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HAMILTONIAN PATHS ON PLATONIC GRAPHS
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We develop a combinatorial method to show that the dodecahedron graph has, up to rotation
and reflection, a unique Hamiltonian cycle. Platonic graphs with this property are called
topologically uniquely Hamiltonian. The same method is used to demonstrate topologically
distinct Hamiltonian cycles on the icosahedron graph and to show that a regular graph
embeddable on the 2-holed torus is topologically uniquely Hamiltonian.
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1. Introduction. The five Platonic solids give rise to regular planar graphs with the

additional property that each face is bordered by the same number of edges (including

the “back face”). We use Schlegel diagrams to represent these graphs. A graph with

exactly one Hamiltonian cycle is called uniquely Hamiltonian. The highly symmetric

Platonic graphs admit many Hamiltonian cycles, but in some cases these cycles are

very similar. Call a Platonic graph topologically uniquely Hamiltonian if all Hamiltonian

cycles are equivalent under rotation and reflection. It is well known that the dodecahe-

dron graph is topologically uniquely Hamiltonian. We develop a combinatorial method

to establish this result and address related problems.

2. Platonic graphs. Given a Hamiltonian cycle on a Platonic graph, label each face

with the number of its bordering edges that are used in the cycle. For the dodecahedral

graph, a face label F clearly satisfies 0 ≤ F ≤ 5. In fact, it is easy to see that 3 ≤ F ≤ 4.

Since the dodecahedron graph is 3-regular, exactly two of the three edges incident with

each vertex will be used in a Hamiltonian cycle. If F ≤ 2, then at least one of the face’s

vertices will not be visited by the cycle, a contradiction. If F = 5, then the cycle does

not include any of the graph’s other vertices (see Figure 2.1).

Consider an arbitrary Hamiltonian cycle on the dodecahedron graph. Let x be the

number of faces labeled 3 and y the number of faces labeled 4. Since there are twelve

faces, x +y = 12. The Hamiltonian cycle includes all twenty vertices and therefore

consists of twenty edges. Since each edge borders two faces, the sum of the face labels

is 40, so 3x+4y = 40. The solution to this system of equations is x = 8 and y = 4. That

is, any Hamiltonian cycle on the dodecahedron graph gives rise to eight faces labeled

3 and four faces labeled 4.

At least two of the faces labeled 4 must be adjacent. To show this, we attempt to

find four mutually nonadjacent faces on the dodecahedron graph. Without loss of gen-

erality, suppose the middle face of the Schlegel drawing is labeled 4 (see Figure 2.2).

Then the five faces adjacent to it cannot be chosen. There are two inequivalent choices
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Figure 2.3

for the second face labeled 4. Choosing the “outside” face eliminates all other possibil-

ities, a contradiction. Choosing any of the other faces leaves two adjacent faces for the

remaining faces labeled 4.

The edge shared by the two adjacent faces labeled 4 must be in any Hamiltonian

cycle, else the cycle does not include half of the graph’s vertices (see Figure 2.3). Since

two of the three edges incident to each vertex are part of any Hamiltonian cycle, the

unused edges for these two faces labeled 4 must be incident to the shared edge. The

two remaining choices correspond to reflection being in the definition of topologically

uniquely Hamiltonian.

This is enough to prove that the dodecahedron graph is topologically uniquely Hamil-

tonian. Without loss of generality, suppose the middle face in the Schlegel diagram and

the face below it are labeled 4, and choose one of the two options for the unused edges
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Figure 2.4
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Figure 2.5

of these faces. The fact that two of the three edges incident to each vertex are part of

any Hamiltonian cycle forces the rest of the cycle (see Figure 2.4). Notice that the faces

labeled 4 are antipodal (on the original polyhedron).

This same technique shows that there are topologically distinct Hamiltonian cycles

on the icosahedron graph; there are cycles that use at least one edge from every face,

and cycles that do not (see Figure 2.5). It is easy to see that the tetrahedron and cube

graphs are topologically uniquely Hamiltonian, while the octahedron graph is not.

3. Positive genus. Fortunately, this method is not limited to the five graphs corre-

sponding to Platonic solids. In order for the idea of faces to be sensible, a graph must be

embeddable on a 2-manifold. A g-Platonic graph is a regular graph that can be embed-

ded on a genus g torus such that each face is bordered by the same number of edges

[1, 2]. We can no longer work with Schlegel diagrams, but a g-torus can be represented

as a 4g-gon with identified edges.

Consider the 2-Platonic graph with 16 vertices, 24 edges, and 6 faces, each an octagon.

For a Hamiltonian path on this graph, clearly 4≤ F ≤ 7. It is actually easy to show that

F = 5 and F = 7 lead to contradictions. Following the reasoning above, the system of

equations x+y = 6 and 4x+6y = 32 has solutions x = 2 and y = 4. Again, using the

fact that two of the three edges incident to each vertex are part of any Hamiltonian

cycle forces the rest of the cycle (see Figure 3.1).
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