r)≤ λ.

(3) The r -fuzzy strongly preinterior of λ, denoted by SPIτ(λ,r), is defined by

SPIτ(λ,r)=
∨{ν ∈ IX : ν ≤ λ, ν is r -fspo}.
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(4) The r -fuzzy strongly preclosure of λ, denoted by SPCτ(λ,r), is defined by

SPCτ(λ,r)=
∧{ν ∈ IX : ν ≥ λ, ν is r -fspc}.

Theorem 2.2. Let (X,τ) be an FTS. For λ,µ ∈ IX and r ∈ I◦,
(1) if τ(λ)≥ r , then λ is r -fspo,

(2) if λ is r -fsso, then λ is r -fspo,

(3) if λ is r -fspo, then λ is r -fpo,

(4) λ is r -fspo if and only if there exists µ ∈ IX such that µ ≤ λ≤ Iτ(PCτ(µ,r),r),
(5) λ is r -fspc if and only if there exists µ ∈ IX such that Cτ(PIτ(µ,r),r)≤ λ≤ µ.

Proof. (1), (2), and (3) are easily proved from Lemma 1.4.

(4) Let λ ∈ IX . If µ ∈ IX such that µ ≤ λ ≤ Iτ(PCτ(µ,r),r) exists, then λ ≤
Iτ(PCτ(µ,r),r) ≤ Iτ(PCτ(λ,r),r). Thus λ is r -fspo. Conversely, if λ is r -fspo, then

the result follows for λ= µ.

(5) Similar to the proof of (4).

Theorem 2.3. Let (X,τ) be an FTS. For r ∈ I◦,
(1) any union of r -fspo sets is r -fspo,

(2) any intersection of r -fspc sets is r -fspc.

Proof. (1) Let {λα :α∈ Γ} be a family of r -fspo sets. For eachα∈ Γ , λα ≤ Iτ(PCτ(λα,
r),r). Hence, we have

∨
α∈Γ

λα ≤
∨
α∈Γ

(
Iτ
(
PCτ

(
λα,r

)
,r
))≤ Iτ

(
PCτ

( ∨
α∈Γ

λα,r
)
,r
)
. (2.1)

So,
∨
α∈Γ λα is r -fspo.

(2) Similar to the proof of (1).

Remark 2.4. The intersection of two r -fspo sets need not be r -fspo. The union of

two r -fspc sets need not be r -fspc. We will show it from Example 2.6(3).

Theorem 2.5. Let (X,τ) be an FTS. For λ,µ ∈ IX and r ∈ I◦, the following statements

hold:

(1) Cτ(λ,r) is r -fspc,

(2) λ is r -fspo if and only if λ= SPIτ(λ,r),
(3) λ is r -fspc if and only if λ= SPCτ(λ,r),
(4) Iτ(λ,r)≤ SPIτ(λ,r)≤ PIτ(λ,r)≤ λ≤ PCτ(λ,r)≤ SPCτ(λ,r)≤ Cτ(λ,r),
(5) SPIτ(1−λ,r)= 1−SPCτ(λ,r) and SPCτ(1−λ,r)= 1−SPIτ(λ,r),
(6) Cτ(SPCτ(λ,r),r)= SPCτ(Cτ(λ,r),r)= Cτ(λ,r).

Proof. (1), (2), (3), (4) follow from the definitions.

(5) For all λ∈ IX , r ∈ I◦, we have the following:

1−SPIτ(λ,r)= 1−
∨
{ν : ν ≤ λ, ν is r -fspo}

=
∧{

1−ν : 1−λ≤ 1−ν, 1−ν is r -fspc
}

= SPCτ
(
1−λ,r).

(2.2)
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(6) From Theorem 2.5(1), (3), SPCτ(Cτ(λ,r),r)= Cτ(λ,r). We only show that

Cτ
(
SPCτ(λ,r),r

)= Cτ(λ,r). (2.3)

Since λ≤ SPCτ(λ,r),

Cτ
(
SPCτ(λ,r),r

)≥ Cτ(λ,r). (2.4)

Suppose that

Cτ
(
SPCτ(λ,r),r

) 	≤ Cτ(λ,r). (2.5)

There exist x ∈X and r ∈ I◦ such that

Cτ
(
SPCτ(λ,r),r

)
(x) > Cτ(λ,r)(x). (2.6)

By the definition of Cτ , there exists ρ ∈ IX with λ≤ ρ and τ(1−ρ)≥ r such that

Cτ
(
SPCτ(λ,r),r

)
(x) > ρ(x)≥ Cτ(λ,r)(x). (2.7)

On the other hand, since ρ = Cτ(ρ,r), λ≤ ρ implies

SPCτ(λ,r)≤ SPCτ(ρ,r)= SPCτ
(
Cτ(ρ,r),r

)= Cτ(ρ,r)= ρ. (2.8)

Thus,

Cτ
(
SPCτ(λ,r),r

)≤ ρ. (2.9)

It is a contradiction. Hence, Cτ(SPCτ(λ,r),r)≤ Cτ(λ,r).
Example 2.6. Let X = {a,b,c}. Define the fuzzy sets µ,ρ,ν ∈ IX as follows:

µ(a)= 0.3, µ(b)= 0.2, µ(c)= 0.7,

ρ(a)= 0.8, ρ(b)= 0.8, ρ(c)= 0.4,

ν(a)= 0.8, ν(b)= 0.7, ν(c)= 0.6.
(2.10)

Define the fuzzy topology τ : IX → I as follows:

τ(λ)=




1, if λ= 0,1,
1
2
, if λ= µ,

2
3
, if λ= ρ,

2
3
, if λ= µ∧ρ,

1
2
, if λ= µ∨ρ,

0, otherwise.

(2.11)
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(1) By easy verification, it can be seen that 1= PCτ(ν,1/2) > ν∨Cτ(Iτ(ν,1/2),1/2)=
{0.8,0.8,0.6} and PIτ(1−ν,r) < 1−ν∧Iτ(Cτ(1−ν,1/2),1/2).

(2) ν is (1/2)-fspo set, but ν is not a (1/2)-fsso set.

(3) Let η∈ IX as η(a)= 0.4, η(b)= 0.2, η(c)= 0.8, then η is (1/2)-fspo set, but ρ∧η
is not a (1/2)-fspo set of (X,τ) because

η≤ Iτ
(
PCτ

(
η,

1
2

)
,
1
2

)
= Iτ

(
1,

1
2

)
= 1,

ρ∧η 	≤ Iτ
(
PCτ

(
ρ∧η, 1

2

)
,
1
2

)
= Iτ

(
1−µ∧ρ, 1

2

)
= µ∧ρ.

(2.12)

(4) If we define σ : IX → I as

σ(λ)=




1, if λ= 0,1,
2
3
, if λ= ρ,

0, otherwise,

(2.13)

then µ is a (2/3)-fpo set, which is not (2/3)-fspo because

µ ≤ Iσ
(
Cσ
(
µ,

2
3

)
,
2
3

)
= Iσ

(
1− 2

3

)
= 1,

µ 	≤ Iσ
(
PCσ

(
µ,

2
3

)
,
2
3

)
= Iσ

(
µ,

2
3

)
= 0.

(2.14)

Remark 2.7. From the above example it is not difficult to conclude that an r -fpo set

may not be an r -fspo set, and an r -fspo set may not be an r -fsso set. Also, the classes

of r -fspo sets and r -fso sets are independent.

3. Fuzzy SP irresolute continuous mappings

Definition 3.1. Let (X,τ) and (Y ,η) be FTS’s. Let f :X → Y be a mapping.

(1) f is called fuzzy strongly precontinuous (fuzzy SP continuous, for short) if and

only if f−1(µ) is an r -fspo set of X for each µ ∈ IY , r ∈ I◦ with η(µ)≥ r .

(2) f is called fuzzy strongly preirresolute (fuzzy SP irresolute, for short) continuous

if and only if f−1(µ) is an r -fspo set of X for each r -fspo µ ∈ IY .

(3) f is called fuzzy SP irresolute open (resp., fuzzy SP open) if and only if f(λ) is

an r -fspo set of Y for each r -fspo λ∈ IY (resp., τ(λ)≥ r ).

(4) f is called fuzzy SP irresolute closed (resp., fuzzy SP closed) if and only if f(λ)
is an r -fspc set of Y for each r -fspc λ∈ IY (resp., τ(1−λ)≥ r ).

(5) f is called a fuzzy SP irresolute homeomorphism if and only if f is bijective and

both of f and f−1 are fuzzy SP irresolute continuous.

Remark 3.2. (1) Every fuzzy continuous (resp., fuzzy open and fuzzy closed) map-

ping is fuzzy SP continuous (resp., fuzzy SP open and fuzzy SP closed).

(2) Every fuzzy SP irresolute continuous mapping is fuzzy SP continuous from

Theorem 2.2(1). Also, every fuzzy strongly semicontinuous mapping is fuzzy SP con-

tinuous. However, the converse of (1) and (2) may be false, see Examples 3.3 and 3.4.
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(3) Fuzzy SP irresolute continuous and fuzzy continuous mappings are independent

notions.

Example 3.3. We consider Example 2.6. If we put

η(λ)=




1, if λ= 0,1,
1
3
, if λ= µ,

0, otherwise,

(3.1)

then idX : (X,τ) → (X,η) is fuzzy precontinuous but idX is not fuzzy SP continuous.

Also, if we put

σ(λ)=




1, if λ= 0,1,
1
2
, if λ= ν,

0, otherwise,

(3.2)

we obtain PCσ : IX×I◦ → IX as follows:

PCσ(λ,r)=



1, if λ≥ ν, 0< r ≤ 1
3
,

λ, otherwise.
(3.3)

Moreover, for each λ ≥ ν and 0 < r ≤ 1/3, λ is r -fspo in (X,σ) and (X,η). Thus, the

identity mapping idX : (X,τ)→ (X,σ) is fuzzy SP precontinuous and fuzzy SP irresolute

continuous, but idX is neither fuzzy continuous nor fuzzy strong semicontinuous.

Example 3.4. Let X = {a,b,c}. Define the fuzzy sets µ1,µ2,µ3,µ4 ∈ IX as follows:

µ1(a)= 0.5, µ1(b)= 0.3, µ1(c)= 0.6,

µ2(a)= 0.3, µ2(b)= 0.4, µ2(c)= 0.3,

µ3(a)= 0.5, µ3(b)= 0.4, µ3(c)= 0.6,

µ4(a)= 0.5, µ4(b)= 0.5, µ4(c)= 0.6.

(3.4)

Define fuzzy topologies τ,η : IX → I as follows:

τ(λ)=




1, if λ= 0,1,
1
2
, if λ= µ1,

1
2
, if λ= µ2,

2
3
, if λ= µ1∧µ2,

2
3
, if λ= µ1∨µ2,

0, otherwise,

η(λ)=




1, if λ= 0,1,
1
3
, if λ= µ3,

0, otherwise.

(3.5)
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Then idX : (X,τ)→ (X,η) is fuzzy SP continuous but not fuzzy SP irresolute continu-

ous. Furthermore, idX is a fuzzy continuous mapping which is not fuzzy SP irresolute

continuous because

µ4 ≤ Iη
(
PCη

(
µ4,

1
3

)
,
1
3

)
= 1,

µ4 	≤ Iτ
(
PCτ

(
µ4,

1
3

)
,
1
3

)
= Iτ

(
1−µ2,

1
3

)
= µ3.

(3.6)

Theorem 3.5. Let (X,τ1) and (Y ,τ2) be FTS’s. Let f : X → Y be a mapping. The

following statements are equivalent:

(1) f is fuzzy SP irresolute continuous,

(2) for each r -fspc µ ∈ IY , f−1(µ) is r -fspc,

(3) f(SPCτ1(λ,r))≤ SPCτ2(f (λ),r), for each λ∈ IX and r ∈ I◦,
(4) SPCτ1(f−1(µ),r)≤ f−1(SPCτ2(µ,r)), for each µ ∈ IY and r ∈ I◦,
(5) f−1(SPIτ2(µ,r))≤ SPIτ1(f−1(µ),r), for each µ ∈ IY and r ∈ I◦,
(6) Cτ1(PIτ1(f−1(µ),r),r)≤ f−1(SPCτ2(µ,r)), for each µ ∈ IY and r ∈ I◦,
(7) f−1(SPIτ2(µ,r))≤ Iτ1(PCτ1(f−1(µ),r),r), for each µ ∈ IY and r ∈ I◦,
(8) f(Cτ1(PIτ1(λ,r),r))≤ SPCτ2(f (λ),r), for each λ∈ IX and r ∈ I◦.

Proof. (1)�(2). It is easily proved from Definition 2.1, and f−1(1−µ)= 1−f−1(µ).
(2)⇒(3). Suppose there exist λ∈ IX and r ∈ I◦ such that

f
(
SPCτ1(λ,r)

) 	≤ SPCτ2

(
f(λ),r

)
. (3.7)

There exist y ∈ Y and t ∈ I◦ such that

f
(
SPCτ1(λ,r)

)
(y) > t > SPCτ2

(
f(λ),r

)
(y). (3.8)

If f−1({y})=φ, it is a contradiction because f(SPCτ1(λ,r))(y)= 0.

If f−1({y})≠φ, there exists x ∈ f−1({y}) such that

f
(
SPCτ1(λ,r)

)
(y)≥ SPCτ1(λ,r)(x) > t > SPCτ2

(
f(λ),r

)(
f(x)

)
. (3.9)

Since SPCτ2(f (λ),r)(f (x)) < t, there exists r -fspc µ ∈ IY with f(λ)≤ µ such that

SPCτ2

(
f(λ),r

)(
f(x)

)≤ µ(f(x))< t. (3.10)

Moreover, f(λ)≤ µ implies λ≤ f−1(µ). From (2), f−1(µ) is r -fspc. Thus, SPCτ1(λ,r)(x)
≤ f−1(µ)(x)= µ(f(x)) < t. It is a contradiction to (3.9).

(3)⇒(4). For all µ ∈ IY , r ∈ I◦, put λ= f−1(µ). From (3), we have

f
(
SPCτ1

(
f−1(µ),r

))≤ SPCτ2

(
f
(
f−1(µ)

)
,r
)≤ SPCτ2(µ,r). (3.11)

It implies

SPCτ1

(
f−1(µ),r

)≤ f−1(f (SPCτ1

(
f−1(µ),r

)))≤ f−1(SPCτ2(µ,r)
)
. (3.12)

(4)⇒(5). It is easily proved from Theorem 2.5(5).
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(5)⇒(1). Let µ be an r -fspo set of Y . From Theorem 2.5(2), µ = SPIτ2(µ,r). By (5),

f−1(µ)≤ SPIτ1

(
f−1(µ),r

)
. (3.13)

On the other hand, by Theorem 2.5(4),

f−1(µ)≥ SPIτ1

(
f−1(µ),r

)
. (3.14)

Thus, f−1(µ)= SPIτ1(f−1(µ),r), that is, f−1(µ) is r -fspo.

(1)⇒(6). Let µ ∈ IY and r ∈ I◦. According to the assumption, f−1(SPCτ2(µ,r)) is r -

fspc set of X. Hence,

f−1(SPCτ2(µ,r)
)≥ Cτ1

(
PIτ1

(
f−1(SPCτ2(µ,r)

)
,r
)
,r
)

≥ Cτ1

(
PIτ1

(
f−1(µ),r

)
,r
)
.

(3.15)

(6)⇒(7). It can be proved by using (4), (5).

(7)⇒(8). Let λ ∈ IX and r ∈ I◦. We put µ = f(λ); then λ ≤ f−1(µ). According to the

assumption,

1−Iτ1

(
PCτ1

(
1−λ,r),r)≤ 1−Iτ1

(
PCτ1

(
f−1(1−µ),r),r)

≤ 1−f−1(SPIτ2

(
1−µ,r)). (3.16)

Thus,

Cτ1

(
PIτ1(λ,r),r

)≤ Cτ1

(
PIτ1

(
f−1(µ),r

)
,r
)≤ f−1(SPCτ2(µ,r)

)
. (3.17)

Hence,

f
(
Cτ1

(
PIτ1(λ,r),r

))≤ ff−1(SPCτ2(µ,r)
)≤ SPCτ2(µ,r)= SPCτ2

(
f(λ),r

)
. (3.18)

(8)⇒(1). Let r ∈ I◦ and let µ be an r -fspc set of Y . According to the assumption,

f
(
Cτ1

(
PIτ1

(
f−1(µ),r

)
,r
))≤ SPCτ2

(
ff−1(µ),r

)≤ SPCτ2(µ,r)= µ. (3.19)

Then Cτ1(PIτ1(f−1(µ),r),r)≤f−1f(Cτ1(PIτ1(f−1(µ),r),r))≤ f−1(µ). Thus, f−1(µ)
is an r -fspc set of X, hence, f is fuzzy SP irresolute continuous.

The following theorem is proved similarly as Theorem 3.5.

Theorem 3.6. Let (X,τ) and (Y ,η) be FTS’s. Let f : X → Y be a mapping. The fol-

lowing statements are equivalent:

(1) f is fuzzy SP continuous,

(2) f(SPCτ(λ,r))≤ Cη(f(λ),r), for each λ∈ IX and r ∈ I◦,
(3) SPCτ(f−1(µ),r)≤ f−1(Cη(µ,r)), for each µ ∈ IY and r ∈ I◦,
(4) f−1(Iη(µ,r))≤ SPIτ(f−1(µ),r), for each µ ∈ IY and r ∈ I◦,
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(5) Cτ(PIτ(f−1(µ),r),r)≤ f−1(Cη(µ,r)), for each µ ∈ IY and r ∈ I◦,
(6) f(Cτ(PIτ(λ,r),r))≤ Cη(f(λ),r), for each λ∈ IX and r ∈ I◦.

Theorem 3.7. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). If f is fuzzy SP irresolute continuous, then

f−1(µ)≤ SPIτ
(
f−1(Iη(PCη(µ,r),r)),r), (3.20)

for each µ is an r -fspo in Y and r ∈ I◦.
Proof. Let r∈I◦ and let µ be an r -fspo set of Y . Then f−1(µ)≤f−1(Iη(PCη(µ,r),r)).

Since f−1(µ) is an r -fspo set of X, we have

f−1(µ)≤ SPIτ
(
f−1(Iη(PCη(µ,r),r)),r). (3.21)

Theorem 3.8. Let f : (X,τ)→ (Y ,η) be a bijective mapping from an FTS (X,τ) into

an FTS (Y ,η). The mapping f is fuzzy SP continuous if and only if Iη(f (λ),r)≤ f(SPIτ(λ,
r)), for each λ∈ IX and r ∈ I◦.

Proof. We suppose that f is fuzzy SP continuous. For any λ ∈ IX and r ∈ I◦,
f−1(Iη(f (λ),r)) is an r -fspo set. From Theorem 3.6(4) and the fact that f is injective,

we have

f−1(Iη(f(λ),r))≤ SPIη
(
f−1f(λ),r

)= SPIτ(λ,r). (3.22)

Again, since f is surjective, we obtain

Iη
(
f(λ),r

)= ff−1(Iη(f(λ),r))≤ f (SPIτ(λ,r)
)
. (3.23)

Conversely, let µ ∈ IY and r ∈ I◦ with η(µ) ≥ r . Then Iη(µ,r) = µ. According to the

assumption,

f
(
SPIτ

(
f−1(µ),r

))≥ Iη(ff−1(µ),r
)= Iη(µ,r)= µ. (3.24)

This implies that

f−1f
(
SPIτ

(
f−1(µ),r

))≥ f−1(µ). (3.25)

Since f is injective, we obtain

SPIτ
(
f−1(µ),r

)= f−1f
(
SPIτ

(
f−1(µ),r

))≥ f−1(µ). (3.26)

Hence, SPIτ(f−1(µ),r) = f−1(µ), so f−1(µ) is an r -fspo set. Thus, f is fuzzy SP con-

tinuous.

Theorem 3.9. Let (X,τ) and (Y ,η) be FTS’s. Let f : X → Y be a mapping. The fol-

lowing statements are equivalent:

(1) f is fuzzy SP irresolute open,

(2) f(SPIτ(λ,r))≤ SPIη(f (λ),r), for each λ∈ IX and r ∈ I◦,
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(3) SPIτ(f−1(µ),r)≤ f−1(SPIη(µ,r)), for each µ ∈ IY and r ∈ I◦,
(4) for any µ ∈ IY and any r -fspc λ∈ IX with f−1(µ)≤ λ, there exists an r -fspc ρ ∈ IY

with µ ≤ ρ such that f−1(ρ)≤ λ.

Proof. (1)⇒(2). For each λ ∈ IX , since SPIτ(λ,r) ≤ λ from Theorem 2.5(4), we have

f(SPIτ(λ,r)) ≤ f(λ). From (1), f(SPIτ(λ,r)) is an r -fspo. Hence, f(SPIτ(λ,r)) ≤
SPIη(f (λ),r).

(2)⇒(3). For all µ ∈ IY , r ∈ I◦, put λ= f−1(µ) from (2). Then

f
(
SPIτ

(
f−1(µ),r

))≤ SPIη
(
f
(
f−1(µ)

)
,r
)≤ SPIη(µ,r). (3.27)

It implies SPIτ(f−1(µ),r)≤ f−1(SPIη(µ,r)).
(3)⇒(4). Let λ be an r -fspc set of X such that f−1(µ)≤ λ. Since 1−λ≤ f−1(1−µ) and

SPIτ(1−λ,r)= 1−λ,

SPIτ
(
1−λ,r)= 1−λ≤ SPIτ

(
f−1(1−µ),r). (3.28)

From (3),

1−λ≤ SPIτ
(
f−1(1−µ),r)≤ f−1(SPIη

(
1−µ,r)). (3.29)

It implies

λ≥ 1−f−1(SPIη
(
1−µ,r))= f−1(1−SPIη

(
1−µ,r))= f−1(SPCη(µ,r)

)
. (3.30)

Hence, there exists an r -fspc SPCη(µ,r)∈ IY with µ ≤ SPCη(µ,r) such that f−1(SPCη(µ,
r))≤ λ.

(4)⇒(1). Let ω be an r -fspo set of X. Put µ = 1−f(ω) and λ = 1−ω such that λ is

r -fspc. We obtain

f−1(µ)= f−1(1−f(ω))= 1−f−1(f(ω))≤ 1−ω= λ. (3.31)

From (4), there exists an r -fspc set ρ with µ ≤ ρ such that f−1(ρ)≤ λ= 1−ω. It implies

ω ≤ 1−f−1(ρ) = f−1(1−ρ). Thus, f(ω) ≤ f(f−1(1−ρ)) ≤ 1−ρ. On the other hand,

since µ ≤ ρ,

f(ω)= 1−µ ≥ 1−ρ. (3.32)

Hence, f(ω)= 1−ρ, that is, f(ω) is r -fspo.

The following three theorems are proved similarly as Theorem 3.9.

Theorem 3.10. Let (X,τ) and (Y ,η) be FTS’s. Let f : X → Y be a mapping. The

following statements are equivalent:

(1) f is fuzzy SP open,

(2) f(Iτ(λ,r))≤ SPIη(f (λ),r), for each λ∈ IX and r ∈ I◦,
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(3) Iτ(f−1(µ),r)≤ f−1(SPIη(µ,r)), for each µ ∈ IY and r ∈ I◦,
(4) for any λ∈ IY and any µ ∈ IX with τ(1−µ)≥ r such that f−1(λ)≤ µ, there exists

an r -fspc ρ ∈ IY with λ≤ ρ such that f−1(ρ)≤ µ.

Theorem 3.11. Let (X,τ) and (Y ,η) be FTS’s. Let f : X → Y be a mapping. The

following statements are equivalent:

(1) f is fuzzy SP irresolute closed,

(2) SPCη(f (λ),r)≤ f(SPCτ(λ,r)), for each λ∈ IX and r ∈ I◦.
Theorem 3.12. Let (X,τ) and (Y ,η) be FTS’s. Let f : X → Y be a mapping. The

following statements are equivalent:

(1) f is fuzzy SP closed,

(2) SPCη(f (λ),r)≤ f(Cτ(λ,r)), for each λ∈ IX and r ∈ I◦.
Theorem 3.13. Let f : (X,τ)→ (Y ,η) be a bijective mapping from an FTS (X,τ) into

an FTS (Y ,η). Then the following statements are equivalent:

(1) f is fuzzy SP irresolute closed,

(2) f−1(SPCη(µ,r))≤ SPCτ(f−1(µ),r), for each µ ∈ IY and r ∈ I◦,
(3) f is fuzzy SP irresolute open,

(4) f−1 is fuzzy SP irresolute continuous.

Proof. (1)⇒(2). Let f be fuzzy SP irresolute closed. From Theorem 3.11(2),

f(SPCτ(λ,r)) ≥ SPCη(f (λ),r), for each λ ∈ IX and r ∈ I◦. For all µ ∈ IY , r ∈ I◦, put

λ= f−1(µ) from (1). Since f is onto, f(f−1(µ))= µ. Thus,

f
(
SPCτ

(
f−1(µ),r

))≥ SPCη
(
f
(
f−1(µ)

)
,r
)= SPCη(µ,r). (3.33)

Since f is injective, it implies

SPCτ
(
f−1(µ),r

)= f−1(f (SPCτ
(
f−1(µ),r

)))≥ f−1(SPCη(µ,r)
)
. (3.34)

(2)⇒(1). From (2), put µ = f(λ) for each λ∈ IX . Since f is injective,

f−1(SPCη
(
f(λ),r

))≤ SPCτ
(
f−1(f(λ)),r)= SPCτ(λ,r). (3.35)

Since f is onto, SPCη(f (λ),r) ≤ f(SPCτ(λ,r)). From Theorem 3.11(2), f is fuzzy SP

irresolute closed.

(2)�(3). From Theorems 3.9(3) and 2.5(5), it is proved from the following:

f−1(SPCη(µ,r)
)≤ SPCτ

(
f−1(µ),r

)
⇐⇒f−1(1−SPIη

(
1−µ,r))≤ 1−SPIτ

(
1−f−1(µ),r

)
⇐⇒1−f−1(SPIη

(
1−µ,r))≤ 1−SPIτ

(
f−1(1−µ),r)

⇐⇒f−1(SPIη
(
1−µ,r))≥ SPIτ

(
f−1(1−µ),r).

(3.36)

(2)�(4). From Theorem 2.5(3), it is trivial.

From the above theorems, we easily prove the following corollary.
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Corollary 3.14. Let f : (X,τ)→ (Y ,η) be a bijective mapping from an FTS (X,τ)
into an FTS (Y ,η). Then the following statements are equivalent:

(1) f is a fuzzy SP irresolute homeomorphism,

(2) f is fuzzy SP irresolute continuous and fuzzy SP irresolute open,

(3) f is fuzzy SP irresolute continuous and fuzzy SP irresolute closed,

(4) f(SPIτ(λ,r))= SPIη(f (λ),r), for each λ∈ IX and r ∈ I◦,
(5) f(SPCτ(λ,r))= SPCη(f (λ),r), for each λ∈ IX and r ∈ I◦,
(6) SPIτ(f−1(µ),r)= f−1(SPIη(µ,r)), for each µ ∈ IY and r ∈ I◦,
(7) SPCτ(f−1(µ),r)= f−1(SPCη(µ,r)), for each µ ∈ IY and r ∈ I◦.

Theorem 3.15. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). Then the following statements are equivalent:

(1) f is fuzzy SP irresolute open,

(2) f(SPIτ(λ,r))≤ Iη(PCτ(f(λ),r),r), for each λ∈ IX and r ∈ I◦.
Proof. (1)⇒(2). Let λ ∈ IX and r ∈ I◦. Then SPIτ(λ,r) is an r -fspo set of X. By (1),

f(SPIτ(λ,r)) is an r -fspo set of Y . Hence,

f
(
SPIτ(λ,r)

)≤ Iη(f (SPIτ(λ,r)
)
,r
)≤ Iη(PCη(f(λ),r),r). (3.37)

(2)⇒(1). Let λ be an r -fspo set of X. From f(λ)= f(SPIτ(λ,r))≤ Iη(PCη(f(λ),r),r)
it follows that f(λ) is an r -fspo set of Y . Hence, f is fuzzy SP irresolute open.

Theorem 3.16. Let f : (X,τ)→ (Y ,η) be an mapping from an FTS (X,τ) into an FTS

(Y ,η). Then the following statements are equivalent:

(1) f is fuzzy SP irresolute closed,

(2) Cη(PIη(f (λ),r))≤ f(SPCτ(λ,r)), for each λ∈ IX and r ∈ I◦.
Theorem 3.17. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). Then the following statements are equivalent:

(1) f is fuzzy SP open,

(2) f(Iτ(λ,r))≤ Iη(PCη(f(λ),r),r), for each λ∈ IX and r ∈ I◦.
Theorem 3.18. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). Then the following statements are equivalent:

(1) f is fuzzy SP closed,

(2) Cη(PIτ(f (λ),r),r)≤ f(Cτ(λ,r)), for each λ∈ IX and r ∈ I◦.
Theorem 3.19. Let f : (X,τ) → (Y ,η) be a mapping. Then f is fuzzy SP irresolute

open if and only if for each ν ∈ IY and each r -fspc set λ∈ IX , r ∈ I◦, when f−1(ν)≤ λ,

there exists an r -fspc set µ ∈ IY such that ν ≤ µ and f−1(µ)≤ λ.

Proof. Suppose that f is a fuzzy SP irresolute open mapping, ν ∈ IY , and λ is an

r -fspc set of X, r ∈ I◦, such that f−1(ν) ≤ λ. Then, f(1−λ) ≤ f(f−1(1−ν)) ≤ 1−ν .

Since f is fuzzy SP irresolute open, then f(1−λ) is an r -fspo set of Y . Hence,

f
(
1−λ)≤ SPIη

(
1−ν). (3.38)
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Thus

1−λ≤ f−1(f (1−λ))≤ f−1(SPIη
(
1−ν),r). (3.39)

It follows that

λ≥ f−1(1−SPIη
(
1−ν,r))= f−1(SPCη(ν,r)

)
. (3.40)

The result follows for µ = SPCη(ν,r).
Conversely, let ω be only r -fspo set of X. We claim that f(ω) is an r -fspo set of Y .

Fromω≤ f−1(f (ω)) it follows that 1−ω≥ 1−f−1f(ω), where 1−ω is an r -fspc set of

X. Hence, there is ν an r -fspc set of Y such that ν ≥ f(1−ω) and f−1(ν)≤ 1−ω. Since

ν ≥ f(1−ω), it follows that ν ≥ SPCη(f (1−ω),r) or 1−ν ≤ 1−SPCη (f (1−ω),r) =
SPIη(f (ω),r). From f−1(ν)≤ 1−ω, we obtain f−1(1−ν)≥ω or 1−ν ≥ ff−1(1−ν)≥
f(ω). Since f(ω) ≤ 1−ν ≤ SPIη(f (ω),r), we have f(ω) = SPIη(f (ω),r). Thus, f(ω)
is an r -fspo set of Y , hence, f is fuzzy SP irresolute open.

Theorem 3.20. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). If f is fuzzy SP irresolute open, then

(1) f−1(Cη(PIη(µ,r),r))≤ SPCτ(f−1(µ),r), for each µ ∈ IY and r ∈ I◦,
(2) f−1(Cη(µ,r))≤ SPCτ(f−1(µ),r), for each µ an r -fpo set of Y and r ∈ I◦.

Proof. (1) Let µ ∈ IY and r ∈ I◦. Then SPCτ(f−1(µ),r) is an r -fspo set of X. From

Theorem 3.20 it follows that there exists an r -fspc set ν of Y such that µ ≤ ν and

f−1(ν)≤ SPCτ(f−1(µ),r). Thus

f−1(Cη(PIη(µ,r),r))≤ f−1(Cη(PIη(ν,r),r))≤ f−1(ν)≤ SPCτ
(
f−1(µ),r

)
. (3.41)

(2) It follows immediately from (1).

The following theorem is proved similarly as Theorem 3.20.

Theorem 3.21. Let f : (X,τ)→ (Y ,η) be a mapping from an FTS (X,τ) into an FTS

(Y ,η). If f is fuzzy SP open, then

(1) f−1(Cη(PIη(µ,r),r))≤ Cτ(f−1(µ),r), for each µ ∈ IY and r ∈ I◦,
(2) f−1(Cη(µ,r))≤ Cτ(f−1(µ),r), for each µ an r -fpo set of Y and r ∈ I◦.
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