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Using orthogonal polynomials, we give a different approach to some recent results on tridi-
agonal matrices.
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1. Introduction and preliminaries. Most of the results on tridiagonal matrices can

be seen in the context of orthogonal polynomials. Here, we will see two examples. The

aim of this note is to give simplified proofs of some recent results on tridiagonal ma-

trices, using arguments from the theory of orthogonal polynomials.

One of the most important tools in the study of orthogonal polynomials is the spec-

tral theorem for orthogonal polynomials, which states that any orthogonal polynomial

sequence (OPS) {Pn}n≥0 is characterized by a three-term recurrence relation

xPn(x)=αnPn+1(x)+βnPn(x)+γnPn−1(x), n= 0,1,2, . . . , (1.1)

with initial conditions P−1(x)= 0 and P0(x)= const≠ 0, where {αn}n≥0, {βn}n≥0, and

{γn}n≥0 are sequences of complex numbers such that αnγn+1 ≠ 0 for all n= 0,1,2, . . . .
The next proposition is known as the separation theorem for zeros and tells us that

the zeros of Pn and Pn+1 mutually separate each other.

Theorem 1.1 (see, e.g., [1, page 28]). In (1.1), let βn ∈ R and γn+1 > 0 for all n =
0,1,2, . . . . Then, for each n, Pn has n real and distinct zeros, denoted in increasing or-

der by xn1 < xn2 < ··· < xnn. Furthermore, the interlacing inequalities xn+1,i < xni <
xn+1,i+1 (i= 1, . . . ,n) hold for every n= 1,2, . . . .

In 1961, Wendroff showed that some reciprocal-like of the separation theorem is also

true.

Theorem 1.2 [7]. Let a< x1 <x2 < ···<xn < b and xi < yi < xi+1, for i= 1, . . . ,n−
1. Then there exists a monic orthogonal polynomial sequence (MOPS) {Pn}n≥0 such that

Pn(x)= (x−x1)···(x−xn) and Pn−1(x)= (x−y1)···(x−yn−1).

Notice that the three-term recurrence relation (1.1) can be written in matrix form as

x




P0(x)
P1(x)

...

Pn(x)


= Jn+1




P0(x)
P1(x)

...

Pn(x)


+αnPn+1(x)




0

0
...

1


 , (1.2)
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where Jn+1 is a tridiagonal Jacobi matrix of order n+1, defined by

Jn+1 :=




β0 α0

γ1 β1 α1

γ2
. . .

. . .

. . . βn−1 αn−1

γn βn




(n= 0,1,2, . . .). (1.3)

It follows that if {xnj}nj=1 is the set of zeros of the polynomial Pn, then each xnj is

an eigenvalue of the corresponding Jacobi matrix Jn of order n, and an associated

eigenvector is [P0(xnj),P1(xnj), . . . ,Pn−1(xnj)]t .
Given a family of orthogonal polynomials {Pn}n≥0 defined by (1.1) with αn = 1 for

all n and γn > 0 for all n = 1,2, . . . (so that {Pn}n≥0 is an MOPS), we may define the

associated monic polynomials of order r (r a positive integer) {P(r)n }n≥0, r = 0,1,2, . . . ,
by the shifted recurrence

P(r)n+1(x)=
(
x−βn+r

)
P(r)n (x)−γn+r P(r)n−1(x), n= 0,1,2, . . . , (1.4)

with P(r)−1 = 0 and P(0)−1 = 1. The anti-associated polynomials for the family {Pn}n≥0,

denoted by {P(−r)n+r }n≥0, are obtained by pushing down a given Jacobi matrix and by

introducing, in the empty upper left corner, new coefficients β−i, i = r ,r − 1, . . . ,1,

on the subdiagonal and new coefficients γ−i > 0, i = r − 1,r − 2, . . . ,0, on the lower

subdiagonal (see, e.g., [6]). The new Jacobi matrix is then of the form




β−r 1

γ−r+1 β−r+1 1

γ−r+2
. . .

. . .

. . . β−1 1

γ0 β0 1

γ1
. . .

. . .

. . .
. . .




. (1.5)

If {Qn}n≥0 satisfies Q−1 = 0, Q0 = 1, and

Qn+1(x)=
(
x−β−r+n

)
Qn(x)−γ−r+nQn−1(x), n= 0,1, . . . ,r −1, (1.6)

then, clearly,

P(−r)n (x)=Qn(x), n= 0,1, . . . ,r . (1.7)

For n> r , the anti-associated polynomials satisfy the three-term recurrence relation

P(−r)n+r+1(x)=
(
x−βn

)
P(−r)n+r (x)−γnP(−r)n+r−1(x), n= 0,1,2, . . . . (1.8)
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The anti-associated polynomial P(−r)n+r was represented in [6] as a linear combination of

the original family Pn and the associated polynomials P(1)n−1 in the following way:

P(−r)n+r (x)=Qr(x)Pn(x)−γ0Qr−1(x)P
(1)
n−1(x), n= 0,1,2, . . . . (1.9)

2. Inverse eigenvalue problems. For an n×n matrix A, we denote by σ(A) the

spectrum of A and by A′ the (n−1)th leading principal submatrix of A. In [5], Gray and

Wilson stated the following theorem.

Theorem 2.1 [5]. Let {µ1, . . . ,µn} and {ν1, . . . ,νn−1} be sets of real numbers satisfying

µ1 < ν1 < µ2 < ν2 < ···< µn−1 < νn−1 < µn. (2.1)

Then there exists a unique symmetric tridiagonal n×nmatrix Awith positive super- and

subdiagonals such that σ(A)= {µ1, . . . ,µn} and σ(A′)= {ν1, . . . ,νn−1}.
This result is a consequence of Theorem 1.2. The positiveness of the two mentioned

off-diagonals is a direct consequence of Wendroff’s proof.

One says that a set of numbers S is symmetric if S =−S. If {Pk}k≥0 is the MOPS given

by Wendroff’s theorem, then it is possible to prove that βk = 0 for all k in the three-term

recurrence relation (1.1). As a consequence, we have the following proposition.

Theorem 2.2 [3]. Let S1 = {µ1, . . . ,µn} and S2 = {ν1, . . . ,νn−1} be symmetric sets of

real numbers satisfying

µ1 < ν1 < µ2 < ν2 < ···< µn−1 < νn−1 < µn. (2.2)

Then there exists a unique symmetric tridiagonal zero main diagonal n× n matrix

A with positive super- and subdiagonals such that σ(A) = {µ1, . . . ,µn} and σ(A′) =
{ν1, . . . ,νn−1}.

3. Antipodal tridiagonal pattern. An n×n (sign) pattern is a matrix, where each

entry is +, −, or 0. A pattern S = (sij) defines a pattern class of real matrices

Q(S)= {A= (aij) | sign
(
aij
)= sij, ∀i,j}. (3.1)

For n≥ 2, we consider the antipodal tridiagonal pattern Tn defined as

Tn =




− +
− 0 +

− . . .
. . .

. . . 0 +
− +



n×n

. (3.2)
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In [2], Drew et al. have considered the matrix An ∈Q(Tn):

An =




−a0 1

−a1 0 1

−a2
. . .

. . .

. . . 0 1

−an−1 an



. (3.3)

They proved that if det(zIn−An)= zn, thenAn is symmetric about the reverse diagonal.

Theorem 3.1 [2]. If there exists An ∈ Q(Tn) such that det(λIn −An) = zn, then

ai = an−i for i= 0,1, . . . ,�(n−1)/2�.
This can be generalized in the following way.

Theorem 3.2. Let An ∈ Q(Tn) and φn(λ) = det(λIn − An). Then φn(−λ) =
(−1)nφn(λ) if and only if An is symmetric about the reverse diagonal.

Recently, Elsner et al. [4] gave a proof of this theorem. We present a different proof

by using anti-associated polynomials as defined in the first section. Let P(−1)
n−1 be the

anti-associated polynomial, with γ0 = a1 and β−1 = 0, for the characteristic polynomial

Pn−1 of the matrix




0 1

a2
. . .

. . .

. . .
. . . 1

an−1 0



. (3.4)

Let φ̃n(λ)= det(λIn−iAn). Then

φ̃n(λ)= P(−1)
n (λ)−ianP(−1)

n−1 (λ)+ia0Pn−1(λ)+a0anPn−2(λ). (3.5)

If φ̃n(−λ)= (−1)nφ̃n(λ), then

anP
(−1)
n−1 (λ)= a0Pn−1(λ). (3.6)

Since the polynomials are monic, an = a0. On the other hand, Pn−1(λ) = λPn−2(λ)−
an−1Pn−3(λ) and, by (1.9), P(−1)

n−1 (λ) = λPn−2(λ)−a1P
(1)
n−3(λ), which implies an−1 = a1.

Furthermore, Pn−3(λ) = P(1)n−3(λ), and now we only have to apply the procedure to the

matrix




0 1

a3
. . .

. . .

. . .
. . . 1

an−2 0



. (3.7)
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Notice that the conditionφn(−λ)= (−1)nφn(λ) is equivalent to φ̃n(−λ)= (−1)nφ̃n(λ).
This completes the proof.
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