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DEMONIC SEMANTICS: USING MONOTYPES AND RESIDUALS
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Relations and relational operators can be used to define the semantics of programming lan-
guages. The operations ∨ and ◦ serve to give angelic semantics by defining a program to
go right when there is a possibility to go right. On the other hand, the demonic operations
� and � do the opposite: if there is a possibility to go wrong, a program whose semantics
is given by these operators will go wrong; it is the demonic semantics. This type of seman-
tics is known at least since Dijkstra’s introduction of the language of guarded commands.
Recently, there has been a growing interest in demonic relational semantics of sequential
programs. Usually, a construct is given an ad hoc semantic definition based on an intuitive
understanding of its behavior. In this note, we show how the notion of relational flow dia-
gram (essentially a matrix whose entries are relations on the set of states of the program),
introduced by Schmidt, can be used to give a single demonic definition for a wide range of
programming constructs. This research had originally been carried out by J. Desharnais and
F. Tchier (1996) in the same framework of the binary homogeneous relations. We show that
all the results can be generalized by using the monotypes and the residuals introduced by
Desharnais et al. (2000).
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1. Introduction. The approaches to semantics are categorized as operational, ax-

iomatic, or denotational. We will be concerned with the operational and the denota-

tional semantics of nondeterministic programs. The operational semantics is described

by the relation between the initial and final states. In our case, we consider the worst

execution of the program; that is, we suppose that the program behaves as badly as

possible according to the demonic relational semantics . Usually this last one is given

an ad hoc semantics definition based on an intuitive understanding of the behavior of

the program. Denotational semantics has been introduced by Scott and Strachey. To

give the denotational semantics, we associate to a program a mathematical object. In

our case, this object is a flow diagram which is a graph whose arrows are weighted by

the different steps of the program. The operations are “the demonic choice” and “de-

monic composition.” In this note, we show how the notion of the flow diagram can be

exploited to give single demonic operational semantics (with only demonic operators)

for a wide range of programming constructs.

2. Relation algebras

2.1. Definition and basic laws. Both homogeneous and heterogeneous relation al-

gebras are employed in computer science. In this note, we use heterogeneous relation

algebras whose definition is taken from [9, 26, 27].
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Definition 2.1. A relation algebra � is a structure (A,∨,∧,−,◦,� ) over a nonempty

set A of elements called relations. The unary operations − and � are total whereas the

binary operations ∨, ∧, and ◦ are partial. By A∨R , the set of elements Q∈A is denoted

for which the unionR∨Q is defined andR ∈A∨R for everyR ∈A is required. IfQ∈A∨R ,

Q is of the same type as R. The following conditions are satisfied.

(a) The structure (A∨R,∨,∧,−) is a Boolean algebra with zero element 0R and univer-

sal element 1R . The elements of A∨R are ordered by an inclusion, denoted by ≤.

(b) If the products P ◦R and Q◦R are defined, so is P ◦Q�. If the products P ◦Q and

P ◦R are defined, so is Q� ◦R. If Q◦R exists, so does Q◦P for every P ∈A∨R .

(c) The composition is associative: P ◦(Q◦R)= (P ◦Q)◦R.

(d) There are elements R id and idR associated to every relation R ∈ A. The relation

R id behaves as a right identity and the relation idR as a left identity for A∨R .

(e) The Schröder rule P ◦Q ≤ R� P� ◦−R ≤ −Q� −R ◦Q� ≤ −P holds whenever

one of the three expressions is defined.

(f) According to Tarski rule, 1◦R◦1= 1 if and only if R ≠ 0 (provided 1◦R◦1= 1 is

defined).

If R� ∈ A∨R , then R is said to be homogeneous. If all R ∈� have the same type, the

operations are all total and � itself is said to be homogeneous.

For simplicity, the universal, zero, and identity elements are all denoted by 1, 0, and

id, respectively. One can use subscripts to make the typing explicit, but this will not be

necessary here. The precedence of the relational operators, from highest to lowest, is

the following: − and � bind equally, followed by ◦, followed by ∧, and finally by ∨. The

scope of
∨
i and

∧
i goes to the right as far as possible. The relation R� is called the

converse of R. The partial operations involved in relational expressions are assumed to

be defined, even when it is not explicitly mentioned. Another operation that occurs in

this note is the reflexive transitive closure R∗. It satisfies the well-known laws

R∗ =
∨
i≥0

Ri, R∗ = id∨R◦R∗ = id∨R∗ ◦R, (2.1)

where R0 = id and Ri+1 = R◦Ri. From Definition 2.1, the usual rules of the calculus of

relations can be derived (see, e.g., [9, 11, 27]). We assume these rules to be known and

simply recall a few of them.

Theorem 2.2. Let � be a relation algebra and let P,Q,R ∈�. Then,

(a) P∧Q≤ R� P ≤−Q∨R,

(b) P ◦(Q∧R)≤ P ◦Q∧P ◦R,

(c) (P∧Q)◦R ≤ P ◦R∧Q◦R,

(d) P ◦(Q∨R)= P ◦Q∨P ◦R,

(e) (P∨Q)◦R = P ◦R∨Q◦R,

(f) Q≤ R⇒ P ◦Q≤ P ◦R,

(g) P ≤Q⇒ P ◦R ≤Q◦R,

(h) Q≤ R�Q� ≤ R�,

(i) (Q∨R)� =Q�∨R�,

(j) (Q∧R)� =Q�∧R�,
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(k) (Q◦R)� = R� ◦Q�,

(l) R�� = R.

2.2. Galois connections. The notion of Galois connections is very important in what

follows. There are many definitions of Galois connections [1]. We choose the following

one [5].

Definition 2.3. Let (S,≤S) and (S′,≤S′) be two preordered sets. A pair (f ,g) of

functions, where f : S → S′ and g : S′ → S, forms a Galois connection if and only if the

following formula holds for all x ∈ S and y ∈ S′:

f(x)≤S′ y ⇐⇒ x ≤S g(y). (2.2)

The function f is called the lower adjoint and g is the upper adjoint.

2.3. Residuals. We now present some operations which are closely related to com-

position and Galois connections, the residuals [5], defined as follows:

R ≤ T/S ⇐⇒ R◦S ≤ T ,
R ≤ S\T ⇐⇒ S ◦R ≤ T , (2.3)

whereR, S, and T are relations. The operators / and \ have been given a variety of names

in the literature, such as, left and right factor operators [12]. We prefer the terminology

left and right residual operators [18].

3. Monotypes and related operators

3.1. Monotypes. In the calculus of relations, there are two ways for viewing sets as

relations; each of them has its own advantages. The first is via vectors: a relation x is

a vector [27] if and only if x = x ◦1. The second way is via monotypes [5]: a relation

a is a monotype if and only if a ≤ id. The set of monotypes {a | a ∈ A∨R}, for a given

R, is a complete Boolean lattice. We denote by a∼ the monotype complement of a.

Monotypes have very simple and convenient properties. Some of them are presented in

the following proposition. We draw the attention of the reader to Proposition 3.1(b); we

will often use it without mention. It shows that for monotypes, composition and meet

have the same effect.

Proposition 3.1. Let a and b be monotypes. Then,

(a) a= a� = a2,

(b) a◦b = a∧b = b◦a,

(c) a∨a∼ = id and a∧a∼ = 0,

(d) a≤ b� b∼ ≤ a∼,

(e) a∼ ◦b∼ = (a∨b)∼,

(f) (a∧b)∼ = (a◦b)∼ = a∼∨b∼,

(g) a◦b∼∨b = a∨b,

(h) a◦b ≤ c� c∼ ◦b ≤ a∼,

(i) a≤ b� a◦1≤ b◦1.
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All these properties are obvious Boolean laws, except for (g) whose proof is as follows:

a◦b∼∨b = a◦b∼∨a◦b∨b (since a◦b ≤ b)
= a◦(b∼∨b)∨b (

by Theorem 2.2(d)
)

= a∨b (
since id= b∼∨b).

(3.1)

3.2. Domain and codomain operators. The domain and codomain of a relation R
can be characterized by the vectors R ◦ 1 and R� ◦ 1, respectively [15, 27]. They can

also be characterized by the corresponding monotypes. In this note, we take the latter

approach. In what follows, we formally define these operators and give some of their

properties.

Definition 3.2. The domain and codomain operators of a relation R, denoted by

R< and R>, respectively, are the monotypes defined by the equations:

(a) R< = id∧R◦1,

(b) R> = id∧1◦R.

These operators can also be characterized by Galois connections (see [5]): for each

relation R and each monotype a,

R< ≤ a⇐⇒ R ≤ a◦1, (3.2)

R> ≤ a⇐⇒ R ≤ 1◦a. (3.3)

The domain and codomain operators are linked by the equation

R> = R�<, (3.4)

as can be easily checked.

The proposition below presents some obvious properties of the domain operator.

The corresponding properties of the codomain operator can be deduced by duality.

Proposition 3.3. Let R and S be relations and let a be a monotype. Then,

(a) R< ◦1= R◦1,

(b) (R◦1)< = R<,

(c) R< ◦R = R,

(d) (R◦S<)< = (R◦S)<,

(e) a< = a,

(f) (a◦R)< = a◦R<,

(g) (R∨S)< = R<∨S<.

3.3. Monotype residuals

Definition 3.4. Let R be a relation and let a be a monotype. The monotype right

residual and monotype left residual of a by R (called factors in [6]) are defined, respec-

tively, by

(a) a/•R := ((1◦a)/R)>,

(b) R\•a := (R\(a◦1))<.
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An alternative characterization of residuals can also be given by means of a Galois

connection as follows [4]:

b ≤ a/•R⇐⇒ (b◦R)> ≤ a, (3.5)

b ≤ R\•a⇐⇒ (R◦b)< ≤ a. (3.6)

Since we do not use the operator \• in the sequel, we only present some properties

of /• in the next theorem.

Theorem 3.5. Let P , Q, and R be relations and let a and b be monotypes. Then,

(a) (a/•Q)/•R = a/•(R◦Q),
(b) a/•(Q∨R)= a/•Q∧a/•R,

(c) (a∧b)/•R = (a◦b)/•R = a/•R∧b/•R,

(d) a≤ b⇒ a/•R ≤ b/•R,

(e) Q≤ R⇒ a/•R ≤ a/•Q,

(f) id= id /•R,

(g) id= a/•0,

(h) a= a/• id.

We now prove two additional properties of the monotype complement and monotype

residual operators. The first of these properties is

a∼ = 0/•a. (3.7)

Its proof goes as follows:

a∼ ◦a≤ 0⇐⇒ (
a∼ ◦a)> ≤ 0

(
by (3.4) and Proposition 3.3(e)

)
⇐⇒ a∼ ≤ 0/•a

(
by (3.5)

)
⇐⇒ id◦a∼ ≤ 0/•a

(
since id◦a∼ = a∼)

⇐⇒ id≤ a∨0/•a
(
by Theorem 2.2(a)

)
.

(3.8)

The second one is a very interesting “implication”:

a/•b = (a∼ ◦b)∼ = a∨b∼. (3.9)

Its proof is

a/•b = (0/•a∼
)
/•b

(
since a= 0/•a∼

)
= 0/•

(
b◦a∼) (

by Theorem 3.5(a)
)

= (a∼ ◦b)∼ (
by (3.7)

)
= a∨b∼ (

by Proposition 3.1(f)
)
.

(3.10)

Several properties of the complement operator suggest themselves. In the following,

we have to use exhaustively the complement of the domain of a relation R, that is, the

monotype a such that a = R<∼. To avoid the notation R<∼, we adopt the following

notation:

R≺ := R<∼. (3.11)

We see the properties of the operator ≺.
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Proposition 3.6. Let Q and R be relations and a and b monotypes. Then,

(a) 0/•Q≺ =Q<,

(b) Q≺∨Q< = id,

(c) Q≺∧Q< = 0,

(d) (R∨Q)≺ = R≺∧Q≺,

(e) (R< ◦Q<)≺ = R≺∨Q≺,

(f) 0/•Q=Q≺,

(g) (Q◦a∼)≺ = a/•Q,

(h) (Q◦R≺)≺ = R< /•Q.

The first five properties are obviously deduced from (3.11) and Proposition 3.1.

Proof. For property (f), we have to prove that 0/•Q satisfies the properties in Propo-

sition 3.1(c):

(0/•Q)◦Q≤ 0 �⇒ (
(0/•Q)◦Q< ≤ 0

)
(Boolean law)

⇐⇒ 0/•Q≤ 0/•Q<
(
by Proposition 3.3(f) and (3.5)

)
⇐⇒ id◦(0/•Q)≤ 0/•Q<

(
since id◦(0/•Q)= 0/•Q

)
⇐⇒ id≤Q∨0/•Q<

(
by Theorem 2.2(a)

)
.

(3.12)

We now prove property (g):

(
Q◦a∼)≺ = 0/•

(
Q◦a∼) (

by property (f)
)

= (0/•a∼
)
/•Q

(
by Theorem 3.5(a)

)
= a/•Q

(
by (3.7)

)
.

(3.13)

Property (h) is a particular case of property (g) with a= R<.

We now give a definition of various properties of relations [26, 27].

Definition 3.7. A relation R is a function if and only if R�◦R ≤ id; it is total if and

only if R< = id.

We will denote the least fixed point of the function f by µf . Similarly, νf denotes

the greatest fixed point of f . Because we assume our relation algebra to be complete

(see Definition 2.1), least and greatest fixed points of monotonic functions exist. We

cite [13] as a general reference on fixed points.

Let f be a monotonic function. The following properties of fixed points are used

below:

µf =
∧{

X | f(X)=X}=∧{
X | f(X)≤X}, (3.14a)

νf =
∨{

X | f(X)=X}=∨{
X |X ≤ f(X)}, (3.14b)

µf ≤ νf , (3.14c)

f(Y)≤ Y �⇒ µf ≤ Y , (3.14d)

Y ≤ f(Y) �⇒ Y ≤ νf . (3.14e)
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In the next subsection, we describe notions that are useful for the description of the

set of initial states of a program for which termination is guaranteed. These notions

are progressive finiteness and the initial part of a relation.

3.4. Progressive finiteness of a relation. A relation R is progressively finite in terms

of points if and only if there are no infinite chains s0, . . . ,si such that siRsi+1 for all i≥ 0.

In other words, there is no set of points y which are the starting points of some paths

of infinite length. For every set of points y ,

y ≤ R◦y �⇒y = 0. (3.15)

The least set of points which are the starting points of paths of finite length, that is, from

which we can proceed only finitely many steps, is called the initial part of R denoted

by �(R). This topic is of interest in many areas of computer science and mathematics

and is related to recursion and induction principle.

Definition 3.8. (a) The initial part of a relation R, denoted by �(R), is given by

�(R)=
∧{

a | a≤ id : a/•R = a}
=
∧{

a | a≤ id : a/•R ≤ a},
�(R)∼ =

∨{
a | a≤ id : (R◦a)< = a}

= µ(a : a≤ id : a/•R
)
.

(3.16)

(b) A relation R is said to be progressively finite [27] if and only if �(R)= id.

The description of �(R) by the formulation a/•R = a shows that �(R) exists since

(a | a ≤ id : a/•R) is monotonic in the first argument (by Theorem 3.5(d)); and because

the set of monotypes is a complete lattice, it follows from the fixed-point theorem of

Knaster and Tarski that this function has a least fixed point. The progressive finiteness

of a relation R is the same as the well-foundedness of R�.

The initial part �(R) is a monotype. In a concrete setting, �(R) is the set of monotypes

which are not the origins of infinite paths (by the relation R). Using formulas (3.14) and

Boolean laws, one has

�(R)=
∧{

a | a≤ id : a∼ = (R◦a∼)<}
= µ(a : a≤ id :

(
R◦a∼)≺), (3.17)

�(R)∼ =
∨{

a | a≤ id : (R◦a)< = a}
=
∨{

a | a≤ (R◦a)<}
= ν(a : a≤ id : (R◦a)<).

(3.18)

Proof. (a) We have

a= a/•R⇐⇒ a= (R◦a∼)≺ (
by Proposition 3.6(g)

)
⇐⇒ a∼∼ = ((R◦a∼)<)∼ (

by (3.11)
)

⇐⇒ a∼ = (R◦a∼)< (a complementation).

(3.19)
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(b) We have

�(R)=
∧{

a | a∼ = (R◦a∼)<}⇐⇒ �(R)∼ =
∨{

a∼ | a∼ = (R◦a∼)<} (De Morgan law)

= �(R)∼ =
∨{

b | b = (R◦b)<} (
since b = a∼).

(3.20)

Definition 3.9. A relation R is progressively finite if and only if, for a monotype a,

a≤ (R◦a)< �⇒ a= 0. (3.21)

Equivalently, ν(a : a≤ id : (R◦a)<)= 0 and µ(a : a≤ id : a/•R)= id.

In [4], it is shown that the following definitions are also equivalent:

(a) a relation R is progressively finite if and only if, for any vector v ,

v ≤ R◦v �⇒ v = 0; (3.22)

(b) a relation R is progressively finite if and only if, for any relation Q,

Q≤ R◦Q �⇒Q= 0. (3.23)

The next theorem involves the function wa(X) := Q∨ P ◦X, which is closely related

to the description of iterations. The theorem highlights the importance of progressive

finiteness in the simplification of fixed-point-related properties.

Theorem 3.10. If the relation P is progressively finite, then the function (X :Q∨P ◦X)
admits a unique fixed point and ν(X :Q∨P ◦X)= µ(X :Q∨P ◦X)= P∗ ◦Q.

To close this subsection, we demonstrate some simple useful properties.

Proposition 3.11. Let R and S be relations, b a monotype, and I(R) = ∧{x | x =
x◦1 :−x = R◦−x}. Then,

(a) �(R)◦R is progressively finite;

(b) if R is progressively finite, then R∧S is progressively finite;

(c) if R is progressively finite, then b◦R is progressively finite;

(d) �(R)= �(R)/•R;

(e) �(R) = id∧I(R).
Proof. (a) We use Definition 3.9:

a≤ (�(R)◦R◦a)<⇐⇒ a≤ (�(R))◦(R◦a)< (
by Proposition 3.3(f)

)
⇐⇒ a≤ �(R), a≤ (R◦a)<

(since ◦ = ∧ for monotypes and Boolean law)

�⇒ a≤ �(R), a≤ �(R)∼
(
by (3.18) and (3.14e)

)
⇐⇒ a≤ 0.

(3.24)
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(b) Using the same definition,

a≤ ((R∧S)◦a)< �⇒ a≤ (R◦a)< (Boolean law)

�⇒ a= 0
(
by (3.15)

)
.

(3.25)

(c) It is a particular case of (b), and the proof goes as follows:

a≤ (b◦R◦a)< �⇒ a≤ (R◦a)< (
since b ≤ id and by monotonicity of < w.r.t. ≤)

�⇒ a= 0
(
by (3.15)

)
.

(3.26)

(d) By definition (3.17), �(R) is the least monotype a verifying a= a/•R.

(e) We have to show that, for each monotype, there exists a monotype a satisfying

the condition (R ◦a∼)< ≤ a∼, if and only if there exists a vector x such that

a= id∧x and x verifies R◦−x ≤−x:

(
R◦a∼)< ≤ a∼ ⇐⇒ (

R◦a∼)< ◦1≤ a∼ ◦1
(
Proposition 3.1(a)

)
⇐⇒ R◦a∼ ◦1≤ a∼ ◦1

(
by Proposition 3.3(a)

)
⇐⇒ R◦−x ≤−x (

since x = a∼ ◦1
)
.

(3.27)

The precedence from highest to lowest is the following: ≺, <, >, ∼, −, and � bind

equally, followed by ◦, /•, ∧, and finally by ∨.

The set of matrices whose entries are relations constitutes a relation algebra [27]

with the operators defined as follows.

Definition 3.12. Let R and S be matrices whose entries belong to the same homo-

geneous algebra. Then,

(R∨S)i,j = Ri,j∨Si,j , (−R)i,j =−Ri,j , (R◦S)i,j =
∨
k
Ri,k ◦Sk,j,

(R∧S)i,j = Ri,j∧Si,j ,
(
Rj,i

)� = R�i,j , R ≤ S ⇐⇒ Ri,j ≤ Si,j ,∀i,j,

1i,j = 1, 0i,j = 0, idi,j =

id, i= j,

0, otherwise,

(3.28)

where Ri,j denotes the entry i, j of matrix R. Of course, R∨S and R∧S exist only if

matrices R and S have the same dimension; the composition R ◦ S exists only if the

number of columns of R is the same as the number of rows of S. The entries of the

identity matrix (which is square) are 0, except those of the diagonal, which are id. The

entries of the zero matrix are 0 and those of the universal matrix are 1.

It is recalled by the next examples how some of the angelic operators are applied to

Boolean matrices.
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Let R be a relation on S×S, then the operations ◦,� :




1 0 1

0 0 1

0 1 0


◦




1 1 0

0 0 1

1 0 0


=




1 1 0

1 0 0

0 0 1


 ,




1 0 1

1 0 0

0 1 0



�

=




1 1 0

0 0 1

1 0 0


 .

(3.29)

As the demonic calculus will serve as an algebraic apparatus for defining the denota-

tional semantics of the nondeterministic programs, we will define in what follows these

operations.

4. A demonic refinement ordering. We now define the refinement ordering (de-

monic inclusion) we will use in the sequel. This ordering induces a complete join semi-

lattice, called a demonic semilattice. The associated operations are demonic join (�),

demonic meet (�), and demonic composition (� ). We give the definitions and needed

properties of these operations, and illustrate them with simple examples. For more

details on relational demonic semantics and demonic operators, see [6, 7, 8, 9, 14].

Definition 4.1. A relation Q refines a relation R (see [24]), denoted by

Q� R⇐⇒ R< ◦Q≤ R, R< ≤Q<. (4.1)

Thus, for instance,

(
1 0 0

1 1 0

)
�
(

1 1 0

0 0 0

)
, (4.2)

but

(
1 0

0 0

)
��
(

1 1

1 0

)
,




1 0

0 0

1 1


 ��




0 1

0 0

1 1


 . (4.3)

(These Boolean matrices represent relations over sets by the well-known correspon-

dence.)

Proposition 4.2. Let Q and R be relations. Then the following statements hold.

(a) The greatest lower bound (with respect to �) of Q and R is

Q�R =Q< ◦R< ◦(Q∨R). (4.4)

If Q< = R<, then � and ∨ coincide, that is, Q�R =Q∨R.
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(b) If Q and R satisfy the condition Q<∧R< = (Q∧R)<, their least upper bound is

Q�R =Q∧R∨Q≺◦R∨R≺◦Q, (4.5)

otherwise, the least upper bound does not exist. If Q< ∧R< = 0, then � and ∧
coincide, that is, Q�R =Q∧R.

For the proofs, see [10, 14]. Here is an example of these operations:


1 1 0

1 0 0
0 0 0


�


0 0 0

0 1 0
0 1 1


=


0 0 0

1 1 0
0 0 0


 . (4.6)

This operation corresponds to a demonic nondeterministic choice since the possibility

of failure (row 3 of the first matrix or row 1 of the second) is reflected in the result. For

the middle row, failure is not possible, and the set of allowed results is the union of

the results of the two operands.

Secondly, demonic meet: the existence condition simply means that, on the inter-

section of their domains, Q and R have to agree for at least one value. For example,

consider


1 1 0

1 1 0
0 0 0


�


0 0 0

0 1 1
0 0 0


=


1 1 0

0 1 0
0 0 0


 ; (4.7)

on the intersection of their domains (the second row), the operands agree on the middle

value and thus the meet is defined. This is not the case for
(1 1 0

1 0 0
0 0 0

)
and

(0 0 0
0 0 1
0 0 0

)
, because

they contradict each other on the intersection of their domains.

It is shown in [14] that it is a complete join semilattice. Let f be a monotonic function

(with respect to �) having at least one fixed point. Because (A∨R,�) is a complete join

semilattice, the following properties of fixed points can be transferred from equations

(3.14):

(a) νf =⊔{X | f(X)=X} =⊔{X |X � f(X)},
(b) Y � f(Y)⇒ Y � νf .

In what follows, we will present some properties of functions.

Lemma 4.3. Let P , Q, and R be relations. Although composition does not distribute

over intersection in general (see Theorem 2.2(b)), it does in the following special cases:

(a) P function ⇒ P ◦(Q∧R)= P ◦Q∧P ◦R;

(b) Q function ⇒ R< /•Q=Q≺∨(Q◦R)<.

Proof. (a) See [27].

(b) As Q is a function, we have

Q�◦Q≤ id �⇒Q� ◦Q◦R ≤ R (
by Theorem 2.2(g)

)
�⇒ ((

Q� ◦Q◦R))< ≤ R< (<
monotonic with respect to ≤)

⇐⇒ (
Q� ◦(Q◦R)<)< ≤ R< (

by Proposition 3.3(d)
)
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⇐⇒ ((
(Q◦R)<)◦Q)> ≤ R< (

by (3.4) and Proposition 3.1(a)
)

⇐⇒ (Q◦R)< ≤ R< /•Q
(
by (3.5)

)
�⇒Q≺∨(Q◦R)< ≤ R< /•Q

(
since 0≤ R< and by Theorem 3.5(d)

)
.

(4.8)

For the other side, we have

(
R< /•Q

)∧(Q◦R)< ≤ (Q◦R)<
⇐⇒ (

R< /•Q
)∧((Q◦R)<∨(Q◦R≺)<)≤ (Q◦R)<(

by Theorem 2.2(d) and Proposition 3.6(h)
)

⇐⇒ (
R< /•Q

)∧Q< ≤ (Q◦R)< (
since Q< = (Q◦R)<∨(Q◦R≺)<)

⇐⇒ R< /•Q≤Q≺∨(Q◦R)< (
by Theorem 2.2(a)

)
.

(4.9)

Definition 4.4. The demonic composition of relationsQ andR [6] isQ�R=(R< /•Q)◦
Q◦R.

In what follows, we present some properties of � .

Theorem 4.5. Let P , Q, and R be relations. Then,

(a) (P �Q)�R = P � (Q�R),
(b) R total ⇒Q�R =Q◦R,

(c) Q function ⇒Q�R =Q◦R.

Proof. (a) See [6, 7, 8, 14].

(b) We have

Q�R = (R< /•Q
)◦Q◦R (

by Definition 4.4
)

=Q◦R (
since R< = id and by Theorem 3.5(f)

)
.

(4.10)

(c) We have

Q�R = (R< /•Q
)◦Q◦R (

by Definition 4.4
)

= (Q≺∨(Q◦R)<)◦Q◦R (
by Lemma 4.3(b)

)
=Q≺◦Q∨(Q◦R)< ◦Q◦R (

by Theorem 2.2(d)
)

=Q◦R (
by Proposition 3.3(c) and Proposition 3.6(f), for Q≺◦Q= 0

)
.

(4.11)

We will present some results that will be used in the sequel.

Proposition 4.6. Let Q and R be relations and let a be a monotype. Then,

(a) R � a◦R,

(b) R �a= (a/•R)◦R,

(c) (Q�R)< = (R< /•Q)◦Q<,
(d) Q� (a◦R)= ((a/•Q)◦Q)�R,

(e) (a◦Q)�R = a◦(Q�R).
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Proof. (a) We have

R � a◦R⇐⇒ (a◦R)< ◦R ≤ a◦R, (a◦R)< ≤ R< (by Definition 4.1) (4.12)

which is true by Proposition 3.3(c) and (f), for a≤ id.

(b) We have

R �a= (a/•R)◦R◦a (by Definition 4.4)

= (a/•R)◦(R◦a∨R◦a∼) (
by Proposition 3.6(g), for (a/•R)◦R◦a∼ = 0

)
= (a/•R)◦R (

since R◦a∨R◦a∼ = R◦(a∨a∼)= R◦ id= R).
(4.13)

(c) We have

(Q�R)< = ((R< /•Q
)◦Q◦R)< (by Definition 4.4)

= (R< /•Q
)◦(Q◦R)< (

by Proposition 3.3(f)
)

= (R< /•Q
)◦[(Q◦R)<∨(Q◦R≺)<](

by Proposition 3.6(h), for
(
R< /•Q

)◦(Q◦R≺)< = 0
)

= (R< /•Q
)◦Q<(
since (Q◦R)<∨(Q◦R≺)< = (Q◦(R<∨R≺))< = (Q◦ id)< =Q).

(4.14)

(d) We have

Q� (a◦R)=Q� (a�R)
(
by Theorem 4.5(c)

)
= (Q�a)�R

(
by Theorem 4.5(a)

)
= ((a/•Q)◦Q)�R (

from (b)
)

= (a/•Q)◦Q�R (by associativity of ◦).

(4.15)

(e) We have

(a◦Q)�R = (a�Q)�R (
by Theorem 4.5(c)

)
= a� (Q�R)

(
by Theorem 4.5(a)

)
= a◦(Q�R)

(
by Theorem 4.5(c)

)
.

(4.16)

After having introduced the monotype operators and some of their properties, in

the following, we present these monotype operators applied to matrices. As we already

know, a set of such matrices of suitable dimensions constitutes a relation algebra [26,

27]. A monotype matrix is a diagonal matrix such that each entry of the diagonal is

included in the identity relation. In what follows, we will present some results related

to the operators <, >, /•, ∼, and ≺ applied to matrices.
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Theorem 4.7. Let Ri be relations and ai monotypes, where 1≤ i≤ 2. Then

(a)

(
R1 R2

R3 R4

)<
=
(
R<1 ∨R<2 0

0 R<3 ∨R<4

)
, (4.17)

(b)

(
R1 R2

R3 R4

)>
=
(
R>1 ∨R>3 0

0 R>2 ∨R>4

)
, (4.18)

(c)

(
a1 0
0 a2

)
/•
(
R1 R2

R3 R4

)
=
(
a1 /•R1∧a2 /•R2 0

0 a1 /•R3∧a2 /•R4

)
, (4.19)

(d)

(
a1 0
0 a2

)∼
=
(
a∼1 0
0 a∼2

)
, (4.20)

(e)

(
R1 R2

R3 R4

)≺
=
(
R≺1 ∧R≺2 0

0 R≺3 ∧R≺4

)
. (4.21)

For our proofs, we use the rule of indirect equality [6]: for all Q and R,

Q= R⇐⇒ {∀S |Q≤ S ⇐⇒ R ≤ S}. (4.22)

Proof. (a) Let bi be monotypes where 1≤ i≤ 2. Then,

(
R1 R2

R3 R4

)<
≤
(
b1 0

0 b2

)

⇐⇒
(
R1 R2

R3 R4

)
≤
(
b1 0

0 b2

)
◦
(

1 1

1 1

) (
by (3.2)

)

⇐⇒
(
R1 R2

R3 R4

)
≤
(
b1 ◦1 b1 ◦1

b2 ◦1 b2 ◦1

)
(by Definition 3.12)

⇐⇒ R1 ≤ b1 ◦1, R2 ≤ b1 ◦1, R3 ≤ b2 ◦1, R4 ≤ b2 ◦1 (by Definition 3.12)

⇐⇒ R<1 ≤ b1, R<2 ≤ b1, R<3 ≤ b2, R<4 ≤ b2
(
by (3.2)

)
⇐⇒ R<1 ∨R<2 ≤ b1, R<3 ∨R<4 ≤ b2 (Boolean law)

⇐⇒
(
R<1 ∨R<2 0

0 R<3 ∨R<4

)
≤
(
b1 0

0 b2

)
(by Definition 3.12).

(4.23)
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(b)

(
R1 R2

R3 R4

)>
=
(
R1 R2

R3 R4

)�< (
by (3.4)

)

=
(
R�1 R�3
R�2 R�4

)<
(by Definition 3.12)

=
(
R�1 <∨R�3 < 0

0 R�2 <∨R�4 <
) (

from (a)
)

=
(
R>1 ∨R>3 0

0 R>2 ∨R>4

) (
by (3.4)

)
.

(4.24)

(c)

(
b1 0

0 b2

)
≤
(
a1 0

0 a2

)
/•
(
R1 R2

R3 R4

)

⇐⇒
((
b1 0

0 b2

)
◦
(
R1 R2

R3 R4

))>
≤
(
a1 0

0 a2

) (
by (3.5)

)

⇐⇒
(
b1 ◦R1 b1 ◦R2

b2 ◦R3 b2 ◦R4

)>
≤
(
a1 0

0 a2

)
(by Definition 3.12)

⇐⇒
((
b1 ◦R1

)>∨(b2 ◦R3
)>

0

0
(
b1 ◦R2

)>∨(b2 ◦R4
)>
)
≤
(
a1 0

0 a2

) (
from (b)

)

⇐⇒ (
b1 ◦R1

)>∨(b2 ◦R3
)> ≤ a1,

(
b1 ◦R2

)>∨(b2 ◦R4
)> ≤ a2

(by Definition 3.12)

⇐⇒ (
b1 ◦R1

)> ≤ a1,
(
b2 ◦R3

)> ≤ a1,
(
b1 ◦R2

)> ≤ a2,
(
b2 ◦R4

)> ≤ a2

(Boolean law)

⇐⇒ b1 ≤ a1 /•R1, b2 ≤ a1 /•R3, b1 ≤ a2 /•R2, b2 ≤ a2 /•R4
(
by (3.5)

)
⇐⇒ b1 ≤ a1 /•R1∧a2 /•R2, b2 ≤ a1 /•R3∧a2 /•R4 (Boolean law)

⇐⇒
(
b1 0

0 b2

)
≤

a1 /•R1∧a2 /•R2 0

0 a1 /•R3∧a2 /•R4


 (by Definition 3.12).

(4.25)

(d)

(
a∼1 0

0 a∼2

)
∨
(
a1 0

0 a2

)
=
(
a∼1 ∨a1 0

0 a∼2 ∨a2

)
=
(

id 0

0 id

) (
by (3.7)

)
,

(
a∼1 0

0 a∼2

)
∧
(
a1 0

0 a2

)
=
(
a∼1 ∧a1 0

0 a∼2 ∧a2

)
=
(

0 0

0 0

) (
by (3.7)

)
.

(4.26)
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From this, we conclude that

(
a1 0

0 a2

)∼
=
(
a∼1 0

0 a∼2

)
. (4.27)

(e)

(
R1 R2

R3 R4

)≺
=
(
R1 R2

R3 R4

)<∼ (
by (3.11)

)

=
(
R<1 ∨R<2 0

0 R<3 ∨R<4

)∼ (
from (a)

)

=
((
R<1 ∨R<2

)∼
0

0
(
R<3 ∨R<4

)∼
) (

from (d)
)

=
(
R≺1 ∧R≺2 0

0 R≺3 ∧R≺4

) (
from (e) and (3.7)

)
.

(4.28)

The previous results will be generalized as follows.

Lemma 4.8. Let R be a matrix of suitable dimensions and let a be a monotype matrix,

that is, with monotypes on the diagonal entries and on the null relation otherwise. Then,

(
R<
)
i,j =



∨
k
R<i,k, i= j,

0, otherwise,

(
R>
)
i,j =



∨
k
R>k,i, i= j,

0, otherwise,

(a/•R)i,j =



∧
k
ak,k /•Ri,k, i= j,

0, otherwise,

(
a∼
)
i,j =



(
ai,i

)∼, i= j,
0, otherwise,

(
Ri,j

)≺ =


∧
k
R≺i,k, i= j,

0, otherwise,

(4.29)

where Ri,j denotes the entry i,j of matrix R. Of course, a/•R exists only if the number of

rows of the matrix a is the same as the number of columns of the matrix R.

In the next section, we will briefly define flow diagram programs [26, 27] to use such

notion in our definition of the operational semantics.
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5. Demonic relational semantics

5.1. Programs and their semantics. We will use the notion of flow diagram pro-

grams [26, 27], where the relation algebraic concept of a program is based on flowcharts

which describe the control flow of a program in terms of graphs. They distinguish the

various steps of the program during its execution without taking into account neither

the programming language nor the syntax of the programs. In what follows, we present

an example of a program by means of the underlying flowgraphs whose arrows are

weighted by relations representing the program steps. Consequently, these relations

are the entries of the associated matrix of the graph.

We illustrate the ideas with a general example.

Example 5.1. While x > 5, do x := x−1, then we have

�0 �1

�2

� ��

�

x > 5∧x′ = x

x′ = x−1

x ≤ 5∧x′ = x (5.1)

If x ∈N is a relation on N×{1,2,3}, we have




0 x > 5∧x′ = x x ≤ 5∧x′ = x
x′ = x−1 0 0

0 0 0


 . (5.2)

We start our development directly from this matrix representation of (relational) flow

diagram programs. How these matrices can be obtained from programs is intuitively

obvious, and we refer to [26, 27] for a rigorous treatment.

We illustrate the ideas with a more general example. Let S be the set of states of a

program � which is a sequence of two statements p and q. Assume that the relations

on S computed by these two statements are P and Q. Then � can be represented by

the following graph:

��
��

1 ��
��

2 ��
��

3� � �P Q . (5.3)

The corresponding matrix representation is

R =




0 P 0

0 0 Q
0 0 0


 . (5.4)
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To represent programs, we use matrices like this one. The entries of these matrices are

relations on the set of states of the program under consideration. For simplicity, we

consider only the case where an entry represents a single program step rather than a

complex program.

Now, to extract the input-output relation of the program from these matrices, we

need two other relations (matrices), namely, the input relation ε (entry) and the output

relation ξ (exit ) [26, 27]. For the case of the sequence above, these relations are

ε =




id

0

0


 , ξ =




0

0

id


 . (5.5)

Notice how these matrices select the entry and the exit points (via their nonzero entries).

Because these nonzero entries are id, this selection implies no change in the state of

the program. The ε� matrix is a function (Definition 3.7) because there is a single entry

point; for example, for the particular ε given above,

ε◦ε� =




id

0

0


◦

(
id 0 0

)
=




id 0 0

0 0 0

0 0 0


≤ id . (5.6)

Let � be a program with associated matrix R. The terminating action of � [26, 27] is

the relation

T := R∗ ◦R≺. (5.7)

It links a state s with all the last states (R≺) reachable from s by R in a computation

sequence (R∗).

We are now ready to define �(�), the demonic input-output semantics of �:

�(�) := ε� ��(R)�T �ξ. (5.8)

All the operators are demonic and this is an advantage of the use of monotypes in our

development.

Expression (5.8) can be transformed as follows. Using Definition 4.4, the fact that ε�

and �(R) are functions, and Theorem 4.5(c), one gets

�(�) := ε� ◦�(R)◦(ξ< /•T
)◦T ◦ξ. (5.9)

The relation ε� ◦�(R) ◦ (ξ< /•T) ◦T ◦ξ represents executions starting from the states

that cannot lead to infinite loops (ε� ◦�(R)), leading to the exit point (ξ) and linking

two states s and s′ if s′ cannot be acted upon by the program (the term R≺ in T ), and

there is a path from s to s′ (the term R∗ in T ).

To illustrate this definition, we present a simple case, that of sequences.
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5.2. Sequences. In this subsection, we calculate �(�) for the case where � is a se-

quence. We will calculate the subterms of �(�) (equation (5.9)), using the matrix R
representing a sequence (equation (5.4)) and the input-output relations ε and ξ. We use

the results of Lemma 4.8 to calculate the next expressions.

First

R2 =




0 P 0

0 0 Q

0 0 0


◦




0 P 0

0 0 Q

0 0 0


=




0 0 P ◦Q
0 0 0

0 0 0


 , (5.10)

and it is easy to check that Rn = 0 for n≥ 3, whence

R∗ = id∨R∨R2 =



I P P ◦Q
0 id Q

0 0 id


 , R≺ =



P≺ 0 0

0 Q≺ 0

0 0 id


 ,

ε =




id

0

0


 , ξ =




0

0

id


 .

(5.11)

So, the terminating action of � is

T = R∗ ◦R≺ =



P≺ P ◦Q≺ P ◦Q
0 Q≺ Q

0 0 id


 (5.12)

and the exit relation is

ξ< =




0 0 0

0 0 0

0 0 id


 . (5.13)

Remark 5.2. As we will see, the matrix of the next term takes too much space. In

what follows, we will give all the details, but in the following, we will omit the terms

id /•P , P /•0, and P /• id, where P is a relation because by Theorem 3.5(f), (g), and (h), each

of them is equal to id. So, we will just refer to the remark

ξ< /•T =



(
0/•P≺

)◦(0/•
(
P ◦Q≺)) 0 0

0 0/•Q≺ 0

0 0 id


 . (5.14)
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By Proposition 3.6(a), (f), and (g), and Remark 5.2, we have

ξ< /•T =



P< ◦(Q< /•P

)
0 0

0 Q< 0

0 0 id


 , T ◦ξ =



P ◦Q
Q
id


 ,

(
ξ< /•T

)◦T ◦ξ =


(
Q< /•P

)◦P< 0 0

0 Q< 0

0 0 id


◦



P ◦Q
Q
id




=



(
Q< /•P

)◦P< ◦P ◦Q
Q< ◦Q

id


 (by Lemma 4.8)

=



P �Q
Q
id


 (

by Proposition 3.3(c) and Definition 4.4
)
.

(5.15)

Finally, we obtain �(R). Obviously, there is no loop in a sequence (remember that the

sequenced statements are considered atomic), so that R is progressively finite, that is,

�(R)= id. But, just to illustrate the method, we show it.

Set �(R)=
(a 0 0

0 b 0
0 0 c

)
and aim at finding the monotypes a, b, and c by using Proposition

3.11(d). Then, we have

a 0 0

0 b 0

0 0 c




=



a 0 0

0 b 0

0 0 c


 /•




0 P 0

0 0 Q
0 0 0


 (

by Proposition 3.11(d)
)

=



(a/•0)◦(b/•P)◦(c /•0) 0 0

0 (a/•0)◦(b/•0)◦(c /•Q) 0

0 0 (a/•0)◦(b/•0)◦(c /•0)




(by Lemma 4.8)

=



b/•P 0 0

0 c /•Q 0

0 0 I


 (by Remark 5.2).

(5.16)

The only solution is a = b = c = id, then �(R) =
( id 0 0

0 id 0
0 0 id

)
, and, consequently, ε� ◦

�(R)= (id 0 0).
So, we find that

�(�)= ε� ◦�(R)◦(ξ< /•T
)◦T ◦ξ = (id 0 0

)
◦



P �Q
Q
id


= P �Q. (5.17)
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This is the demonic semantics of a program � with matrix R given by (5.6).

We now give the case of the guarded command of Dijkstra.

5.3. Guarded command of Dijkstra. In this section, we will trait the Guarded com-

mands

R =




0 p q 0

0 0 0 P
0 0 0 Q
0 0 0 0


 , ε =




id

0

0

0


 , ξ =




0

0

0

id


 , (5.18)

ξ< =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 id


 , R∗ =




id p q p◦P∨q◦Q
0 id 0 P
0 0 id Q
0 0 0 id


 , (5.19)

R≺ =



p∼ ◦q∼ 0 0 0

0 P≺ 0 0

0 0 Q≺ 0

0 0 0 id


 , (5.20)

T = R∗ ◦R≺ =



p∼ ◦q∼ p◦P≺ q◦Q≺ p◦P∨q◦Q

0 P≺ 0 P
0 0 Q≺ Q
0 0 0 id


 . (5.21)

By using the same rules as the sequence case and Remark 5.2, we have

ξ< /•T =




(
0/•p∼ ◦q∼)◦(0/•p◦P≺)◦(0/•qQ≺

)
0 0 0 0

0 0/•P≺ 0 0 0

0 0 0/•Q≺ 0

0 0 0 id




(by Lemma 4.8)

=




(
0/•(p∨q)∼)◦(P< /•p

)◦(Q< /•q
)

0 0 0

0 P< 0 0

0 0 Q< 0

0 0 0 id



(
by Proposition 3.6(a)

)

=



(p∨q)∧P< /•p∧Q< /•q 0 0 0

0 P< 0 0

0 0 Q< 0

0 0 0 id




(by the definition of the complement),

T ◦ξ =



p◦P∨q◦Q

P
Q
id


 .

(5.22)
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So,

(
ξ< /•T

)◦T ◦ξ =



[
(p∨q)∧P< /•p∧Q< /•q

]◦[p◦P∨q◦Q]
P< ◦P
Q< ◦Q

id


 . (5.23)

As the graph is an acyclic finite branching graph, so �(R)= id. We now simplify the

above expression ((ξ< /•T)◦T ◦ξ):

ε� ◦�(R)◦(ξ< /•T
)◦T ◦ξ = [(p∨q)∧P< /•p∧Q< /•q

]◦[p◦P∨q◦Q][
(p∨q)∧P< /•p∧Q< /•q

]◦[p◦P∨q◦Q]
= (p∨q)◦(P<∨p∼)◦(Q<∨q∼)◦(p◦P∨q◦Q) (

by (3.9)
)

= (p◦P<∨q◦P<∨q◦p∼)◦(Q< ◦p◦P∨q◦Q∨q∼ ◦p◦P)
(
by Theorem 2.2(d), p∼ ◦p = 0, q∼ ◦q = 0, and Proposition 3.3(c)

)
= p◦Q<◦P∨p◦q◦P< ◦Q∨p◦q∼ ◦P∨p◦q◦Q< ◦P∨q◦P< ◦Q∨p∼ ◦q◦Q

(
by Proposition 3.3(c), Proposition 3.1(b), q◦q∼ = 0, and p◦p∼ = 0

)
= p◦P ◦(Q<∨q∼)∨p◦q◦(P< ◦Q∨Q< ◦P)∨q◦Q◦(P<∨p∼)

(
by Theorem 2.2(d)

)
= p◦P ◦(q◦Q<∨q∼)∨p◦q◦(P�Q)∨q◦Q◦(p◦P<∨p∼)

(
by Proposition 4.2(a) and Proposition 3.1(g)

)
= p◦q◦(P�Q)∨p◦q∼ ◦P∨p∼ ◦q◦Q

(
by Theorem 2.2(d), p◦q◦P ◦Q<∨p◦q◦Q◦P< = p◦q◦(P�Q)),

�(�)= p◦q◦(P�Q)∨q∼ ◦p◦P∨p∼ ◦q◦Q.
(5.24)

This is the demonic semantics of a program � with the matrix R of equation (5.18).

5.4. While loops. We will study a slightly more general case; its flow graph and as-

sociated matrices are

��
��
e ��

��
s� ��

Q
�

��P

R =
(
P Q
0 0

)
, ε =

(
id

0

)
, ξ =

(
0

id

)
, ξ< =

(
0 0

0 id

)
, (5.25)
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with the restriction

P<∧Q< = 0. (5.26)

In what follows, we give the reflexive transitive closure of R by applying [27, Proposition

(3.2.9)(ii)]:

R∗ =
(
P∗ P∗ ◦Q
0 id

)
, R≺ =

(
(P∨Q)≺ 0

0 id

)
,

T = R∗ ◦R≺ =
(
P∗ ◦(P∨Q)≺ P∗ ◦Q

0 id

)
.

(5.27)

By applying Remark 5.2, we have

ξ< /•T =
(

0/•
(
P∗ ◦(P∨Q)≺) 0

0 id

)
(by Lemma 4.8)

=
(
(P∨Q)< /•P∗ 0

0 id

) (
by Proposition 3.6(a) and Theorem 3.5(f) and (g)

)
,

T ◦ξ =
(
P∗ ◦(P∨Q)≺ P∗ ◦Q

0 id

)
◦
(

0

id

)
=
(
P∗ ◦Q

id

)
.

(5.28)

So,

(ξ< /•T)◦T ◦ξ =
(
[(P∨Q)< /•P∗]◦P∗ ◦Q

id

)
. (5.29)

Set �(R) = (a 0
0 b
)

and aim at finding the monotypes a and b by using Proposition

3.11(d):

�(R)=
(
a 0

0 b

)
=
(
a 0

0 b

)
/•
(
P Q
0 0

)

=
(
a/•P∧b/•Q 0

0 a/•0∧b/•0

)
=
(
a/•P∧b/•Q 0

0 id

)
.

(5.30)

Clearly, the solution for b is b = id. This leaves a= a/•P to be solved. Now, �(P) is the

least monotype c satisfying c = c /•P (Definition 3.8). Hence, we must choose the least

a satisfying a= a/•P ; thus, again by Definition 3.8, a= �(P), then �(R)= (�(P) 0
0 id

)
:

�(R)= ε� ◦�(R)
(
ξ< /•T

)◦T ◦ξ,
ε� ◦�(R)=

(
id 0

)
◦
(

�(P) 0

0 id

)
=
(

�(P) 0
)
.

(5.31)
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Then,

�(�)=
(

�(P) 0
)
◦


[
(P∨Q)< /•P∗

]◦P∗ ◦Q
id




= �(P)◦[(P∨Q)< /•P∗
]◦P∗◦Q,

�(�)= �(P)◦[(P∨Q)< /•P∗
]◦P∗◦Q.

(5.32)

This is the demonic semantics of a program � with the matrix R of equations (5.25).

6. Concluding remarks. We have presented certain notions concerning relation al-

gebra and the refinement order in Sections 2 and 4.

We have shown how to give a generic demonic semantic definition (equation (5.8))

of programming constructs, based on the concept of relational flow diagram [26, 27].

Then, we have proved that for the sequence, the guarded command of Dijkstra, and the

while loop, this definition is equivalent to traditional definitions (e.g., equation (5.17)

in the case of the loop), usually given on a construct by construct basis. Along the road,

we have derived many interesting intermediate results. Using this approach, it is easy

to derive the semantics of other statements, such as the conditional or the guarded

choice.

We close this note by a word on the proof style that has been employed. This research

had originally been carried out by the author [28] in the same framework of the binary

homogeneous relations, where the proofs made intensive use of vectors and comple-

ments. Other researchers [6] advocated a different proof style based on monotypes and

residuals. We have shown in the present note that all the results can be generalized by

using the monotypes and the residuals introduced by [16].

The approach to demonic input-output relation presented here is not the only pos-

sible one. In [20, 21, 22], the infinite looping has been treated by adding to the state

space a fictitious state ⊥ to denote nontermination. In [9, 19, 23, 25], the demonic

input-output relation is given as a pair (relation, set). The relation describes the input-

output behavior of the program, whereas the set component represents the domain of

guaranteed termination.

We note that the preponderant formalism employed until now for the description of

demonic input-output relation is the wp-calculus. For more details see [2, 3, 17].
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