MINIMIZING ENERGY AMONG HOMOTOPIC MAPS

PENGZI MIAO

Received 6 May 2003

We study an energy minimizing sequence $\{u_i\}$ in a fixed homotopy class of smooth maps from a 3-manifold. After deriving an approximate monotonicity property for $\{u_i\}$ and a continuous version of the Luckhaus lemma (Simon, 1996) on S^2 , we show that, passing to a subsequence, $\{u_i\}$ converges strongly in $W^{1,2}$ topology wherever there is small energy concentration.

2000 Mathematics Subject Classification: 53C43, 58E20.

1. Introduction. Let $\phi : M \to N$ be a continuous map between two compact Riemannian manifolds. In general, there may not exist a harmonic map homotopic to ϕ (see [2]). Hence, a map u that minimizes energy among all smooth maps homotopic to ϕ may not exist. However, it is still a basic question to understand the analytical property of a minimizing sequence. If the domain M is a compact surface, it is known to experts that any minimizing sequence that converges weakly indeed converges strongly in $W^{1,2}$ topology away from a finite number of points, where energy concentrates and bubble forms (see [3, 7]). If the domain is of higher dimension, B. White showed that the infimum of the energy functional over the homotopy class of ϕ is determined only by the restriction of ϕ to a 2-skeleton of M (see [8]). It is our goal in this paper to apply White's result to derive a similar theorem for 3-manifolds.

THEOREM 1.1. Let $\phi : M \to N$ be a smooth map between two compact Riemannian manifolds without boundary. Assume that *M* has dimension 3. Then there exists a constant $\epsilon_0 = \epsilon_0(M,N) > 0$ such that, for any sequence of maps $\{u_i\}$ which minimizes energy among all smooth maps homotopic to ϕ and converges weakly in $W^{1,2}(M,N)$, if

$$\liminf_{i\to\infty} \frac{1}{\sigma} \int_{B_{\sigma}(x)} |du_i|^2 dV \le \epsilon_0, \tag{1.1}$$

then $\{u_i\}$ converges strongly in $W^{1,2}(B_{\sigma/4}(x), N)$.

As an application of Theorem 1.1, we prove a partial regularity result for the weak limit of an energy minimizing sequence.

COROLLARY 1.2. Let $\phi : M \to N$ be a smooth map between two compact Riemannian manifolds without boundary, where M has dimension 3. Let $\{u_i\}$ be a sequence of maps which minimizes energy among all smooth maps homotopic to ϕ . Suppose that $\{u_i\}$ converges weakly to some $u \in W^{1,2}(M,N)$; then there exists a closed set $\Sigma \subset M$ with finite

PENGZI MIAO

1-dimensional Hausdorff measure such that u is a smooth harmonic map from $M \setminus \Sigma$ to N. In particular, u is a weakly harmonic map from M to N.

We remark that the dimension restriction of the domain space comes only from the lemma proved in Section 4. If a similar lemma could be established on a general sphere $S^{n-1} \subset \mathbb{R}^n$, the rest of the argument in this paper would imply that Theorem 1.1 holds for arbitrary dimension n with the small energy concentration assumption (1.1) replaced by

$$\liminf_{i \to \infty} \frac{1}{\sigma^{n-2}} \int_{B_{\sigma}(x)} |du_i|^2 dV \le \epsilon_0.$$
(1.2)

2. Preliminaries. Let (M^3, g) and (N^m, h) be compact Riemannian manifolds of dimensions 3 and *m*. We assume that *M* and *N* have no boundary. By the Nash embedding theorem, it is convenient to regard *N* as isometrically embedded in some Euclidean space \mathbb{R}^K . We define

$$W^{1,2}(M,N) = \{ u \in W^{1,2}(M,\mathbb{R}^K) \mid u(x) \in N \text{ a.e. } x \in M \},$$
(2.1)

where $W^{1,2}(M, \mathbb{R}^K)$ is the separable Hilbert space of maps $u : M \to \mathbb{R}^K$ whose component functions are $W^{1,2}$ Sobolev functions on M. We note that $W^{1,2}(M, N)$ inherits both strong and weak topologies from $W^{1,2}(M, \mathbb{R}^K)$. Moreover, it is a strongly closed set with the property that, for any C > 0,

$$\{u \in W^{1,2}(M,N) \mid ||u||_{W^{1,2}} \le C\}$$
(2.2)

is weakly compact in $W^{1,2}(M,N)$ (see [4]).

For any $u \in W^{1,2}(M, N)$, the energy of u is defined by

$$E(u) = \int_{M} \operatorname{Tr}_{g} (u^{*}h) dV = \int_{M} |du^{2}| dV, \qquad (2.3)$$

where u^*h is the pullback of *h* by *u* and *dV* is the volume measure determined by *g* on *M*.

Let $C^{\infty}(M,N) \subset W^{1,2}(M,N)$ be the space of smooth maps. For any $\phi \in C^{\infty}(M,N)$, we define

$$\mathcal{F}_{\phi} = \{ u \in C^{\infty}(M, N) \mid u \text{ is homotopic to } \phi \}, E_{\phi} = \inf \{ E(u) \mid u \in \mathcal{F}_{\phi} \}.$$
(2.4)

The following result, which is due to White [8], gives a fundamental characterization of E_{ϕ} .

WHITE'S THEOREM. Let $\mathcal{F}_{\phi}^{(2)} = \{u \in C^{\infty}(M,N) \mid u \text{ is } 2\text{-homotopic to } \phi\}$, where two continuous maps v and w are said to be 2-homotopic if their restrictions to the 2-dimensional skeleton of some triangulation of M are homotopic. Then

$$\inf\left\{E(u) \mid u \in \mathcal{F}_{\phi}^{(2)}\right\} = E_{\phi}.$$
(2.5)

Let $\{u_i\} \subset \mathcal{F}_{\phi}$ be an arbitrary sequence which minimizes the energy functional, that is,

$$\lim_{i \to \infty} E(u_i) = E_{\phi}.$$
(2.6)

Then the above theorem suggests that $\{u_i\}$ is also a minimizing sequence in $\mathcal{F}_{\phi}^{(2)}$. This fact is very useful since it allows more competitors to be compared with u_i .

By the weak compactness of bounded sets in $W^{1,2}(M,N)$, we may assume that, passing to a subsequence, $\{u_i\}$ converges weakly in $W^{1,2}(M,N)$, strongly in $L^2(M,N)$, and pointwise almost everywhere to some $u \in W^{1,2}(M,N)$, which has the property that

$$E(u) \le \lim_{i \to \infty} E(u_i) = E_{\phi}.$$
(2.7)

Moreover, by the Riesz representation theorem, we know that there exists a Radon measure μ on *M* so that

$$\left| du_i \right|^2(x) dV - \mu. \tag{2.8}$$

Throughout the paper, we use $c_1, c_2, c_3, ...$ to denote constants depending only on (M, g) and (N, h).

3. Approximate monotonicity of $\{|du_i(x)|^2 dV\}$. Given a C^1 vector field X on M, we let $\{F_t\}$ denote the one-parameter group of diffeomorphism on M generated by X. For any $v \in W^{1,2}(M,N)$, we define $E_v(t,X) = E(v \circ F_t)$, where $v \circ F_t(x) = v(F_t(x))$. The first variation formula for the energy functional (see [4]) then gives that

$$\frac{d}{dt}E_{\nu}(t,X) = \int_{M} \left\langle \nu^{*}h, -g'(t) + \frac{1}{2} \{ \operatorname{Tr}_{g(t)}g'(t) \}g(t) \right\rangle_{g(t)} dV(t),$$
(3.1)

where v^*h is the pullback of h by v, $g(t) = F^*_{-t}(g)$, and dV(t) is the volume measure determined by g(t). In particular, at t = 0, we have that

$$\frac{d}{dt}E_{\nu}(0,X) = \int_{M} \left\langle \nu^{*}h, \mathcal{L}_{X}g - \frac{1}{2} \{ \operatorname{Tr}_{g}\left(\mathcal{L}_{X}g\right) \}g \right\rangle_{g} dV.$$
(3.2)

The following lemma says that, for large n, u_n is "almost stationary" with respect to a large class of domain variations.

LEMMA 3.1. Given $\Lambda > 0$, let $V_{\Lambda} = \{C^1 \text{ vector field } X \text{ with } \|X\|_{C^1} \le \Lambda\}$. Then

$$\sup_{X \in V_{\Lambda}} \left\{ \frac{d}{dt} E_n(0, X) \right\} \longrightarrow 0 \quad \text{as } n \longrightarrow \infty,$$
(3.3)

where $E_n(t,X) = E_{u_n}(t,X)$.

PROOF. Let σ_0 be a sufficiently small positive constant depending only on (M, g) such that for any geodesic ball $B_{\sigma}(x_0) \subset M$ with $\sigma \leq \sigma_0$ and any geodesic normal coordinate chart $\{x^1, x^2, x^3\}$ in $B_{\sigma}(x_0)$, all the eigenvalues of the matrix $[g_{ij}(x)]_{3\times 3}$ lie

in [1/2,2] for each $x \in B_{\sigma}(x_0)$. With such a choice of σ , we have that

$$\int_{B_{\sigma}(x_{0})} |dv|^{2} dV = \sum_{\alpha=1}^{K} \int_{B_{\sigma}(x_{0})} \frac{\partial v^{\alpha}}{\partial x^{i}} \frac{\partial v^{\alpha}}{\partial x^{j}} g^{ij}(x) dV$$

$$\geq \frac{1}{2} \sum_{\alpha=1}^{K} \int_{B_{\sigma}(x_{0})} \sum_{i=1}^{3} \left| \frac{\partial v^{\alpha}}{\partial x^{i}} \right|^{2}(x) dx$$
(3.4)

for any $v \in W^{1,2}(M, \mathbb{R}^K)$, where dx denotes the Lebesgue measure in \mathbb{R}^3 .

To prove the lemma, we first consider $V_{\Lambda,\sigma}$ instead of V_{Λ} , where $\sigma \leq \sigma_0$ and

$$V_{\Lambda,\sigma} = \{ X \in V_{\Lambda} \mid \text{support}\{X\} \subset B_{\sigma}(x_0) \text{ for some } x_0 \in M \}.$$
(3.5)

For any $X \in V_{\Lambda,\sigma}$, we write

$$G(t) = -g'(t) + \frac{1}{2} \{ \operatorname{Tr}_{g(t)} g'(t) \} g(t),$$

$$H^{ij}(t,x) = G_{kl}(t,x) g^{ik}(t,x) g^{jl}(t,x) \sqrt{\det(g_{ij}(t,x))}.$$
(3.6)

It follows from (3.1) that

$$\frac{d}{dt}E_m(t,X) - \frac{d}{dt}E_m(0,X) = \int_{B_\sigma(x_0)} \left(u_m^*h\right)_{ij}(x) \{H^{ij}(t,x) - H^{ij}(0,x)\} dx, \qquad (3.7)$$

where

$$\left(u_m^*h\right)_{ij}(x) = \sum_{\alpha=1}^{K} \frac{\partial u_m^{\alpha}}{\partial x^i}(x) \frac{\partial u_m^{\alpha}}{\partial x^j}(x).$$
(3.8)

Hence,

$$\left| \frac{d}{dt} E_m(t,X) - \frac{d}{dt} E_m(0,X) \right| \\ \leq 6 \sum_{i,j=1}^{3} \left(\sup_{x \in B_{\sigma}(x_0)} \left| H^{ij}(t,x) - H^{ij}(0,x) \right| \right) \cdot \left(\int_{B_{\sigma}(x_0)} \left| du_m \right|^2 dV \right)$$
(3.9)

by the Cauchy-Schwartz inequality and (3.4). We note that $H^{ij}(t,x)$ is a known function of $\{g_{ij}(t,x)\}$ and $\{(d/dt)g_{ij}(t,x)\}$, while $g(t,x) = F_{-t}^*g(x)$ and $(d/dt)g(t,x) = F_{-t}^*(\mathscr{L}_Xg)(x)$. Since $\|X\|_{C^1} \leq \Lambda$, it follows from the standard ODE theory that, for any $\epsilon > 0$, there exists t_0 depending only on ϵ , Λ , and g so that, for any $t \in [-t_0, t_0]$, we have that $\|g(t) - g\|_{C^1} \leq \epsilon$, hence $|H^{ij}(t,x) - H^{ij}(0,x)| \leq C\epsilon$ for some constant C depending only on the algebraic expression of H^{ij} .

Now assume that the lemma is not true for $V_{\Lambda,\sigma}$; then there exist $\delta_0 > 0$, a sequence of $\{X_k\} \subset V_{\Lambda,\sigma}$, and a subsequence $\{u_{i_k}\}$ of $\{u_i\}$ such that

$$\left|\frac{d}{dt}E_{i_k}(0,X_k)\right| > \delta_0. \tag{3.10}$$

Our above analysis then shows that there exists $t_0 = t_0(\delta_0, g, \Lambda, E_{\phi})$ such that

$$\left|\frac{d}{dt}E_{i_k}(t,X_k)\right| > \frac{1}{2}\delta_0 \quad \forall t \in [-t_0,t_0].$$

$$(3.11)$$

Since $\lim_{k\to\infty} E(u_{i_k}) = E_{\phi}$, we conclude that, for some k large enough and some $t \in [-t_0, t_0]$, $E(u_{i_k} \circ F_t) < E_{\phi} - (1/4)\delta_0 t_0$, which is a contradiction to the fact $u_{i_k} \circ F_t \in \mathcal{F}_{\phi}$ and the definition of E_{ϕ} .

To replace $V_{\Lambda,\sigma}$ by V_{Λ} , we can simply apply a partition of unity argument considering that $(d/dt)E_n(0,X)$ is linear in *X*. Hence, the lemma is proved.

Now we are ready to derive an approximate monotonicity property for $\{u_i\}$. Let $\xi(t)$ be any C^1 decreasing function on $[0, +\infty)$ whose support lies in [0, 1]. We fix $x_0 \in M$ and let $\{x^1, x^2, x^3\}$ be a geodesic normal coordinate chart in $B_{\sigma}(x_0)$. For $0 < \rho < \sigma \le \sigma_0$ and $x \in B_{\sigma}(x_0)$, we define $X_{\rho}(x) = \xi(|x|/\rho)x^i(\partial/\partial x^i)$ and view X_{ρ} as a vector field defined globally on M. It is easily checked that $\|X_{\rho}\|_{C^1} \le \Lambda$ for some constant $\Lambda = \Lambda(\xi) > 0$. Thus Lemma 3.1 implies that there exists a sequence $\{\kappa_i\}$ depending on $\Lambda(\xi)$ but not on ρ such that

$$\left|\frac{d}{dt}E_i(0,X_{\rho})\right| \leq \kappa_i, \quad \lim_{i\to\infty}\kappa_i=0.$$
(3.12)

A direct calculation shows that

$$\frac{d}{dt}E_{i}(0,X_{\rho}) = \operatorname{error}(\rho) + (-1)\int_{B_{\sigma}(x_{0})}\xi\left(\frac{|x|}{\rho}\right)|du_{i}|^{2}dV + (-1)\int_{B_{\sigma}(x_{0})}\xi'\left(\frac{|x|}{\rho}\right)\left(\frac{|x|}{\rho}\right)|du_{i}|^{2}dV + 2\int_{B_{\sigma}(x_{0})}\xi'\left(\frac{|x|}{\rho}\right)\left(\frac{|x|}{\rho}\right)\left|\frac{\partial u_{i}}{\partial \nu}\right|^{2}dV,$$
(3.13)

where $v = (x^i/|x|)(\partial/\partial x^i)$, $|\operatorname{error}(\rho)| \le \bar{c}\rho^2(\int_{B_{\sigma}(x_0)} |du_i|^2 dV)$, and $\bar{c} = \bar{c}(\xi, g)$. We then define

$$E_i(\rho) = \frac{1}{\rho} \int_{B_\sigma(x_0)} \xi\left(\frac{|x|}{\rho}\right) |du_i|^2 dV.$$
(3.14)

It follows from (3.12) and (3.13) that

$$E'_{i}(\rho) + \bar{c} \int_{B_{\sigma}(x_{0})} |du_{i}|^{2} dV \ge -\kappa_{i} \frac{1}{\rho^{2}}, \qquad (3.15)$$

which gives that

$$E_i(\tau) \le E_i(\rho) + \bar{c}(\rho - \tau) \int_{B_\sigma(x_0)} \left| du_i \right|^2 dV + \kappa_i \left(\frac{1}{\tau} - \frac{1}{\rho} \right)$$
(3.16)

for any $0 < \tau < \rho < \sigma$. Hence, we have proved the following proposition.

PROPOSITION 3.2. For any C^1 decreasing function $\xi(t)$ with support in [0,1], there exists a sequence $\{\kappa_i\}$ such that $\lim_{i\to 0} \kappa_i = 0$ and

$$\frac{1}{\tau} \int_{B_{\sigma}(x_{0})} \xi\left(\frac{|x|}{\tau}\right) |du_{i}|^{2} dV \leq \frac{1}{\rho} \int_{B_{\sigma}(x_{0})} \xi\left(\frac{|x|}{\rho}\right) |du_{i}|^{2} dV
+ \bar{c}(\rho - \tau) \int_{B_{\sigma}(x_{0})} |du_{i}|^{2} dV + \kappa_{i}\left(\frac{1}{\tau} - \frac{1}{\rho}\right)$$
(3.17)

for any $x_0 \in M$ and any $0 < \tau < \rho < \sigma \le \sigma_0$. Here $\{\kappa_i\}$ is independent of ρ and τ , and \bar{c} is a constant depending only on ξ and g.

Letting *i* go to ∞ , we have the following "monotonicity" formula for the limiting measure μ .

COROLLARY 3.3. For any C^1 decreasing function $\xi(t)$ with its support in [0,1],

$$\frac{1}{\tau} \int_{B_{\sigma}(x_0)} \xi\left(\frac{|x|}{\tau}\right) d\mu \le \frac{1}{\rho} \int_{B_{\sigma}(x_0)} \xi\left(\frac{|x|}{\rho}\right) d\mu + \bar{c}\mu(B_{\sigma}(x_0))$$
(3.18)

for any $x_0 \in M$, $0 < \tau < \rho < \sigma \le \sigma_0$, and some constant $\bar{c} = \bar{c}(\xi, g)$. Choosing ξ to be 1 on [0, 1/2],

$$\frac{1}{\tau}\mu(B_{\tau}(x_0)) \le \frac{2}{\rho}\mu(B_{\rho}(x_0)) + \bar{c}\mu(B_{\sigma}(x_0))$$
(3.19)

for any $0 < 2\tau < \rho < \sigma \le \sigma_0$, where $\bar{c} = \bar{c}(g)$.

As an application of this "monotonicity" property of μ , we show that u can be well approximated by smooth maps into N from the region where $\{u_i\}$ has small energy concentration.

PROPOSITION 3.4. There exists a number ϵ_1 depending only on M and N such that if $\mu(B_{\sigma}(x_0))/\sigma < \epsilon_1$, then there exists a sequence of smooth maps $\{u_{\tau}\}_{0 < \tau < \tau_0}$ from $B_{\sigma/2}(x_0)$ to N such that $\lim_{\tau \to 0} \|u_{\tau} - u\|_{W^{1,2}(B_{\sigma/2}(x_0))} = 0$.

PROOF. We use the idea in [5] to mollify u. Let $\varphi : \mathbb{R}^3 \to \mathbb{R}^+$ be a smooth radial mollifying function so that support $(\varphi) \subset B_1$ and $\int_{\mathbb{R}^3} \varphi \, dx = 1$. Assume that $\mu(B_{\sigma}(x_0))/\sigma < \epsilon_1$ for some ϵ_1 to be determined later; by Corollary 3.3, we have that

$$\frac{\mu(B_{\tau}(y))}{\tau} \le 4\frac{\mu(B_{\sigma/2}(y))}{\sigma} + \bar{c}\sigma\epsilon_1 \le 4\frac{\mu(B_{\sigma}(x_0))}{\sigma} + \bar{c}\sigma\epsilon_1 \le 5\epsilon_1$$
(3.20)

for any $\gamma \in B_{\sigma/2}(x_0)$ and $0 < 2\tau < \sigma/2$ provided $\bar{c}\sigma \leq 1$. Now define $u^{\tau}(\gamma) = (1/\tau^3) \int_{B_{\tau}(\gamma)} \varphi(|\gamma - z|/\tau) u(z) dz$ inside a normal coordinate chart around x_0 ; we can apply a version of the Poincare inequality to assert that

$$\frac{1}{\tau^3} \int_{B_{\tau}(\mathcal{Y})} |u(x) - u^{\tau}(\mathcal{Y})|^2 dx \le c_2 \frac{1}{\tau} \int_{B_{\tau}(\mathcal{Y})} |du|^2 dx \le c_2 \frac{\mu(B_{\tau}(\mathcal{Y}))}{\tau}, \quad (3.21)$$

where the last inequality holds because of the lower semicontinuity of energy with respect to weak convergence. It follows from (3.20) and (3.21) that $u^{\tau}(y)$ lies near

many values of u(z) for $z \in B_{\tau}(y)$. In particular, we see that

$$dist(u^{\tau}(y), N) \le c_3 \epsilon_1^{1/2}.$$
 (3.22)

Let \mathbb{O}_{ε} be a ε -tubular neighborhood of N in \mathbb{R}^{K} , and let $\Phi : \mathbb{O}_{\varepsilon} \to N$ denote the smooth nearest point projection map. We see that if $c_{3}\epsilon_{1}^{1/2} < \varepsilon$, then $u^{(\tau)}(y) \in \mathbb{O}_{\varepsilon}$ for all $y \in B_{\sigma/2}(x_{0})$. Hence, we can define a smooth map $u_{\tau} : B_{\sigma/2}(x_{0}) \to N$ by $u_{\tau}(y) = \Phi \circ u^{\tau}(y)$. Since $u^{\tau}(y)$ is the standard mollification of u by φ with a scaling factor τ , we see immediately that $\lim_{\tau \to 0} \|u_{\tau} - u\|_{W^{1,2}(B_{\sigma/2}x_{0})} = 0$.

4. A continuous version of Luckhaus lemma. In this section, we use $\nabla(\cdot)$ to denote the gradient operator on $S^2 \subset \mathbb{R}^3$ and $d\omega$ to denote the Euclidean surface measure on S^2 . For a map u defined on a cylinder $[a,b] \times S^2$, we use $\nabla_x u$, $\nabla_t u$ to denote the partial x, t gradient of u, where $(t,x) \in [a,b] \times S^2$. The following technical lemma, which may be viewed as a continuous version of the 2-dimensional Luckhaus lemma (see [6]) in the study of energy minimizing maps, will help us construct comparison maps in the proof of the main theorem.

LEMMA 4.1. Assume that $N \subset \mathbb{R}^K$ is an isometrically embedded compact manifold. Then there exists $\epsilon_2 = \epsilon_2(N) > 0$ such that if $v, w \in W^{1,2}(S^2, N) \cap C^0(S^2, N)$ and

$$\int_{S^2} |\nabla v|^2 d\omega \le \epsilon_2, \qquad \int_{S^2} |\nabla w|^2 d\omega \le \epsilon_2, \tag{4.1}$$

then for all $\beta > 0$, there exists $\eta = \eta(\epsilon_2, \beta) > 0$, where η does not depend on the choice of v and w, such that if

$$\int_{S^2} |v - w|^2 d\omega < \eta, \tag{4.2}$$

then there exist $\beta' \in [0,\beta)$ and $v' \in W^{1,2}([0,\beta'] \times S^2, N) \cap C^0([0,\beta'] \times S^2, N)$ with properties that

$$v'(0,x) = v(x), \qquad v'(\beta',x) = w(x),$$

$$\int_{[0,\beta'] \times S^2} |\nabla_{(t,x)}v'|^2 d\omega \, dt \le \beta.$$
(4.3)

PROOF. Let $v, w \in W^{1,2}(S^2, N) \cap C^0(S^2, N)$ such that (4.1) holds for some ϵ_2 to be determined later. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^+$ be a smooth radial mollifying function so that support($\varphi) \subset B_1$ and $\int_{\mathbb{R}^2} \varphi \, dx = 1$. For any $0 < h \ll \pi/2$ and any $(t, x) \in (0, h] \times S^2$, we define

$$v(t,x) = \int_{S^2} v(y) \varphi^t (\operatorname{dist}(x,y)) d\omega(y), \qquad (4.4)$$

where dist(x, y) represents the sphere distance between x and y on S^2 and $\varphi^t(r) = (1/t^2)\varphi(r/t)$. Let $\mathbb{O}_{2\varepsilon}$ be a 2ε -tubular neighborhood of N in \mathbb{R}^K ; by the argument used in the proof of Proposition 3.4, we know that, if we choose $\epsilon_2 = \epsilon_2(N)$ to be sufficiently small, then $v(t,x) \in \mathbb{O}_{\varepsilon}$ for all $(t,x) \in (0,h] \times S^2$. (We note that the monotonicity of the

energy of v, which is crucial in the proof of Proposition 3.4, is automatically satisfied in this case because the domain of v is of 2-dimensional.) Since v is continuous on S^2 , we have that

$$\lim_{(t,z)\to(0,x)} v(t,z) = v(x).$$
(4.5)

Thus v(t,x) is a continuous map on the closed cylinder $[0,h] \times S^2$ with v(0,x) = v(x). On the other hand, if $B_{\sigma}(z)$ is a geodesic ball with a normal coordinate chart such that $x \in B_{\sigma/2}(z)$, then for $0 < h = h(\epsilon_2) \ll 1$, we have that

$$v(t,x) = \int_{S^2} v(y) \varphi^t \big(\operatorname{dist}(x,y) \big) d\omega(y) \approx \int_{B_\sigma(0) \subset \mathbb{R}^2} v(x-ty) \varphi(|y|) dy, \quad (4.6)$$

which implies that

$$|\nabla_{x}v(t,x)|^{2} \leq c_{4} \int_{S^{2}} |\nabla v(y)|^{2} \varphi^{t} (\operatorname{dist}(x,y)) d\omega(y) + \epsilon_{2},$$

$$|\nabla_{t}v(t,x)|^{2} \leq c_{4} \int_{S^{2}} |\nabla v(y)|^{2} \varphi^{t} (\operatorname{dist}(x,y)) d\omega(y) + \epsilon_{2}$$

$$(4.7)$$

by the Cauchy-Schwartz inequality. Then it follows from (4.7) that

$$\int_{[0,h]\times S^2} \left| \nabla_{(t,x)} v(t,x) \right|^2 d\omega(x) dt \le c_5 h \left(\int_{S^2} \left| \nabla v(y) \right|^2 d\omega(y) + \epsilon_2 \right)$$
(4.8)

by the Fubini theorem. Similarly, we define $w(t,x): [l+h, l+2h] \times S^2 \to \mathbb{O}_{\varepsilon}$ by

$$w(t,x) = \int_{S^2} w(y) \varphi^{(l+2h-t)} (\operatorname{dist}(x,y)) d\omega(y)$$
(4.9)

for some l determined later.

Now we want to connect v(h,x) and w(l+h,x) on $[h,l+h] \times S^2$. We first estimate |v(h,x) - w(l+h,x)| pointwise. It follows from the definition and the Cauchy-Schwartz inequality that

$$|v(h,x) - w(l+h,x)| = \int_{S^2} |v(y) - w(y)| \varphi^h (\operatorname{dist}(x,y)) d\omega(y)$$

$$\leq c_6 \frac{1}{h} \left(\int_{S^2} |v(y) - w(y)|^2 d\omega(y) \right)^{1/2}.$$
(4.10)

We define z(t,x) on $[h, l+h] \times S^2$ to be

$$z(t,x) = \left(\frac{t-h}{l}\right)w(l+h,x) + \left(\frac{l+h-t}{l}\right)v(h,x).$$
(4.11)

Then (4.7) and (4.10) imply that

$$\int_{[h,l+h]\times S^{2}} |\nabla_{(t,x)} z(t,x)|^{2} d\omega(x) dt \leq c_{7} l \left\{ \int_{S^{2}} [|\nabla v|^{2} + |\nabla w|^{2}] d\omega + 2\epsilon_{2} \right\}$$

$$+ c_{7} \frac{1}{l} \frac{1}{h^{2}} \int_{S^{2}} |v(y) - w(y)|^{2} d\omega(y).$$

$$(4.12)$$

1606

Now we consider

$$\tilde{v} = \begin{cases} v(t,x), & 0 \le t \le h, \\ z(t,x), & h \le t \le l+h, \\ w(t,x), & l+h \le t \le l+2h. \end{cases}$$
(4.13)

Clearly, $\tilde{v} \in C^0 \cap W^{1,2}([0, l+2h] \times S^2, \mathbb{R}^K)$. Furthermore,

$$\int_{[0,l+2h]\times S^{2}} |\nabla_{(t,x)}\tilde{v}(t,x)|^{2} d\omega dt \leq c_{8} \frac{1}{l} \frac{1}{h^{2}} \int_{S^{2}} |v(y) - w(y)|^{2} d\omega(y) + c_{8}(h+l)\epsilon_{2}.$$
(4.14)

For any $\beta > 0$, we first choose $h = h(\beta, \epsilon_2)$ and $l = l(\beta, \epsilon_2)$ such that

$$l+2h<\beta, \qquad c_8(h+l)\epsilon_2<\frac{\beta}{2},$$
(4.15)

then we let $\|v - w\|_{L^2(S^2)} < \eta$, where $\eta = \eta(l, h, \beta, \epsilon_2)$ is so small that

$$c_8 \frac{1}{l} \frac{1}{h^2} \eta < \frac{\beta}{2}, \qquad c_6 \frac{1}{h} \eta^{1/2} < \varepsilon.$$
 (4.16)

It follows from (4.10) and (4.14) that $\tilde{v}(t,x) \in \mathbb{O}_{2\varepsilon}$ for all $(t,x) \in [0, l+2h] \times S^2$ and the total energy of \tilde{v} is bounded by β . To get v' finally, we compose \tilde{v} with the nearest point projection map $\Phi : \mathbb{O}_{2\varepsilon} \to N$. Hence, the lemma is proved.

5. Proof of Theorem 1.1. Throughout this section, we fix a geodesic ball $B_{\sigma}(x_0)$, where

$$\frac{1}{\sigma}\mu(B_{\sigma}) = \lim_{i \to \infty} \frac{1}{\sigma} \int_{B_{\sigma}} |du_i|^2 dV < \epsilon_0$$
(5.1)

for some ϵ_0 to be determined. For each τ , we let B_{τ} denote $B_{\tau}(x_0)$.

Assume that $\epsilon_0 < \epsilon_1$; Proposition 3.4 implies that there exists a sequence $\{v_i\} \subset C^{\infty}(B_{\sigma/2}, N)$ such that

$$\lim_{i \to \infty} ||v_i - u||_{W^{1,2}(B_{\sigma/2})} = 0.$$
(5.2)

We then choose $\rho \in (\sigma/4, \sigma/2)$ such that $u|_{\partial B_{\rho}}, u_i|_{\partial B_{\rho}} \in W^{1,2}(\partial B_{\rho}, N)$,

$$\begin{split} \lim_{i \to \infty} ||v_i - u||_{W^{1,2}(\partial B_{\rho})} &= 0, \\ \lim_{i \to \infty} ||u_i - u||_{L^2(\partial B_{\rho})} &= 0, \\ \int_{\partial B_{\rho}} |du|^2 d\Sigma \leq c_9 \frac{1}{\sigma} \int_{B_{\sigma}} |du|^2 dV, \end{split}$$
(5.3)
$$\\ \liminf_{i \to \infty} \int_{\partial B_{\rho}} |du_i|^2 d\Sigma \leq c_9 \frac{1}{\sigma} \lim_{i \to \infty} \int_{B_{\sigma}} |du_i|^2 dV, \end{split}$$

where $d\Sigma$ is the induced surface measure on $\partial B_{\rho} \subset M$. After fixing a geodesic normal coordinate chart centered at x_0 , we may also view $u|_{\partial B_{\rho}}, u_i|_{\partial B_{\rho}}, v_i|_{\partial B_{\rho}}$ as defined on the Euclidean sphere S_{ρ} with radius ρ ; then we have that

$$\int_{S_{\rho}} |\nabla u|^{2} d\omega_{\rho} \leq c_{10} \int_{\partial B_{\rho}} |du|^{2} d\Sigma,$$

$$\int_{S_{\rho}} |\nabla u_{i}|^{2} d\omega_{\rho} \leq c_{10} \int_{\partial B_{\rho}} |du_{i}|^{2} d\Sigma,$$

$$\int_{S_{\rho}} |\nabla v_{i}|^{2} d\omega_{\rho} \leq c_{10} \int_{\partial B_{\rho}} |dv_{i}|^{2} d\Sigma,$$
(5.4)

where $d\omega_{\rho}$ represents the Euclidean surface measure on S_{ρ} . Now we choose $\epsilon_0 < \min\{\epsilon_1, (c_9c_{10})^{-1}\epsilon_2\}$ and we claim that

$$\lim_{i \to \infty} \int_{B_{\rho}} |du_i|^2 dV = \int_{B_{\rho}} |du|^2 dV.$$
 (5.5)

We remark that, once (5.5) is established, it will readily imply that

$$\lim_{i \to \infty} ||u_i - u||_{W^{1,2}(B_{\rho})} = 0$$
(5.6)

by the fact that $\{u_i\}$ converges to u weakly and the standard Hilbert space theories.

Assume that (5.5) does not hold; we have that

$$\lim_{i \to \infty} \int_{B_{\rho}(x_0)} |du_i|^2 dV > \int_{B_{\rho}(x_0)} |du|^2 dV + 2\delta$$
(5.7)

for some $\delta > 0$. The idea for the rest of the proof is to construct a sequence of comparison maps which are almost v_i inside B_ρ and u_i outside B_ρ . For that purpose, we need to connect u_i and v_i on the boundary of B_ρ using Lemma 4.1. We first note that (5.3) imply that there exists a subsequence $\{u_{i_k}\}, \{v_{i_k}\}$ such that

$$\int_{S_{\rho}} |\nabla u_{i_{k}}|^{2} d\omega_{\rho} < \epsilon_{2}, \quad \int_{S_{\rho}} |\nabla v_{i_{k}}|^{2} d\omega_{\rho} < \epsilon_{2} \quad \forall k,$$

$$\lim_{k \to \infty} ||v_{i_{k}} - u_{i_{k}}||_{L^{2}(S_{\rho})} = 0.$$
(5.8)

We then consider $\bar{u}_{i_k}(\omega) = u_{i_k}(\rho\omega)$ and $\bar{v}_{i_k}(\omega) = v_{i_k}(\rho\omega)$, where ω denotes the point on S^2 . It follows from (5.8) and Lemma 4.1 that for all $\beta > 0$, there exist $k_0 = k_0(\beta, \epsilon_2)$ and $\beta' = \beta'(\beta, \epsilon_2) < \beta$ such that for all $k > k_0$, there exists $\bar{w}_k \in W^{1,2} \cap C^0([0,\beta'] \times S^2, N)$ such that

$$\bar{w}_{k}(0,x) = \bar{u}_{i_{k}}(x),$$

$$\bar{w}_{k}(\beta',x) = \bar{v}_{i_{k}}(x),$$

$$\int_{[0,\beta']\times S^{2}} |\nabla_{(t,x)}\bar{w}_{k}|^{2} d\omega dt \leq \beta.$$
(5.9)

Next, we use polar coordinates to transplant \bar{w}_k to the shell region between S_ρ and $S_{(1-\beta')\rho}$ by defining $w_k((1-t)\rho\omega) = \bar{w}_k(t,\omega)$. Rescaling $v_{i_k}(x)$ on B_ρ to $v'_{i_k}(x) = v'_{i_k}(r\omega) = v_{i_k}(r\omega/(1-\beta'))$ on $B_{(1-\beta')\rho}$, we then have that

$$w_{k}(x) = u_{i_{k}}(x), \quad x \in \partial B_{\rho},$$

$$w_{k}(x) = v'_{i_{k}}(x), \quad x \in \partial B_{(1-\beta')\rho},$$

$$\int_{B_{\rho} \setminus B_{(1-\beta')\rho}} |dw_{k}|^{2} dV \leq c_{10}\rho\beta.$$
(5.10)

Now we consider a new sequence $\{\hat{u}_k\} \subset W^{1,2} \cap C^0(M,N)$ given by

$$\hat{u}_{k} = \begin{cases} u_{i_{k}}, & x \notin B_{\rho}, \\ w_{k}, & x \in B_{\rho} \setminus B_{(1-\beta')\rho}, \\ v_{i_{k}}', & x \in B_{(1-\beta')\rho}. \end{cases}$$
(5.11)

First, we note that the fact that $\hat{u}_k = u_{i_k}$ outside B_ρ and $\pi_2(S^3) = 0$ implies that \hat{u}_k is 2-homotopic to u_{i_k} . Second, we have the following energy estimate:

$$E(\hat{u}_{k}) = \int_{M \setminus B_{\rho}} |du_{i_{k}}|^{2} dV + \int_{B_{\rho} \setminus B_{(1-\beta')\rho}} |dw_{k}|^{2} dV + \int_{B_{(1-\beta')\rho}} |dv_{k}'|^{2} dV$$

$$\leq E(u_{i_{k}}) - \int_{B_{\rho}} |du_{i_{k}}|^{2} dV + c_{10}\rho\beta + c(\beta') \int_{B_{\rho}} |dv_{i_{k}}|^{2} dV,$$
(5.12)

where $c(\beta')$ is the supremum of the Jacobian of the scaling diffeomorphism from $B_{(1-\beta')\rho}$ to B_{ρ} , which satisfies $\lim_{\beta' \to 0} c(\beta') = 1$ with the convergence only depending on (M, g). We now fix β such that

$$\beta < (c_{10}\rho)^{-1}\delta, \qquad |c(\beta') - 1| \int_{B_{\rho}(x_0)} |du|^2 dV < \frac{\delta}{2}.$$
 (5.13)

Letting $k \to \infty$, we then have that

$$\limsup_{k \to \infty} E(\hat{u}_k) \le E_{\phi} - \frac{\delta}{2}.$$
(5.14)

Finally, we note that the fact that $\hat{u}_k \in W^{1,2} \cap C^0(M,N)$ implies that \hat{u}_k can be well approximated in $W^{1,2}$ norm by smooth maps from M to N which are homotopic to \hat{u}_k . One way to see this is to consider the standard mollification of \hat{u}_k into \mathbb{R}^K , where the uniform continuity of \hat{u}_k on M will guarantee that the image of the mollification will be inside a tubular neighborhood of N. Composing it with the nearest point projection map, we then have the desired approximation. Hence, we know that there exists another sequence $\{\tilde{u}_k\} \subset C^{\infty}(M,N)$ such that \tilde{u}_k is homotopic to \hat{u}_k and

$$\limsup_{k \to \infty} E(\tilde{u}_k) = \limsup_{k \to \infty} E(\hat{u}_k) < E_{\phi} - \frac{\delta}{2}.$$
(5.15)

Since \hat{u}_k and u_{i_k} are 2-homotopic, we know that $\{\tilde{u}_k\} \subset \mathcal{F}_{\phi}^{(2)}$. Thus (5.15) gives a contradiction to the fact that $E_{\phi} = \inf\{E(u) \mid u \in \mathcal{F}_{\phi}^{(2)}\}$ by White's theorem. Therefore, (5.5) holds and Theorem 1.1 is proved.

Next, we prove Corollary 1.2 on the partial regularity of the weak limit of $\{u_i\}$. We recall the following ϵ -regularity theorem for stationary harmonic maps obtained by Bethuel [1].

BETHUEL'S THEOREM. There exists a number $\epsilon_3 = \epsilon_3(M,N) > 0$ such that if $u : B_{\sigma}(x_0) \subset M \to N$ is a stationary harmonic map and $(1/\sigma) \int_{B_{\sigma}(x_0)} |du|^2 dV \leq \epsilon_3$, then u is smooth inside $B_{\sigma/2}(x_0)$.

PROOF OF Corollary 1.2. Let $\bar{\epsilon}$ be a number to be determined and let $B_{\sigma}(x_0)$ be a geodesic ball, where $(1/\sigma)\mu(B_{\sigma}(x_0)) < \bar{\epsilon}$. Assume that $\bar{\epsilon} < \epsilon_0$; our main theorem implies that $\{u_k\}$ converges strongly to u in $W^{1,2}(B_{\sigma/4}(x_0), N)$. Then it follows from this $W^{1,2}$ strong convergence and the fact that $\{u_i\}$ is a minimizing sequence that u is stationary with respect to both the first and the second variation (see [4]) inside $B_{\sigma/4}(x_0)$, hence $u : B_{\sigma/4}(x_0) \to N$ is a stationary harmonic map. We note that

$$\frac{4}{\sigma}\int_{B_{\sigma/4}(x_0)}|du|^2dV \le \frac{4}{\sigma}\int_{B_{\sigma}(x_0)}|du|^2dV \le \frac{4}{\sigma}\mu(B_{\sigma}(x_0)).$$
(5.16)

Hence, assuming that $\bar{\epsilon} < (1/4)\epsilon_3$ and applying Bethuel's theorem, we know that u is smooth inside $B_{\sigma/8}(x_0)$. With such a choice of $\bar{\epsilon}$, we define

$$\Sigma = \left\{ x \in M \mid \lim_{\sigma \to 0} \frac{1}{\sigma} \mu(B_{\sigma}(x)) \ge \bar{\epsilon} \right\}.$$
(5.17)

A standard covering argument (see [4]) then shows that Σ is a closed set with finite 1-dimensional Hausdorff measure. Hence, we conclude that u is a smooth harmonic map from $M \setminus \Sigma$ to N, where Σ is a close set with $\mathcal{H}^1(\Sigma) < \infty$.

ACKNOWLEDGMENTS. The author wants to thank Professor Richard Schoen for suggesting this problem. The author also wants to thank the referees for careful reading of the original manuscript.

REFERENCES

- F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), no. 4, 417-443.
- [2] J. Eells and J. C. Wood, *Restrictions on harmonic maps of surfaces*, Topology **15** (1976), no. 3, 263–266.
- [3] J. Sacks and K. Uhlenbeck, *The existence of minimal immersions of 2-spheres*, Ann. of Math.
 (2) 113 (1981), no. 1, 1–24.
- [4] R. M. Schoen, Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential Equations (California, 1983), Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358.
- [5] R. M. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), no. 2, 307–335.
- [6] L. Simon, *Theorems on Regularity and Singularity of Energy Minimizing Maps*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996, based on lecture notes by Norbert Hungerbühler.

- [7] C. Wang, Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets, Houston J. Math. 22 (1996), no. 3, 559–590.
- [8] B. White, Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23 (1986), no. 2, 127-142.

Pengzi Miao: Department of Mathematics, Stanford University, Palo Alto, CA 94305, USA *E-mail address*: mpengzi@math.stanford.edu