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The chromatic sum of a graph is the smallest sum of colors among all proper colorings
with natural numbers. The strength of a graph is the minimum number of colors necessary
to obtain its chromatic sum. A natural generalization of chromatic sum is optimum cost
chromatic partition (OCCP) problem, where the costs of colors can be arbitrary positive
numbers. Existing results about chromatic sum, strength of a graph, and OCCP problem are
presented together with some recent developments. The focus is on polynomial algorithms
for some families of graphs and NP-completeness issues.
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1. Introduction. Let G = (V ,E) be a graph with a vertex set V and an edge set E. A

proper coloring of the vertices of the graph G is assigning different colors to adjacent

vertices. The chromatic number χ(G) is the smallest number of colors in a proper

coloring of G.

We start with two definitions which are central for this paper.

Definition 1.1. The chromatic sum of a graph G,
∑
(G), is the smallest sum of

colors among all proper colorings with natural numbers.

Definition 1.2. The strength of a graph G, s(G), is the minimum number of colors

necessary to obtain its chromatic sum.

To illustrate, consider the tree T depicted in Figure 1.1. Notice that if only two colors

are used, colors 1 and 2, then the sum of colors is 12. However, by introducing a third

color, color 3, the sum of colors drops down to 11.

In fact,
∑
(T) = 11, s(T) = 3, and T is the smallest tree that requires three colors to

achieve its chromatic sum.

2. Results for general graphs. It is well known that the chromatic number of a graph

is an NP-complete problem. Finding the chromatic sum of a graph certainly has a sim-

ilar flavor to finding the chromatic number. Therefore, the following result is not very

surprising.

Theorem 2.1 [11]. Chromatic sum problem is NP-complete.

Figure 1.1 depicts a tree T with, obviously, chromatic number two and strength of

three. As it turns out, the strength of a graph can exceed its chromatic number by an

arbitrary large value.
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Figure 1.1. Tree T .

Theorem 2.2 [1]. For every integer k≥ 2 and every positive integer t, there exists a

graph Gtk, with chromatic number k and strength at least k+t.
The smallest order of a Gtk graph, that is, the smallest order of a k-chromatic graph

which needs at least k+t colors to achieve its chromatic sum, is denoted by p(k,t). In

[1], we have a rather complicated upper bound for p(k,t) for any chromatic number k
and an easier upper bound for bipartite graphs.

Theorem 2.3 [1].

p(k,t)≤ [k(k−1)+1
]�t/(k−1)−1�(ktmod (k−1)+1

)
k3,

p(2, t)≤ 8·3t−1.
(2.1)

The above upper bound is not sharp. In fact, Hajiabolhassan et al. [3] have been

able to improve the bound considerably by introducing a class of graphs called tabular

graphs.

Theorem 2.4 [3].

p(k,t)≤ k(k+3)
2

(
k+1
k−1

)t−1

−
(
k
2

)
. (2.2)

In the same paper, [3], the authors were able to give the exact value of p(k,t) for t
fixed and k sufficiently large.

Theorem 2.5 [3]. For every integer t ≥ 1, there exists a numberK such that for k≥K,

p(k,t)= k+t+t
⌊

1+√8k+1
2

⌋
. (2.3)

In [18], Thomassen et al. showed several bounds for chromatic sum for general

graphs. The first is a rather natural result of an application of a greedy algorithm:∑
(G)≤n+e, wheren is the number of vertices inG and e is the number of edges. Here,

we put vertices of G into some order and, for each vertex i, consider its back degree li,
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that is, the number of edges to all the vertices listed before it. Notice that we can use

one of (li+1) colors to properly color vertex i. Therefore,
∑
(G)≤∑(li+1)= e+n.

The second bound presented in [18] is not straightforward at all and gives an upper

and lower limit for the chromatic sum in terms of e, the number of edges in G.

Theorem 2.6 [18]. For any connected graph with e edges,

⌈√
8e
⌉
≤
∑
(G)≤

⌊
3
2
(e+1)

⌋
, (2.4)

both bounds are sharp.

We finish this section by giving a couple of general bounds for the strength of a

graph, that is, the smallest number of colors needed to obtain the chromatic sum. The

first one is a Brooks-type theorem and it involves the maximal degree of G, ∆(G).

Theorem 2.7 [12].

s(G)≤∆(G)+1. (2.5)

Moreover, s(G)=∆(G)+1 if and only if G is a complete graph or an odd cycle.

Another interesting upper bound for the strength of a graph also involves ∆(G)
together with another graph parameter called the coloring number, col(G). The coloring

number of a graph G, col(G), also called the Szekeres-Wilf number, is the smallest

number d such that, for some linear ordering of vertices, “back” degree of every vertex

is strictly smaller than d.

Theorem 2.8 [4]. For any graph G,

s(G)≤
⌈
∆(G)+col(G)

2

⌉
. (2.6)

Obviously, for every graph G, χ(G) ≤ col(G). However, the inequality s(G) ≤ col(G)
does not always hold. For example, for any tree T , col(T)= 2 and, as we will see later,

most trees have strength larger than two. It can be shown though that aside from regular

graphs, the inequality χ(G) ≤ col(G) ≤ ∆(G) is always true. This discussion, together

with Theorem 2.8, leads to the following conjecture.

conjecture 2.9 [4]. For any graph G,

s(G)≤
⌈
∆(G)+χ(G)

2

⌉
. (2.7)

3. Results for trees. Theorem 2.2 states that for every integer k≥ 2 and every pos-

itive integer t, there exists a graph Gtk, with chromatic number k and strength at least

k+t. It has been chronologically preceded by a similar result just for trees.

Theorem 3.1 [11]. For every natural positive integer k, there exists a tree with

strength k.
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Figure 3.1. Tree Tmk .

Figure 3.2. Tree T2
3 .

The order of the smallest such tree, Tk, is given by

∣∣Tk∣∣= 1√
2

[(
2+

√
2
)k−1−

(
2−

√
2
)k−1

]
. (3.1)

The construction of the smallest tree of strength k, Tk, is based on the recursive

construction of rooted trees Tmk . The tree Tmk is defined to be the smallest rooted tree

for which, in every coloring producing the chromatic sum, color k is forced to appear

at the root and any change of that color to a lower one must increase the sum of colors

by at least m. The construction is depicted in Figure 3.1.

In Figure 3.2, we see the smallest rooted tree that needs color 3 to appear on the

root. If either color 1 or 2 is used, the sum of colors increases by 2.

Now, to obtain the tree Tk, we take two copies of the rooted trees T 2
k and join their

roots with an edge. In the above construction, the strength of trees Tk, s(Tk) = k and

the maximal degree ∆(Tk) ≈ k2/2. However, in Hajiabolhassan-Mehrabadi-Tusserkani

bound, we have

s(T)≤
⌈
∆(T)+col(T)

2

⌉
= 1+

⌈
∆(T)

2

⌉
. (3.2)

Thus, for the trees Tk, this bound is not tight at all. Jiang and West [7] provided a

different construction for trees of a given strength k, in which they minimized the

maximal degree rather than order.

Theorem 3.2 [7]. For every natural positive integer k, there exists a tree Sk with

s(Sk)= k and ∆(Sk)= 2k−2.
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Here, of course, we have

s
(
Sk
)= k≤ ⌈∆

(
Sk
)+col

(
Sk
)

2

⌉
= k, (3.3)

and the Hajiabolhassan-Mehrabadi-Tusserkani bound is sharp.

Another interesting bound for the strength of trees was given by Mitchem and Mor-

riss.

Theorem 3.3 [12]. Let T be a tree and let t be the number of vertices on the longest

path in T . Then

s(T)≤ 1+
⌈
t
2

⌉
. (3.4)

If we fix the number of colors first and then find the minimum sum of colors over all

proper colorings of G using exactly these k colors, then this sum is denoted by
∑
k(G).

We recall that the Grundy number is the largest number of colors in a proper coloring

of G in which every vertex of color k > 1 is adjacent to at least one vertex of color i,
for every i < k. The Grundy number is denoted by Γ(G). We are now ready for our next

definition.

Definition 3.4. The chromatic sequence for a graph G is defined as follows:

∑
χ(G)

,
∑

χ(G)+1

,
∑

χ(G)+2

,
∑

χ(G)+3

, . . . ,
∑
Γ(G)

. (3.5)

The chromatic sequence for trees is particularly interesting, as can be seen from the

next theorem.

Theorem 3.5 [10]. Chromatic sequence for trees is inverted unimodal, that is,

∑
2

> ···>
∑

s(T)−1

>
∑
s(T)

≤
∑

s(T)+1

< ···<
∑
Γ(T)

. (3.6)

The above property is not true for general graphs. Moreover, there is no pattern for

chromatic sequence for general graphs.

Theorem 3.6 [10]. For any permutation π of numbers 2 through k, there exists a

graph G which realizes this permutation in its chromatic sequence:

∑
π(2)

(G)≤
∑
π(3)

(G)≤ ··· ≤
∑
π(k)

(G). (3.7)

Moreover, the strict inequality or equality can be forced at each place in the above

sequence.

4. Polynomial algorithms. There are not many known polynomial algorithms for

computing chromatic sum for some families of graphs. Not surprisingly, there is an

efficient algorithm for trees. There is also one for unicyclic graphs and one for outer-

planar graphs.
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Theorem 4.1 [11]. There is a linear algorithm to compute chromatic sum for trees.

The above algorithm proceeds from the leaves of a given tree to its root. It not only

provides the chromatic sum for a given tree, but also gives the proper coloring of

this tree, from which the chromatic sum results. A couple of generalizations of this

algorithm was used in the next theorem. In one generalization, the algorithm produces

several proper colorings of a tree with the smallest possible sum of colors and different

colors used on the root of the tree (at least one of the sums is the chromatic sum). In

the other generalization, the algorithm provides a proper coloring of a given tree with

the smallest possible sum of colors and a given color forbidden on a given vertex of

the tree. Before stating the next theorem, we recall two definitions. A unicyclic graph

is a connected graph with exactly one cycle. An outerplanar graph is a graph having a

planar imbedding with all its vertices lying on the boundary of the exterior region.

Theorem 4.2 [9]. (i) There is a linear algorithm to compute chromatic sum for uni-

cyclic graphs.

(ii) There is a cubic algorithm to compute chromatic sum for outerplanar graphs.

5. Interval graphs. We recall that an interval graph is an intersection graph of inter-

vals on a real line. Unit (proper) interval graphs are defined to be intersection graphs of

intervals, none of which contains another. Containment interval graphs are intersection

graphs of intervals, any two of which either do not intersect or one contains another.

Nicoloso et al. [14] have a very interesting result concerning the strength of interval

graphs.

Theorem 5.1 [14]. Strength of a graph equals its chromatic number, s(G) = χ(G),
for the following subfamilies of intersection graphs:

(i) unit interval graphs,

(ii) containment interval graphs,

(iii) intersection graphs of intervals of length not larger than 3.

Nicoloso et al. in the same paper, [14], constructed an infinite family of interval

graphs G[d] with the property that s(G[d])≥ 2χ(G[d])−1.

The graph G[d] is an intersection graph of the set B[d] of intervals. The graph G[d]

has the following other characteristics:

(i) order n[d] = 6d−1+2
∑d−2
k=0 6k;

(ii) the maximal degree, ∆(G[d])=n[d]/2;

(iii) the chromatic number, χ(G[d])=ω(G[d])= d;

(iv) the Szekeres-Wilf number, col(G[d])= d−1.

Later, Nicoloso [13] proved a result which gives a uniform bound for interval graphs

and allows us to state precisely the strength of graphs G[d].

Theorem 5.2 [13]. For an arbitrary interval graph G,

s(G)≤ 2χ(G)−1. (5.1)

So, for the family of interval graphs {G[d]}, we actually have that s(G[d])=2χ(G[d])− 1.
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As for an algorithm for computing the chromatic sum for general interval, the

best known to date is an approximation algorithm due to Halldórsson et al. [5]. The

algorithm is polynomial and has an approximation ratio of 1.665.

6. Generalization of the chromatic sum and its applications. A very natural gener-

alization of the chromatic sum would be to allow the costs of colors to be any numbers

rather than consecutive natural numbers. In fact, that is the definition that appeared

in a 1992 paper by Sen et al. [15].

Definition 6.1 (optimum cost chromatic partition problem). Given a graph G =
(V ,E) with n vertices and a sequence of coloring costs (k1,k2, . . . ,kn), find a feasible

coloring f(v) for each vertex v such that the sum of coloring costs
∑
v∈V kf(v) is min-

imized.

There are many applications of the OCCP problem. The first one is due to Supowit in

1987 [16] and, of course, is not described using a graph theory language.

This is the following VLSI layout problem. A net consists of two groups of terminals

(points on two opposite parallel lines) that need to be electrically connected. A routing

segment is a line that connects two terminals of a net. Given a net list and an associated

cost value for each layer, the objective is to partition the net list and place the partitions

on different layers in such a way that routing segments do not cross on the same

layer and that the total cost is minimum. This problem would correspond to the OCCP

problem restricted to permutation graphs.

Another interesting application is given by Kroon et al. in their 1996 paper [8]. They

show that OCCP problem for interval graphs is equivalent to the fixed interval sched-

uling problem with machine-dependent processing cost: each job j must be executed

during a given time interval (sj,fj). We assume that a sufficient number of machines is

available and each job must be executed by one of the machines. If job j is executed by

machine m, then the associated cost is km. The objective is to find a feasible schedule

for all jobs with minimum total processing cost.

7. Perfect graphs. We recall that perfect graphs are those for which, for every in-

duced subgraphH, the chromatic number is equal to the clique number, that is, χ(H)=
ω(H). Perfect graphs form a widely studied family of graphs with many interest-

ing subfamilies. Among the most studied subfamilies of perfect graphs are bipartite

graphs, circle graphs, interval graphs, unimodular graphs, permutation graphs, and

split graphs.

In 1984, Grötschel et al. [2] proved that finding chromatic number is solvable in poly-

nomial time for perfect graphs. This result suggests that there may be some hope of

constructing a polynomial algorithm for finding chromatic sum or solving the OCCP

problems for a subfamily of perfect graphs. So far, unfortunately, the results were of

negative nature.

First, we will look into the OCCP problem for subfamilies of perfect graphs.

Theorem 7.1 [15]. OCCP problem for circle graphs is NP-complete.

Soon the result was followed by a similar one for interval graphs.
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Theorem 7.2 [8]. OCCP problem for interval graphs is NP-complete.

In [6], Jansen proved several NP-completeness results for OCCP problem for many

subfamilies of perfect graphs. Moreover, he showed that even approximating general-

ized chromatic sum is very hard.

Theorem 7.3 [6]. OCCP problem for bipartite graphs is NP-complete. Moreover, for

each ε > 0, there exists no polynomial approximation algorithm with ratio O(|V |0.5−ε)
for OCCP problem restricted to bipartite graphs unless P =NP .

This means that unless P = NP , there is no polynomial approximation algorithm H
which would compute a proper coloring with cost H(I)≤ c ·O(|V |0.5−ε)·OPT(I), where

c is a constant and OPT(I) is the minimum cost of a solution of instance I.
Next, in [6], Jansen gave a construction of a polynomial approximation algorithm

with ratio O(|V |0.5) for OCCP problem restricted to bipartite graphs.

The result of Kroon et al. [8] for interval graphs was improved by Jansen by his

corresponding result for approximation algorithm.

Theorem 7.4 [6]. For each ε > 0, there exists no polynomial approximation algorithm

with ratio O(|V |0.5−ε) for OCCP problem restricted to interval graphs unless P =NP .

As in the case of bipartite graphs, Jansen [6] gives a construction of a polynomial

approximation algorithm for solving OCCP problem for interval graphs with slightly

relaxed ratio ofO(|V |0.5). Similar results are obtained for permutation graphs and split

graphs. A graph G with vertices v1, . . . ,vn and an edge set E is a permutation graph if

there exists a permutation π with the following property: (π(i)−π(j))/(i−j) < 0 if

and only if (vi,vj)∈ E.

Theorem 7.5 [6]. OCCP problem for permutation graphs or split graphs is NP-

complete.

Moreover, for each ε > 0, there exists no polynomial approximation algorithm with

ratioO(|V |1−ε) for OCCP problem restricted to permutation graphs or split graphs unless

P =NP .

It is easy to see that the NP-completeness results for OCCP problem do not necessarily

imply NP-completeness results for chromatic sum problem. In fact, in the proofs of the

results in Theorems 7.2 through 7.5, the cost function plays a crucial role. For example,

for bipartite graphs, Jansen [6] used the following cost functions: c(1)= 1, c(2)= 10K,

c(3)= 100K2, c(2)= 1500K3n, where K is a constant and n is the order of a graph.

Thus, a natural question occurs: for what subclasses of perfect graphs is the chro-

matic sum problem NP-complete? The first result is due to Szkaliczki [17].

Theorem 7.6 [17]. The chromatic sum problem restricted to interval graphs is NP-

complete.

We will finish the survey by presenting a new result concerning split graphs. We recall

that a graph is called a split graph if we can partition its vertex set into an independent

set and a clique.
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Figure 7.1. The sketch of the graph G.

Theorem 7.7. The chromatic sum problem restricted to split graphs is NP-complete.

Proof. The proof will be done by reduction from minimum cover (MC) problem.

Minimum Cover (MC).

Given. A set X = {1,2, . . . ,n}, subsets Xi ⊂X for 1≤ i≤ s, and a positive integer k.

Question. Do there exist k subsets Xi1 ,Xi2 , . . . ,Xik with
⋃k
j=1Xij = {1,2, . . . ,n}?

It is well known that MC problem is NP-complete.

Let I be an instance of MC problem with the set X = {1,2, . . . ,n}, subsets Xi ⊂ X for

1≤ i≤ s, and a constant k. We construct a split graphG = (V ,E)with V = V1∪V2, where

V1 = {v1, . . . ,vn}∪{v′1, . . . ,v′n}∪{u1, . . . ,uk·n} and V2 = {x1, . . . ,xs}∪{y1, . . . ,ykn}. The

vertices in V1 form an independent set, while the vertices in V2 form a clique. The

neighborhood of every vertex v′i is the same as the neighborhood of the corresponding

vertex vi. For every i and j, the vertex yj is adjacent to vi. The vertices v1, . . . ,vn
correspond to the set X in the instance I and (xj,vi) ∈ E if and only if i ∉ Xj . Every

vertex uj , 1≤ j ≤ kn, is adjacent to every vertex from V2 except for the vertex yj . The

sketch of the graph G is presented in Figure 7.1.

First notice that there exist k subsets Xi1 ,Xi2 , . . . ,Xik with
⋃k
j=1Xij = {1,2, . . . ,n} if

and only if G has a proper coloring that uses at most k different colors on the set of

vertices {v1, . . . ,vn}.
We define a constant A in the following way:

A= (kn+s)(kn+s+1)
2

+ n
2

(
n+2k2+3k+2

)
. (7.1)

We will show that G has a proper coloring that uses at most k different colors on the

set of vertices {v1, . . . ,vn} if and only if the chromatic sum ofG is at mostA (
∑
(G)≤A).
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Assume that we can color G properly with just k colors on {v1, . . . ,vn} (and therefore

also on {v′1, . . . ,v′n}). We only consider colorings with minimum sum of colors. Then the

sum of colors on {x1, . . . ,xs}∪{y1, . . . ,ykn} will be at most 2(((k+1)/2)n). Since we

need to use different colors on each vertex of the clique and, for every i, the vertex ui
has to use the same color as yi, we can bound the chromatic sum from above in the

following way:

∑
(G)≤ (kn+s)(kn+s+1)

2
+2

(
k+1

2
n
)
+(k+1)+···+(k+kn)=A. (7.2)

Assume we need at least k+1 colors on {v1, . . . ,vn}. The cheapest way to color G
would then be to use as many ones as possible on {v1, . . . ,vn} and use colors 2 through

(k+1) only once. Then, colors (k+2) through (k+kn) have to be used on vertices

{u1, . . . ,ukn} and all different colors on {x1, . . . ,xs}∪{y1, . . . ,ykn}. Therefore, we have

the following lower bound on the chromatic sum of G:

∑
(G)≥ (kn+s)(kn+s+1)

2
+2

[
(n−k)+2+3+···+k+(k+1)

]
+(k+2)+···+(k+kn)=A+n+k2+k >A.

(7.3)

It still remains an open question whether the chromatic sum problem is NP-complete

when restricted to bipartite graphs or permutation graphs.
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