CALCULATIONS ON SOME SEQUENCE SPACES

BRUNO DE MALAFOSSE

Received 16 September 2002

We deal with space of sequences generalizing the well-known spaces $w_{\infty}^{p}(\lambda), c_{\infty}(\lambda, \mu)$, replacing the operators $C(\lambda)$ and $\Delta(\mu)$ by their transposes. We get generalizations of results concerning the strong matrix domain of an infinite matrix A.

2000 Mathematics Subject Classification: 46A45, 40C05.

1. Notations and preliminary results. For a given infinite matrix $A=\left(a_{n m}\right)_{n, m \geq 1}$, the operators A_{n} are defined, for any integer $n \geq 1$, by

$$
\begin{equation*}
A_{n}(X)=\sum_{m=1}^{\infty} a_{n m} x_{m}, \tag{1.1}
\end{equation*}
$$

where $X=\left(x_{n}\right)_{n \geq 1}$, the series intervening in the second member being convergent. So we are led to the study of the infinite linear system

$$
\begin{equation*}
A_{n}(X)=b_{n}, \quad n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

where $B=\left(b_{n}\right)_{n \geq 1}$ is a one-column matrix and X the unknown, see $[1,2,3,4,5,6,7$, $8,10]$. Equation (1.2) can be written in the form $A X=B$, where $A X=\left(A_{n}(X)\right)_{n \geq 1}$. In this paper, we will also consider A an operator from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a BK space if each projection $P_{n} X=x_{n}$ is continuous for all $X \in E$. A BK space E is said to have AK, (see [12, 13]), if $B=\sum_{m=1}^{\infty} b_{m} e_{m}$, for every $B=\left(b_{n}\right)_{n \geq 1} \in E$, (with $e_{n}=(0, \ldots, 1, \ldots), 1$ being in the nth position), that is,

$$
\begin{equation*}
\left\|\sum_{m=N+1}^{\infty} b_{m} e_{m}\right\|_{E} \rightarrow 0 \quad(n \rightarrow \infty) . \tag{1.3}
\end{equation*}
$$

We will write s for the set of all complex sequences, l_{∞}, c, c_{0} for the sets of bounded, convergent, and null sequences, respectively. We will denote by $c s$ and l_{1} the sets of convergent and absolutely convergent series, respectively.

In all that follows we will use the set

$$
\begin{equation*}
U^{+*}=\left\{\left(u_{n}\right)_{n \geq 1} \in s \mid u_{n}>0 \forall n\right\} . \tag{1.4}
\end{equation*}
$$

From Wilansky's notations [15], we define for any sequence

$$
\begin{equation*}
\alpha=\left(\alpha_{n}\right)_{n \geq 1} \in U^{+*}, \tag{1.5}
\end{equation*}
$$

and for any set of sequences E, the set

$$
\begin{equation*}
\left(\frac{1}{\alpha}\right)^{-1} * E=\left\{\left(x_{n}\right)_{n \geq 1} \in s \left\lvert\,\left(\frac{x_{n}}{\alpha_{n}}\right)_{n} \in E\right.\right\} \tag{1.6}
\end{equation*}
$$

We will write $\alpha * E$ instead of $(1 / \alpha)^{-1} * E$ for short. So we get

$$
\alpha * E= \begin{cases}s_{\alpha}^{\circ} & \text { if } E=c_{0} \tag{1.7}\\ s_{\alpha}^{(c)} & \text { if } E=c \\ s_{\alpha} & \text { if } E=l_{\infty}\end{cases}
$$

We have for instance

$$
\begin{equation*}
\alpha * c_{0}=s_{\alpha}^{\circ}=\left\{\left(x_{n}\right)_{n \geq 1} \in s \mid x_{n}=o\left(\alpha_{n}\right) n \rightarrow \infty\right\} . \tag{1.8}
\end{equation*}
$$

Each of the spaces $\alpha * E$, where $E \in\left\{c_{0}, c, l_{\infty}\right\}$, is a BK space normed by

$$
\begin{equation*}
\|X\|_{s_{\alpha}}=\sup _{n \geq 1}\left(\frac{\left|x_{n}\right|}{\alpha_{n}}\right) \tag{1.9}
\end{equation*}
$$

and s_{α}° has AK.
Now let $\alpha=\left(\alpha_{n}\right)_{n \geq 1}$ and $\beta=\left(\beta_{n}\right)_{n \geq 1} \in U^{+*}$. $S_{\alpha, \beta}$ is the set of infinite matrices $A=\left(a_{n m}\right)_{n, m \geq 1}$ such that

$$
\begin{equation*}
\left(a_{n m} \alpha_{m}\right)_{m \geq 1} \in l^{1} \quad \forall n \geq 1, \quad \sum_{m=1}^{\infty}\left(\left|a_{n m}\right| \alpha_{m}\right)=O\left(\beta_{n}\right) \quad(n \rightarrow \infty) . \tag{1.10}
\end{equation*}
$$

$S_{\alpha, \beta}$ is a Banach space with the norm

$$
\begin{equation*}
\|A\|_{S_{\alpha, \beta}}=\sup _{n \geq 1}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right| \frac{\alpha_{m}}{\beta_{n}}\right) . \tag{1.11}
\end{equation*}
$$

Let E and F be any subsets of s. When A maps E into F, we will write $A \in(E, F)$, see [11]. So for every $X \in E, A X \in F$, ($A X \in F$ will mean that for each $n \geq 1$ the series defined by $y_{n}=\sum_{m=1}^{\infty} a_{n m} x_{m}$ is convergent and $\left.\left(y_{n}\right)_{n \geq 1} \in F\right)$. It has been proved in [9] that $A \in\left(s_{\alpha}, s_{\beta}\right)$ if and only if $A \in S_{\alpha, \beta}$. So we can write that $\left(s_{\alpha}, s_{\beta}\right)=S_{\alpha, \beta}$.

When $s_{\alpha}=s_{\beta}$, we obtain the unital Banach algebra $S_{\alpha, \beta}=S_{\alpha}$, (see [1, 2, 3, 5, 6, 10]) normed by $\|A\|_{S_{\alpha}}=\|A\|_{S_{\alpha, \alpha}}$.

We also have $A \in\left(s_{\alpha}, s_{\alpha}\right)$ if and only if $A \in S_{\alpha}$. If $\|I-A\|_{S_{\alpha}}<1$, we will say that $A \in \Gamma_{\alpha}$. Since the set S_{α} is a unital algebra, we have the useful result that if $A \in \Gamma_{\alpha}, A$ is bijective from s_{α} into itself.

If $\alpha=\left(r^{n}\right)_{n \geq 1}, \Gamma_{\alpha}, S_{\alpha}, s_{\alpha}, s_{\alpha}^{\circ}$, and $s_{\alpha}^{(c)}$ are replaced by $\Gamma_{r}, S_{r}, s_{r}, s_{r}^{\circ}$, and $s_{r}^{(c)}$, respectively, (see $[1,2,3,5,6,10]$). When $r=1$, we obtain $s_{1}=l_{\infty}, s_{1}^{\circ}=c_{0}$, and $s_{1}^{(c)}=c$, and putting $e=(1,1, \ldots)$, we have $S_{1}=S_{e}$. It is well known, see [11], that

$$
\begin{equation*}
\left(s_{1}, s_{1}\right)=\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=S_{1} . \tag{1.12}
\end{equation*}
$$

For any subset E of s, we put

$$
\begin{equation*}
A E=\{Y \in s \mid \exists X \in E, Y=A X\} \tag{1.13}
\end{equation*}
$$

If F is a subset of s, we will denote

$$
\begin{equation*}
F(A)=F_{A}=\{X \in s \mid Y=A X \in F\} . \tag{1.14}
\end{equation*}
$$

We can see that $F(A)=A^{-1} F$.
2. Some properties of the operators Δ^{+}and Σ^{+}. Here we will deal with the operators represented by $C^{+}(\lambda)$ and $\Delta^{+}(\lambda)$.

Let

$$
\begin{equation*}
U=\left\{\left(u_{n}\right)_{n \geq 1} \in s \mid u_{n} \neq 0 \forall n\right\} \tag{2.1}
\end{equation*}
$$

We define $C(\lambda)=\left(c_{n m}\right)_{n, m \geq 1}$, for $\lambda=\left(\lambda_{n}\right)_{n \geq 1} \in U$, by

$$
c_{n m}= \begin{cases}\frac{1}{\lambda_{n}} & \text { if } m \leq n \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

So, we put $C^{+}(\lambda)=C(\lambda)^{t}$. It can be proved that the matrix $\Delta(\lambda)=\left(c_{n m}^{\prime}\right)_{n, m \geq 1}$ with

$$
c_{n m}^{\prime}= \begin{cases}\lambda_{n} & \text { if } m=n \tag{2.3}\\ -\lambda_{n-1} & \text { if } m=n-1, n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\lambda)$, see [12, 14]. Similarly, we put $\Delta^{+}(\lambda)=\Delta(\lambda)^{t}$. If $\lambda=e$, we get the well-known operator of first difference represented by $\Delta(e)=\Delta$ and it is usually written as $\Sigma=C(e)$. Note that $\Delta=\Sigma^{-1}$ and Σ belong to any given space S_{R} with $R>1$. Writing $D_{\lambda}=\left(\lambda_{n} \delta_{n m}\right)_{n, m \geq 1}$, (where $\delta_{n m}=0$ for $n \neq m$ and $\delta_{n n}=1$ otherwise), we have $\Delta^{+}(\lambda)=D_{\lambda} \Delta^{+}$. So for any given $\alpha \in U^{+*}$, we see that if $\left(\alpha_{n-1} / \alpha_{n}\right)\left|\lambda_{n} / \lambda_{n-1}\right|=O(1)$, then $\Delta^{+}(\lambda) \in\left(s_{(\alpha /|\lambda|)}, s_{\alpha}\right)$. Since $\operatorname{Ker} \Delta^{+}(\lambda) \neq 0$, we are lead to define the set

$$
\begin{equation*}
s_{\alpha}^{*}\left(\Delta^{+}(\lambda)\right)=s_{\alpha}\left(\Delta^{+}(\lambda)\right) \bigcap s_{(\alpha /|\lambda|)}=\left\{X=\left(x_{n}\right)_{n \geq 1} \in s_{(\alpha /|\lambda|)} \mid \Delta^{+}(\lambda) X \in s_{\alpha}\right\} . \tag{2.4}
\end{equation*}
$$

It can easily be seen that

$$
\begin{equation*}
s_{(\alpha /|\lambda|)}^{*}\left(\Delta^{+}(e)\right)=s_{(\alpha /|\lambda|)}^{*}\left(\Delta^{+}\right)=s_{\alpha}^{*}\left(\Delta^{+}(\lambda)\right) . \tag{2.5}
\end{equation*}
$$

2.1. Properties of the sequence $C(\alpha) \alpha$. We will use the following sets:

$$
\begin{align*}
\widehat{C_{1}} & =\left\{\alpha \in U^{+*} \left\lvert\, \frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n} \alpha_{k}\right)=O(1)(n \rightarrow \infty)\right.\right\}, \\
\widehat{C} & =\left\{\alpha \in U^{+*} \left\lvert\, \frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n} \alpha_{k}\right) \in c\right.\right\}, \\
\widehat{C_{1}^{+}} & =\left\{\alpha \in U^{+*} \bigcap c s \left\lvert\, \frac{1}{\alpha_{n}}\left(\sum_{k=n}^{\infty} \alpha_{k}\right)=O(1)(n \rightarrow \infty)\right.\right\}, \tag{2.6}\\
\Gamma & =\left\{\alpha \in U^{+*} \left\lvert\, \varlimsup_{n \rightarrow \infty}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)<1\right.\right\}, \\
\Gamma^{+} & =\left\{\alpha \in U^{+*} \left\lvert\, \varlimsup_{n \rightarrow \infty}\left(\frac{\alpha_{n+1}}{\alpha_{n}}\right)<1\right.\right\} .
\end{align*}
$$

Note that $\alpha \in \Gamma^{+}$if and only if $1 / \alpha \in \Gamma$. We will see in Proposition 2.1 that if $\alpha \in \widehat{C_{1}}, \alpha$ tends to infinity. On the other hand, we see that $\Delta \in \Gamma_{\alpha}$ implies $\alpha \in \Gamma$ and $\alpha \in \Gamma$ if and only if there is an integer $q \geq 1$ such that

$$
\begin{equation*}
\gamma_{q}(\alpha)=\sup _{n \geq q+1}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)<1 . \tag{2.7}
\end{equation*}
$$

We obtain the following results in which we put $[C(\alpha) \alpha]_{n}=\left(\sum_{k=1}^{n} \alpha_{k}\right) / \alpha_{n}$.
Proposition 2.1. Let $\alpha \in U^{+*}$. Then
(i) $\alpha_{n-1} / \alpha_{n} \rightarrow 0$ if and only if $[C(\alpha) \alpha]_{n} \rightarrow 1$,
(ii) (a) $\alpha \in \widehat{C}$ implies that $\left(\alpha_{n-1} / \alpha_{n}\right)_{n \geq 1} \in c$,
(b) $[C(\alpha) \alpha]_{n} \rightarrow l$ implies that $\alpha_{n-1} / \alpha_{n} \rightarrow 1-1 / l$,
(iii) if $\alpha \in \widehat{C_{1}}$, there are $K>0$ and $\gamma>1$ such that

$$
\begin{equation*}
\alpha_{n} \geq K \gamma^{n} \quad \forall n, \tag{2.8}
\end{equation*}
$$

(iv) the condition $\alpha \in \Gamma$ implies that $\alpha \in \widehat{C_{1}}$ and there exists a real $b>0$ such that

$$
\begin{equation*}
\left.[C(\alpha) \alpha]_{n} \leq \frac{1}{1-x}+b \chi^{n} \quad \text { for } n \geq q+1, \chi=\gamma_{q}(\alpha) \in\right] 0,1[\text {, } \tag{2.9}
\end{equation*}
$$

(v) the condition $\alpha \in \Gamma^{+}$implies that $\alpha \in \widehat{C_{1}^{+}}$.

Proof. Assume that $\alpha_{n-1} / \alpha_{n} \rightarrow 0$. Then there is an integer N such that

$$
\begin{equation*}
n \geq N+1 \Rightarrow \frac{\alpha_{n-1}}{\alpha_{n}} \leq \frac{1}{2} \tag{2.10}
\end{equation*}
$$

So there exists a real $K>0$ such that $\alpha_{n} \geq K 2^{n}$ for all n and

$$
\begin{equation*}
\frac{\alpha_{k}}{\alpha_{n}}=\frac{\alpha_{k}}{\alpha_{k+1}} \cdots \frac{\alpha_{n-1}}{\alpha_{n}} \leq\left(\frac{1}{2}\right)^{n-k} \quad \text { for } N \leq k \leq n-1 \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n-1} \alpha_{k}\right)=\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{N-1} \alpha_{k}\right)+\sum_{k=N}^{n-1} \frac{\alpha_{k}}{\alpha_{n}} \leq \frac{1}{K 2^{n}}\left(\sum_{k=1}^{N-1} \alpha_{k}\right)+\sum_{k=N}^{n-1}\left(\frac{1}{2}\right)^{n-k}, \tag{2.12}
\end{equation*}
$$

and since $\sum_{k=N}^{n-1}(1 / 2)^{n-k}=1-(1 / 2)^{n-N} \rightarrow 1,(n \rightarrow \infty)$, we deduce that

$$
\begin{equation*}
\frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n-1} \alpha_{k}\right)=O(1) \tag{2.13}
\end{equation*}
$$

and $\left([C(\alpha) \alpha]_{n}\right) \in l_{\infty}$. Using the identity

$$
\begin{equation*}
[C(\alpha) \alpha]_{n}=\frac{\alpha_{1}+\cdots+\alpha_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_{n}}+1=[C(\alpha) \alpha]_{n-1}\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right)+1 \tag{2.14}
\end{equation*}
$$

we get $[C(\alpha) \alpha]_{n} \rightarrow 1$. This proves the necessity.
Conversely, if $[C(\alpha) \alpha]_{n} \rightarrow 1$, then

$$
\begin{equation*}
\frac{\alpha_{n-1}}{\alpha_{n}}=\frac{[C(\alpha) \alpha]_{n}-1}{[C(\alpha) \alpha]_{n-1}} \rightarrow 0 . \tag{2.15}
\end{equation*}
$$

(ii) is a direct consequence of the identity (2.14).
(iii) We put $\Sigma_{n}=\sum_{k=1}^{n} \alpha_{k}$. Then for a real $M>1$,

$$
\begin{equation*}
[C(\alpha) \alpha]_{n}=\frac{\Sigma_{n}}{\Sigma_{n}-\Sigma_{n-1}} \leq M \quad \forall n \tag{2.16}
\end{equation*}
$$

So $\Sigma_{n} \geq(M /(M-1)) \Sigma_{n-1}$ and $\Sigma_{n} \geq(M /(M-1))^{n-1} \alpha_{1} \forall n$. Therefore, from

$$
\begin{equation*}
\frac{\alpha_{1}}{\alpha_{n}}\left(\frac{M}{M-1}\right)^{n-1} \leq[C(\alpha) \alpha]_{n}=\frac{\Sigma_{n}}{\alpha_{n}} \leq M \tag{2.17}
\end{equation*}
$$

we conclude that $\alpha_{n} \geq K \gamma^{n}$ for all n, with $K=(M-1) \alpha_{1} / M^{2}$ and $\gamma=M /(M-1)>1$.
(iv) If $\alpha \in \Gamma$, there is an integer $q \geq 1$ for which

$$
\begin{equation*}
k \geq q+1 \text { implies } \frac{\alpha_{k-1}}{\alpha_{k}} \leq x<1, \text { with } \chi=\gamma_{q}(\alpha) . \tag{2.18}
\end{equation*}
$$

So there is a real $M^{\prime}>0$ for which

$$
\begin{equation*}
\alpha_{n} \geq \frac{M^{\prime}}{\chi^{n}} \quad \forall n \geq q+1 \tag{2.19}
\end{equation*}
$$

Writing $\sigma_{n q}=\left(1 / \alpha_{n}\right)\left(\sum_{k=1}^{q} \alpha_{k}\right)$ and $d_{n}=[C(\alpha) \alpha]_{n}-\sigma_{n q}$, we get

$$
\begin{equation*}
d_{n}=\frac{1}{\alpha_{n}}\left(\sum_{k=q+1}^{n} \alpha_{k}\right)=1+\sum_{j=q+1}^{n-1}\left(\prod_{k=1}^{n-j} \frac{\alpha_{n-k}}{\alpha_{n-k+1}}\right) \leq \sum_{j=q+1}^{n} x^{n-j} \leq \frac{1}{1-\chi} . \tag{2.20}
\end{equation*}
$$

Using (2.19), we get $\sigma_{n q} \leq\left(1 / M^{\prime}\right) \chi^{n}\left(\sum_{k=1}^{q} \alpha_{k}\right)$. So

$$
\begin{equation*}
[C(\alpha) \alpha]_{n} \leq a+b \chi^{n} \tag{2.21}
\end{equation*}
$$

with $a=1 /(1-\chi)$ and $b=\left(1 / M^{\prime}\right)\left(\sum_{k=1}^{q} \alpha_{k}\right)$.
(v) If $\alpha \in \Gamma^{+}$, there are $\left.\chi^{\prime} \in\right] 0,1\left[\right.$ and an integer $q^{\prime} \geq 1$ such that

$$
\begin{equation*}
\frac{\alpha_{k}}{\alpha_{k-1}} \leq \chi^{\prime} \quad \text { for } k \geq q^{\prime} . \tag{2.22}
\end{equation*}
$$

Then for every $n \geq q^{\prime}$, we have

$$
\begin{equation*}
\frac{1}{\alpha_{n}}\left(\sum_{k=n}^{\infty} \alpha_{k}\right)=\sum_{k=n}^{\infty}\left(\frac{\alpha_{k}}{\alpha_{n}}\right) \leq 1+\sum_{k=n+1}^{\infty} \prod_{i=0}^{k-n-1}\left(\frac{\alpha_{k-i}}{\alpha_{k-i-1}}\right) \leq \sum_{k=n}^{\infty} \chi^{\prime k-n}=O(1) . \tag{2.23}
\end{equation*}
$$

This gives the conclusion.
REMARK 2.2. Note that as a direct consequence of Proposition 2.1, we have $\widehat{C_{1}} \cap \widehat{C_{1}^{+}}=$ $\Gamma \cap \Gamma^{+}=\phi$.

Remark 2.3. The condition $\alpha \in \widehat{C_{1}}$ does not imply that $\alpha \in \Gamma$, see [8].
2.2. Some new properties of the operators Δ and Δ^{+}. In the following we will use some lemmas, the next one is well known, see [15].

Lemma 2.4. The condition $A \in\left(c_{0}, c_{0}\right)$ is equivalent to

$$
\begin{gather*}
A \in S_{1} \\
\lim _{n} a_{n m}=0 \quad \text { for each } m \geq 1 \tag{2.24}
\end{gather*}
$$

Lemma 2.5. If Δ^{+}is bijective from s_{α} into itself, then $\alpha \in c s$.
Proof. Assume that $\alpha \notin c s$, that is, $\sum_{n} \alpha_{n}=\infty$. Two cases are possible.
(1) $e \in \operatorname{Ker} \Delta^{+} \cap s_{\alpha}$. Then Δ^{+}cannot be bijective from s_{α} into itself.
(2) $e \notin \operatorname{Ker} \Delta^{+} \cap s_{\alpha}$. Then $1 / \alpha \notin s_{1}$ and there is a sequence of integers $\left(n_{i}\right)_{i}$ strictly increasing such that $1 / \alpha_{n_{i}} \rightarrow \infty$. Assume that the equation $\Delta^{+} X=\alpha$ has a solution
$X=\left(x_{n, 0}\right)_{n \geq 1}$ in s_{α}. Then there is a unique scalar x_{1} such that

$$
\begin{equation*}
x_{n, 0}=x_{1}-\sum_{k=1}^{n-1} \alpha_{k} \tag{2.25}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\left|x_{n_{i}}, 0\right|}{\alpha_{n_{i}}}=\left|\frac{1}{\alpha_{n_{i}}}\left(x_{1}-\sum_{k=1}^{n_{i}-1} \alpha_{k}\right)\right| \rightarrow \infty \quad \text { as } i \rightarrow \infty \tag{2.26}
\end{equation*}
$$

and $X \notin s_{\alpha}$, which is contradictory.
We conclude that each of the properties $e \in \operatorname{Ker} \Delta^{+} \cap s_{\alpha}$ and $e \notin \operatorname{Ker} \Delta^{+} \cap s_{\alpha}$ is impossible and Δ^{+}is not bijective from s_{α} into itself. This proves the lemma.

Lemma 2.6. For every $X \in c_{0}, \Sigma^{+}\left(\Delta^{+} X\right)=X$ and for every $X \in c s, \Delta^{+}\left(\Sigma^{+} X\right)=X$.
Proof. It can easily be seen that

$$
\begin{align*}
& {\left[\Sigma^{+}\left(\Delta^{+} X\right)\right]_{n}=\sum_{m=n}^{\infty}\left(x_{m}-x_{m+1}\right)=x_{n} \quad \forall X \in c_{0},} \\
& {\left[\Delta^{+}\left(\Sigma^{+} X\right)\right]_{n}=\sum_{m=n}^{\infty} x_{m}-\sum_{m=n+1}^{\infty} x_{m}=x_{n} \quad \forall X \in c s .} \tag{2.27}
\end{align*}
$$

We can assert the following result, in which we put $\alpha^{+}=\left(\alpha_{n+1}\right)_{n \geq 1}$ and $s_{\alpha}^{\circ *}\left(\Delta^{+}\right)=$ $s_{\alpha}^{\circ}\left(\Delta^{+}\right) \cap s_{\alpha}^{\circ}$. Note that from (2.5) we have

$$
\begin{equation*}
s_{\alpha}^{*}\left(\Delta^{+}(e)\right)=s_{\alpha}^{*}\left(\Delta^{+}\right)=s_{\alpha}\left(\Delta^{+}\right) \bigcap s_{\alpha} \tag{2.28}
\end{equation*}
$$

THEOREM 2.7. (i) (a) $s_{\alpha}(\Delta)=s_{\alpha}$ if and only if $\alpha \in \widehat{C_{1}}$,
(b) $s_{\alpha}^{\circ}(\Delta)=s_{\alpha}^{\circ}$ if and only if $\alpha \in \widehat{C_{1}}$,
(c) $s_{\alpha}^{(c)}(\Delta)=s_{\alpha}^{(c)}$ if and only if $\alpha \in \widehat{C}$.
(ii) (a) $\alpha \in \widehat{C_{1}}$ if and only if $s_{\alpha^{+}}\left(\Delta^{+}\right)=s_{\alpha}$ and Δ^{+}is surjective from s_{α} into $s_{\alpha^{+}}$,
(b) $\alpha \in \widehat{C_{1}^{+}}$if and only if $s_{\alpha}^{*}\left(\Delta^{+}\right)=s_{\alpha}$ and Δ^{+}is bijective from s_{α} into s_{α},
(c) $\alpha \in \widehat{C_{1}^{+}}$implies that $s_{\alpha}^{\circ}\left(\Delta^{+}\right)=s_{\alpha}^{\circ}$ and Δ^{+}is bijective from s_{α}° into s_{α}°.
(iii) $\alpha \in \widehat{C_{1}^{+}}$if and only if $s_{\alpha}\left(\Sigma^{+}\right)=s_{\alpha}$ and $s_{\alpha}\left(\Sigma^{+}\right)=s_{\alpha}$ implies $s_{\alpha}^{\circ}\left(\Sigma^{+}\right)=s_{\alpha}^{\circ}$.

Proof. (i) has been proved in [8].
(ii)(a) Sufficiency. If Δ^{+}is surjective from s_{α} into $s_{\alpha^{+}}$, then for every $B \in s_{\alpha^{+}}$the solutions of $\Delta^{+} X=B$ in s_{α} are given by

$$
\begin{equation*}
x_{n+1}=x_{1}-\sum_{k=1}^{n} b_{k} \quad n=1,2, \ldots \tag{2.29}
\end{equation*}
$$

where x_{1} is arbitrary. If we take $B=\alpha^{+}$, we get $x_{n}=x_{1}-\sum_{k=2}^{n} \alpha_{k}$. So

$$
\begin{equation*}
\frac{x_{n}}{\alpha_{n}}=\frac{x_{1}}{\alpha_{n}}-\frac{1}{\alpha_{n}}\left(\sum_{k=2}^{n} \alpha_{k}\right)=O(1) \tag{2.30}
\end{equation*}
$$

Taking $x_{1}=-\alpha_{1}$, we conclude that $\left(\sum_{k=1}^{n-1} \alpha_{k}\right) / \alpha_{n}=O(1)$ and $\alpha \in \widehat{C_{1}}$.
Conversely, assume that $\alpha \in \widehat{C_{1}}$. From the inequality

$$
\begin{equation*}
\frac{\alpha_{n-1}}{\alpha_{n}} \leq \frac{1}{\alpha_{n}}\left(\sum_{k=1}^{n} \alpha_{k}\right)=O(1) \tag{2.31}
\end{equation*}
$$

we deduce that $\alpha_{n-1} / \alpha_{n}=O(1)$ and $\Delta^{+} \in\left(s_{\alpha}, s_{\alpha^{+}}\right)$. Then for any given $B \in s_{\alpha^{+}}$, the solutions of the equation $\Delta^{+} X=B$ are given by $x_{1}=-u$ and

$$
\begin{equation*}
-x_{n}=u+\sum_{k=1}^{n-1} b_{k} \text { for } n \geq 2 \tag{2.32}
\end{equation*}
$$

where u is an arbitrary scalar. So there exists a real $K>0$ such that

$$
\begin{equation*}
\frac{\left|x_{n}\right|}{\alpha_{n}}=\frac{\left|u+\sum_{k=1}^{n-1} b_{k}\right|}{\alpha_{n}} \leq \frac{|u|+K\left(\sum_{k=2}^{n} \alpha_{k}\right)}{\alpha_{n}}=O(1) \tag{2.33}
\end{equation*}
$$

and $X \in s_{\alpha}$. We conclude that Δ^{+}is surjective from s_{α} into $s_{\alpha^{+}}$.
(ii)(b) Necessity. Assume that $\alpha \in \widehat{C_{1}^{+}}$. Then $\Delta^{+} \in\left(s_{\alpha}, s_{\alpha}\right)$, since

$$
\begin{equation*}
\frac{\alpha_{n+1}}{\alpha_{n}} \leq \frac{1}{\alpha_{n}}\left(\sum_{k=n}^{\infty} \alpha_{k}\right)=O(1) \quad(n \rightarrow \infty) \tag{2.34}
\end{equation*}
$$

Further, from $s_{\alpha} \subset c s$, we deduce, using Lemma 2.4, that for any given $B \in s_{\alpha}$,

$$
\begin{equation*}
\Delta^{+}\left(\Sigma^{+} B\right)=B \tag{2.35}
\end{equation*}
$$

On the other hand, $\Sigma^{+} B=\left(\sum_{k=n}^{\infty} b_{k}\right)_{n \geq 1} \in s_{\alpha}$, since $\alpha \in \widehat{C_{1}^{+}}$. So Δ^{+}is surjective from s_{α} into s_{α}. Finally, Δ^{+}is injective because the equation

$$
\begin{equation*}
\Delta^{+} X=O \tag{2.36}
\end{equation*}
$$

admits the unique solution $X=O$ in s_{α}, since

$$
\begin{equation*}
\operatorname{Ker} \Delta^{+}=\left\{u e^{t} \mid u \in C\right\} \tag{2.37}
\end{equation*}
$$

and $e^{t} \notin s_{\alpha}$.

Sufficiency. For every $B \in s_{\alpha}$, the equation $\Delta^{+} X=B$ admits a unique solution in s_{α}. Then from Lemma 2.5, $\alpha \in c s$ and since $s_{\alpha} \subset c s$, we deduce from Lemma 2.6 that $X=\Sigma^{+} B \in s_{\alpha}$ is the unique solution of $\Delta^{+} X=B$. Taking $B=\alpha$, we get $\Sigma^{+} \alpha \in s_{\alpha}$, that is, $\alpha \in \widehat{C_{1}^{+}}$.
(ii)(c) If $\alpha \in \widehat{C_{1}^{+}}, \Delta^{+}$is bijective from s_{α}° into itself. Indeed, we have $D_{1 / \alpha} \Delta^{+} D_{\alpha} \in\left(c_{0}, c_{0}\right)$ from (2.34) and Lemma 2.4. Furthermore, since $\alpha \in \widehat{C_{1}^{+}}$we have $s_{\alpha}^{\circ} \subset c s$ and for every $B \in s_{\alpha}^{\circ}$,

$$
\begin{equation*}
\Delta^{+}\left(\Sigma^{+} B\right)=B \tag{2.38}
\end{equation*}
$$

From Lemma 2.4, we have $\Sigma^{+} \in\left(s_{\alpha}^{\circ}, s_{\alpha}^{\circ}\right)$, so the equation $\Delta^{+} X=B$ admits the solution $X_{0}=\Sigma^{+} B$ in s_{α}° and we have proved that Δ^{+}is surjective from s_{α}° into itself. Finally, $\alpha \in \widehat{C_{1}^{+}}$implies that $e^{t} \notin s_{\alpha}^{\circ}$, so $\operatorname{Ker} \Delta^{+} \cap s_{\alpha}^{\circ}=\{0\}$ and we conclude that Δ^{+}is bijective from s_{α}° into itself.
(iii) comes from (ii), since $\alpha \in \widehat{C_{1}^{+}}$if and only if Δ^{+}is bijective from s_{α} into itself and

$$
\begin{equation*}
\Sigma^{+}\left(\Delta^{+} X\right)=\Delta^{+}\left(\Sigma^{+} X\right)=X \quad \forall X \in s_{\alpha} . \tag{2.39}
\end{equation*}
$$

As a direct consequence of Theorem 2.7 we obtain the following results.
Corollary 2.8. Let R be any real >0. Then

$$
\begin{equation*}
R>1 \Leftrightarrow s_{R}(\Delta)=s_{R} \Longleftrightarrow s_{R}^{\circ}(\Delta)=s_{R}^{\circ} \Longleftrightarrow s_{R}\left(\Delta^{+}\right)=s_{R} \tag{2.40}
\end{equation*}
$$

Proof. From (i) and (ii) in Theorem 2.7, we see that it is enough to prove that $\alpha=$ $\left(R^{n}\right)_{n \geq 1} \in \widehat{C_{1}}$ if and only if $R>1$. We have $\left(R^{n}\right)_{n \geq 1} \in \widehat{C_{1}}$ if and only if $R \neq 1$ and

$$
\begin{equation*}
R^{-n}\left(\sum_{k=1}^{n} R^{k}\right)=\frac{1}{1-R} R^{-n+1}-\frac{R}{1-R}=O(1) \quad \text { as } n \rightarrow \infty . \tag{2.41}
\end{equation*}
$$

This means that $R>1$ and the corollary is proved.
Using the notation $\alpha^{-}=\left(1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \ldots\right)$ we get the next result.
Corollary 2.9. Let $\alpha \in U^{+*}$ and $\mu \in U$. Then
(i) $\alpha /|\mu| \in \widehat{C_{1}}$ if and only if

$$
\begin{equation*}
s_{\alpha}\left(\Delta^{+}(\mu)\right)=s_{(\alpha| | \mu \mid)^{-}}, \tag{2.42}
\end{equation*}
$$

(ii) $\alpha /|\mu| \in \widehat{C_{1}^{+}}$if and only if

$$
\begin{equation*}
s_{\alpha}^{*}\left(\Delta^{+}(\mu)\right)=s_{(\alpha /|\mu|)} . \tag{2.43}
\end{equation*}
$$

Proof. First we have

$$
\begin{equation*}
s_{\alpha}\left(\Delta^{+}(\mu)\right)=s_{(\alpha /|\mu|)}\left(\Delta^{+}\right) . \tag{2.44}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
X \in s_{\alpha}\left(\Delta^{+}(\mu)\right) \Longleftrightarrow D_{\mu} \Delta^{+} X \in s_{\alpha} \Longleftrightarrow \Delta^{+} X \in s_{(\alpha| | \mu \mid)} \Longleftrightarrow X \in s_{(\alpha /|\mu|)}\left(\Delta^{+}\right) \tag{2.45}
\end{equation*}
$$

Now, if $\alpha /|\mu| \in \widehat{C_{1}}$, from (i) in Theorem 2.7, we have $s_{(\alpha /|\mu|)}\left(\Delta^{+}\right)=s_{(\alpha /|\mu|)^{-}}$and $s_{\alpha}\left(\Delta^{+}(\mu)\right)=s_{(\alpha /|\mu|)^{-}}$. Conversely, assume $s_{\alpha}\left(\Delta^{+}(\mu)\right)=s_{(\alpha /|\mu|)^{-}}$. Reasoning as above, we get $s_{(\alpha /|\mu|)}\left(\Delta^{+}\right)=s_{(\alpha /|\mu|)^{-}}$, and using (i) in Theorem 2.7 we conclude that $\alpha /|\mu| \in \widehat{C_{1}}$ and (i) holds.
(ii) $\alpha /|\mu| \in \widehat{C_{1}^{+}}$implies that Δ^{+}is bijective from $s_{(\alpha /|\mu|)}$ into itself. Thus

$$
\begin{equation*}
s_{\alpha}^{*}\left(\Delta^{+}(\mu)\right)=s_{(\alpha| | \mu \mid)}^{*}\left(\Delta^{+}\right)=s_{(\alpha /|\mu|)} . \tag{2.46}
\end{equation*}
$$

This proves the necessity. Conversely, assume that $s_{\alpha}^{*}\left(\Delta^{+}(\mu)\right)=s_{(\alpha /|\mu|)}$. Then $s_{(\alpha /|\mu|)}^{*}\left(\Delta^{+}\right)$ $=s_{(\alpha /|\mu|)}$ and from Theorem 2.7(ii)(b), $\alpha /|\mu| \in \widehat{C_{1}^{+}}$and (ii) holds.
2.3. Spaces $w_{\alpha}^{p}(\lambda)$ and $w_{\alpha}^{+p}(\lambda)$ for given real $p>0$. Here we will define sets generalizing the well-known sets

$$
\begin{align*}
w_{\infty}^{p}(\lambda) & =\left\{X \in s \mid C(\lambda)\left(|X|^{p}\right) \in l_{\infty}\right\}, \\
w_{0}^{p}(\lambda) & =\left\{X \in s \mid C(\lambda)\left(|X|^{p}\right) \in c_{0}\right\}, \tag{2.47}
\end{align*}
$$

see $[9,12,13,14,15]$. It is proved that each of the sets $w_{0}^{p}=w_{0}^{p}\left((n)_{n}\right)$ and $w_{\infty}^{p}=$ $w_{\infty}^{p}\left((n)_{n}\right)$ is a p-normed FK space for $0<p<1$ (i.e., a complete linear metric space for which each projection P_{n} is continuous) and a BK space for $1 \leq p<\infty$ with respect to the norm

$$
\|X\|= \begin{cases}\sup _{v \geq 1}\left(\frac{1}{2^{v}}\left(\sum_{n=2^{v}}^{2^{v+1}-1}\left|x_{n}\right|^{p}\right)\right) & \text { if } 0<p<1, \tag{2.48}\\ \sup _{v \geq 1}\left(\frac{1}{2^{v}}\left(\sum_{n=2^{v}}^{2^{v+1}-1}\left|x_{n}\right|^{p}\right)\right)^{1 / p} & \text { if } 1 \leq p<\infty .\end{cases}
$$

The set w_{0}^{p} has the property AK, (i.e., every $X=\left(x_{n}\right)_{n \geq 1} \in w_{0}^{p}$ has a unique representation $\left.X=\sum_{n=1}^{\infty} x_{n} e_{n}^{t}\right)$ and every sequence $X=\left(x_{n}\right)_{n \geq 1} \in w^{p}$ has a unique representation

$$
\begin{equation*}
X=l e^{t}+\sum_{n=1}^{\infty}\left(x_{n}-l\right) e_{n}^{t} \tag{2.49}
\end{equation*}
$$

where $l \in C$ is such that $X-l e^{t} \in w_{0}^{p}$, (see [4]). Now, let $\alpha \in U^{+*}$ and $\lambda \in U^{+*}$. We have

$$
\begin{align*}
w_{\alpha}^{p}(\lambda) & =\left\{X \in s \mid C(\lambda)\left(|X|^{p}\right) \in s_{\alpha}\right\}, \\
w_{\alpha}^{+p}(\lambda) & =\left\{X \in s \mid C^{+}(\lambda)\left(|X|^{p}\right) \in s_{\alpha}\right\}, \\
w_{\alpha}^{\circ p}(\lambda) & =\left\{X \in s \mid C(\lambda)\left(|X|^{p}\right) \in s_{\alpha}^{\circ}\right\}, \tag{2.50}\\
w_{\alpha}^{\circ+p}(\lambda) & =\left\{X \in s \mid C^{+}(\lambda)\left(|X|^{p}\right) \in s_{\alpha}^{\circ}\right\} .
\end{align*}
$$

We deduce from the previous section the following theorem.

Theorem 2.10. (i) (a) The condition $\alpha \in \widehat{C_{1}^{+}}$is equivalent to

$$
\begin{equation*}
w_{\alpha}^{+p}(\lambda)=s_{(\alpha \lambda)^{1 / p}} . \tag{2.51}
\end{equation*}
$$

(b) If $\alpha \in \widehat{C_{1}^{+}}$, then

$$
\begin{equation*}
w_{\alpha}^{\circ p}(\lambda)=s_{(\alpha \lambda)^{1 / p}}^{\circ} \tag{2.52}
\end{equation*}
$$

(ii) (a) The condition $\alpha \lambda \in \widehat{C_{1}}$ is equivalent to

$$
\begin{equation*}
w_{\alpha}^{p}(\lambda)=s_{(\alpha \lambda)^{1 / p}} \tag{2.53}
\end{equation*}
$$

(b) If $\alpha \lambda \in \widehat{C_{1}}$, then

$$
\begin{equation*}
w_{\alpha}^{\circ+p}(\lambda)=s_{(\alpha \lambda)^{1 / p}}^{\circ} \tag{2.54}
\end{equation*}
$$

Proof. Assume that $\alpha \in \widehat{C_{1}^{+}}$. Since $C^{+}(\lambda)=\Sigma^{+} D_{1 / \lambda}$, we have

$$
\begin{equation*}
w_{\alpha}^{+p}(\lambda)=\left\{X \mid\left(\Sigma^{+} D_{1 / \lambda}\right)\left(|X|^{p}\right) \in s_{\alpha}\right\}=\left\{X \mid D_{1 / \lambda}\left(|X|^{p}\right) \in s_{\alpha}\left(\Sigma^{+}\right)\right\}, \tag{2.55}
\end{equation*}
$$

and since $\alpha \in \widehat{C_{1}^{+}}$implies $s_{\alpha}\left(\Sigma^{+}\right)=s_{\alpha}$, we conclude that

$$
\begin{equation*}
w_{\alpha}^{+p}(\lambda)=\left\{\left.X| | X\right|^{p} \in D_{\lambda} s_{\alpha}=s_{\alpha \lambda}\right\}=s_{(\alpha \lambda)^{1 / p}} \tag{2.56}
\end{equation*}
$$

Conversely, we have $(\alpha \lambda)^{1 / p} \in s_{(\alpha \lambda)^{1 / p}}=w_{\alpha}^{+p}(\lambda)$. So

$$
\begin{equation*}
C^{+}(\lambda)\left[(\alpha \lambda)^{1 / p}\right]^{p}=\left(\sum_{k=n}^{\infty} \frac{\alpha_{k} \lambda_{k}}{\lambda_{k}}\right)_{n \geq 1} \in s_{\alpha} \tag{2.57}
\end{equation*}
$$

that is, $\alpha \in \widehat{C_{1}^{+}}$and we have proved (i). We obtain (i)(b) by reasoning as above.
(ii) Assume that $\alpha \lambda \in \widehat{C_{1}}$. Then

$$
\begin{equation*}
w_{\alpha}^{p}(\lambda)=\left\{\left.X| | X\right|^{p} \in \Delta(\lambda) s_{\alpha}\right\} \tag{2.58}
\end{equation*}
$$

Since $\Delta(\lambda)=\Delta D_{\lambda}$, we get $\Delta(\lambda) s_{\alpha}=\Delta s_{\alpha \lambda}$. Now, from $\alpha \lambda \in \widehat{C_{1}}$ we deduce that Δ is bijective from $s_{\alpha \lambda}$ into itself and $w_{\alpha}^{p}(\lambda)=s_{(\alpha \lambda)^{1 / p}}$. Conversely, assume that $w_{\alpha}^{p}(\lambda)=$ $s_{(\alpha \lambda)^{1 / p}}$. Then $(\alpha \lambda)^{1 / p} \in s_{(\alpha \lambda)^{1 / p}}$ implies that

$$
\begin{equation*}
C(\lambda)(\alpha \lambda) \in s_{\alpha}, \tag{2.59}
\end{equation*}
$$

and since $D_{1 / \alpha} C(\lambda)(\alpha \lambda) \in s_{1}=l_{\infty}$, we conclude that $C(\alpha \lambda)(\alpha \lambda) \in l_{\infty}$. The proof of (ii)(b) follows the same lines as in the proof of the necessity in (ii) replacing $s_{\alpha \lambda}$ by $s_{\alpha \lambda}^{\circ}$.
3. New sets of sequences of the form $\left[A_{1}, A_{2}\right]$. In this section, we will deal with the sets

$$
\begin{equation*}
\left[A_{1}(\lambda), A_{2}(\mu)\right]=\left\{X \in s \mid A_{1}(\lambda)\left(\left|A_{2}(\mu) X\right|\right) \in s_{\alpha}\right\} \tag{3.1}
\end{equation*}
$$

where A_{1} and A_{2} are of the form $C(\xi), C^{+}(\xi), \Delta(\xi)$, or $\Delta^{+}(\xi)$ and we give necessary conditions to get $\left[A_{1}(\lambda), A_{2}(\mu)\right]$ in the form s_{γ}.

Let λ and $\mu \in U^{+*}$. For simplification, we will write throughout this section

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=\left[A_{1}(\lambda), A_{2}(\mu)\right]=\left\{X \in s \mid A_{1}(\lambda)\left(\left|A_{2}(\mu) X\right|\right) \in s_{\alpha}\right\} \tag{3.2}
\end{equation*}
$$

for any matrices

$$
\begin{align*}
& A_{1}(\lambda) \in\left\{\Delta(\lambda), \Delta^{+}(\lambda), C(\lambda), C^{+}(\lambda)\right\}, \\
& A_{2}(\mu) \in\left\{\Delta(\mu), \Delta^{+}(\mu), C(\mu), C^{+}(\mu)\right\} . \tag{3.3}
\end{align*}
$$

So we have for instance

$$
\begin{equation*}
[C, \Delta]=\left\{X \in s \mid C(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}\right\}=\left(w_{\alpha}(\lambda)\right)_{\Delta(\mu)}, \ldots \tag{3.4}
\end{equation*}
$$

In all that follows, the conditions $\xi \in \Gamma$, or $1 / \eta \in \Gamma$ for any given sequences ξ and η can be replaced by the conditions $\xi \in \widehat{C_{1}}$ and $\eta \in \widehat{C_{1}^{+}}$.
3.1. Spaces $[C, C],[C, \Delta],[\Delta, C]$, and $[\Delta, \Delta]$. For the convenience of the reader we will write the following identities, where $A_{1}(\lambda)$ and $A_{2}(\mu)$ are lower triangles and we will use the convention $\mu_{0}=0$:

$$
\begin{align*}
& {[C, C]=\left\{X \in s \left\lvert\, \frac{1}{\lambda_{n}}\left(\sum_{m=1}^{n}\left|\frac{1}{\mu_{m}}\left(\sum_{k=1}^{m} x_{k}\right)\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {[C, \Delta]=\left\{X \in s \left\lvert\, \frac{1}{\lambda_{n}}\left(\sum_{k=1}^{n}\left|\mu_{k} x_{k}-\mu_{k-1} x_{k-1}\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {[\Delta, C]=\left\{\left.X \in s\left|-\lambda_{n-1}\right| \frac{1}{\mu_{n-1}}\left(\sum_{k=1}^{n-1} x_{i}\right)\left|+\lambda_{n}\right| \frac{1}{\mu_{n}}\left(\sum_{k=1}^{n} x_{i}\right) \right\rvert\,=\alpha_{n} O(1)\right\},} \\
& {[\Delta, \Delta]=\left\{X \in s\left|-\lambda_{n-1}\right| \mu_{n-1} x_{n-1}-\mu_{n-2} x_{n-2}\left|+\lambda_{n}\right| \mu_{n} x_{n}-\mu_{n-1} x_{n-1} \mid=\alpha_{n} O(1)\right\} .} \tag{3.5}
\end{align*}
$$

Note that for $\alpha=e$ and $\lambda=\mu,[C, \Delta]$ is the well-known set of sequences that are strongly bounded, denoted by $c_{\infty}(\lambda)$, see [9, 12, 13, 14, 15]. We get the following result.

Theorem 3.1. (i) If $\alpha \lambda$ and $\alpha \lambda \mu \in \Gamma$, then

$$
\begin{equation*}
[C, C]=S_{(\alpha \lambda \mu)}, \tag{3.6}
\end{equation*}
$$

(ii) if $\alpha \lambda \in \Gamma$, then

$$
\begin{equation*}
[C, \Delta]=s_{(\alpha(\lambda / \mu))}, \tag{3.7}
\end{equation*}
$$

(iii) if α and $\alpha \mu / \lambda \in \Gamma$, then

$$
\begin{equation*}
[\Delta, C]=s_{(\alpha(\mu / \lambda))} \tag{3.8}
\end{equation*}
$$

(iv) if α and $\alpha / \lambda \in \Gamma$, then

$$
\begin{equation*}
[\Delta, \Delta]=s_{(\alpha(\mu / \lambda))} \tag{3.9}
\end{equation*}
$$

Proof. We have for any given X

$$
\begin{equation*}
C(\lambda)(|C(\mu) X|) \in s_{\alpha} \tag{3.10}
\end{equation*}
$$

if and only if $C(\mu) X \in s_{\alpha}(C(\lambda))=s_{(\alpha \lambda)}$, since $\alpha \lambda \in \Gamma$. So we get

$$
\begin{equation*}
X \in \Delta(\mu) s_{\alpha \lambda} \tag{3.11}
\end{equation*}
$$

and the condition $\alpha \lambda \mu \in \Gamma$ implies $\Delta(\mu) s_{\alpha \lambda}=s_{(\alpha \lambda \mu)}$, which permits us to conclude (i).
(ii) Now, for any given X, the condition $C(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}$ is equivalent to

$$
\begin{equation*}
|\Delta(\mu) X| \in \Delta(\lambda) s_{\alpha}=\Delta s_{\alpha \lambda}=s_{\alpha \lambda} \tag{3.12}
\end{equation*}
$$

since $\alpha \lambda \in \Gamma$. Thus

$$
\begin{equation*}
X \in C(\mu) s_{\alpha \lambda}=D_{1 / \mu} \Sigma s_{\alpha \lambda}=s_{(\alpha(\lambda / \mu))} \tag{3.13}
\end{equation*}
$$

(iii) Similarly, $\Delta(\lambda)(|C(\mu) X|) \in s_{\alpha}$ if and only if

$$
\begin{equation*}
|C(\mu) X| \in s_{\alpha}(\Delta(\lambda))=C(\lambda) s_{\alpha}=D_{1 / \lambda} \Sigma s_{\alpha}=s_{(\alpha / \lambda)} \tag{3.14}
\end{equation*}
$$

since $\alpha \in Г$. So

$$
\begin{equation*}
X \in \Delta(\mu) s_{(\alpha / \lambda)}=\Delta s_{(\alpha \mu / \lambda)} . \tag{3.15}
\end{equation*}
$$

We conclude since $\alpha \mu / \lambda \in \Gamma$ implies that $\Delta s_{(\alpha \mu / \lambda)}=s_{(\alpha \mu / \lambda)}$. (iv) Here,

$$
\begin{equation*}
\Delta(\lambda)(|\Delta(\mu) X|) \in s_{\alpha} \quad \text { if and only if } \Delta(\mu) X \in C(\lambda) s_{\alpha}=s_{(\alpha / \lambda)}, \tag{3.16}
\end{equation*}
$$

if $\alpha \in \Gamma$. Thus we have

$$
\begin{equation*}
X \in C(\mu) s_{(\alpha / \lambda)}=s_{(\alpha / \lambda \mu)} \tag{3.17}
\end{equation*}
$$

since $\alpha / \lambda \in \Gamma$. So (iv) holds.

Remark 3.2. If we define

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]_{0}=\left\{X \in s \mid A_{1}(\lambda)\left(\left|A_{2}(\mu) X\right|\right) \in s_{\alpha}^{\circ}\right\} \tag{3.18}
\end{equation*}
$$

we get the same results as in Theorem 3.1, replacing in each case (i), (ii), (iii), and (iv) s_{ξ} by s_{ξ}°.
3.2. Sets $\left[\Delta, \Delta^{+}\right],\left[\Delta, C^{+}\right],\left[C, \Delta^{+}\right],\left[\Delta^{+} \Delta\right],\left[\Delta^{+}, C\right],\left[\Delta^{+} \Delta^{+}\right],\left[C^{+}, C\right],\left[C^{+}, \Delta\right],\left[C^{+}, \Delta^{+}\right]$, and $\left[C^{+}, C^{+}\right]$. We get immediately from the definitions of the operators $\Delta(\xi), \Delta^{+}(\eta)$, $C(\xi)$, and $C^{+}(\eta)$, the following:

$$
\begin{align*}
& {\left[\Delta, \Delta^{+}\right]=\left\{X\left|\lambda_{n}\right| \mu_{n} x_{n}-\mu_{n+1} x_{n+1}\left|-\lambda_{n-1}\right| \mu_{n-1} x_{n-1}-\mu_{n} x_{n} \mid=\alpha_{n} O(1)\right\},} \\
& {\left[\Delta, C^{+}\right]=\left\{\left.X\left|\lambda_{n}\right| \sum_{i=n}^{\infty} \frac{x_{i}}{\mu_{i}}\left|-\lambda_{n-1}\right| \sum_{i=n-1}^{\infty} \frac{x_{i}}{\mu_{i}} \right\rvert\,=\alpha_{n} O(1)\right\},} \\
& {\left[C, \Delta^{+}\right]=\left\{X \left\lvert\, \frac{1}{\lambda_{n}}\left(\sum_{k=1}^{n}\left|\mu_{k} x_{k}-\mu_{k+1} x_{k+1}\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {\left[\Delta^{+}, \Delta\right]=\left\{X\left|\lambda_{n}\right| \mu_{n} x_{n}-\mu_{n-1} x_{n-1}\left|-\lambda_{n+1}\right| \mu_{n+1} x_{n+1}-\mu_{n} x_{n} \mid=\alpha_{n} O(1)\right\},} \\
& {\left[\Delta^{+}, C\right]=\left\{\left.X\left|\frac{\lambda_{n}}{\mu_{n}}\right| \sum_{i=1}^{n} x_{i}\left|-\frac{\lambda_{n+1}}{\mu_{n+1}}\right| \sum_{i=1}^{n+1} x_{i} \right\rvert\,=\alpha_{n} O(1)\right\},} \\
& {\left[\Delta^{+}, \Delta^{+}\right]=\left\{X\left|\lambda_{n}\right| \mu_{n} x_{n}-\mu_{n+1} x_{n+1}\left|-\lambda_{n+1}\right| \mu_{n+1} x_{n+1}-\mu_{n+2} x_{n+2} \mid=\alpha_{n} O(1)\right\},} \\
& {\left[C^{+}, C\right]=\left\{X \left\lvert\, \sum_{k=n}^{\infty}\left(\frac{1}{\lambda_{k}}\left|\frac{1}{\mu_{k}} \sum_{i=1}^{k} x_{i}\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {\left[C^{+}, \Delta\right]=\left\{X \left\lvert\, \sum_{k=n}^{\infty}\left(\frac{1}{\lambda_{k}}\left|\mu_{k} x_{k}-\mu_{k-1} x_{k-1}\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {\left[C^{+}, \Delta^{+}\right]=\left\{X \left\lvert\, \sum_{k=n}^{\infty}\left(\frac{1}{\lambda_{k}}\left|\mu_{k} x_{k}-\mu_{k+1} x_{k+1}\right|\right)=\alpha_{n} O(1)\right.\right\},} \\
& {\left[C^{+}, C^{+}\right]=\left\{X \left\lvert\, \sum_{k=n}^{\infty}\left(\frac{1}{\lambda_{k}}\left|\sum_{i=k}^{\infty} \frac{x_{i}}{\mu_{i}}\right|\right)=\alpha_{n} O(1)\right.\right\} .} \tag{3.19}
\end{align*}
$$

We can assert the following result, in which we do the convention $\alpha_{n}=1$ for $n \leq 0$.
Theorem 3.3. (i) Assume that $\alpha \in \Gamma$. Then

$$
\begin{array}{ll}
{\left[\Delta, \Delta^{+}\right]=s_{(\alpha / \lambda \mu)^{-}}} & \text {if } \frac{\alpha}{\lambda \mu} \in \Gamma \\
{\left[\Delta, C^{+}\right]=s_{(\alpha(\mu / \lambda))}} & \text { if } \frac{\lambda}{\alpha} \in \Gamma \tag{3.20}
\end{array}
$$

(ii) The conditions $\alpha \lambda \in \Gamma$ and $\alpha \lambda / \mu \in \Gamma$ together imply

$$
\begin{equation*}
\left[C, \Delta^{+}\right]=s_{(\alpha(\lambda / \mu))^{-}} . \tag{3.21}
\end{equation*}
$$

(iii) The condition $\alpha / \lambda \in \Gamma$ implies

$$
\begin{equation*}
\left[\Delta^{+}, \Delta\right]=s_{\left(\alpha_{n-1} / \mu_{n} \lambda_{n-1}\right)_{n}}=s_{\left(1 / \mu(\alpha / \lambda)^{-}\right)} \tag{3.22}
\end{equation*}
$$

(iv) If α / λ and $\mu(\alpha / \lambda)^{-}=\left(\mu_{n}\left(\alpha_{n-1} / \lambda_{n-1}\right)\right)_{n} \in \Gamma$, then

$$
\begin{equation*}
\left[\Delta^{+}, C\right]=s_{\mu(\alpha / \lambda)^{-}} \tag{3.23}
\end{equation*}
$$

(v) If α / λ and $1 / \mu(\alpha / \lambda)^{-}=\left(\alpha_{n-1} / \mu_{n} \lambda_{n-1}\right)_{n} \in \Gamma$, then

$$
\begin{equation*}
\left[\Delta^{+}, \Delta^{+}\right]=S_{\left((\alpha / \lambda)^{-} / \mu\right)^{-}}=S_{\left(\alpha_{n-2} / \lambda_{n-2} \mu_{n-1}\right)_{n}} \tag{3.24}
\end{equation*}
$$

(vi) If $1 / \alpha$ and $\alpha \lambda \mu \in \Gamma$, then

$$
\begin{equation*}
\left[C^{+}, C\right]=s_{(\alpha \lambda \mu)} . \tag{3.25}
\end{equation*}
$$

(vii) If $1 / \alpha$ and $\alpha \lambda \in \Gamma$, then

$$
\begin{equation*}
\left[C^{+}, \Delta\right]=s_{(\alpha(\lambda / \mu)} . \tag{3.26}
\end{equation*}
$$

(viii) If $1 / \alpha$ and $\alpha(\lambda / \mu) \in \Gamma$, then

$$
\begin{equation*}
\left[C^{+}, \Delta^{+}\right]=S_{(\alpha(\lambda / \mu))^{-}} \tag{3.27}
\end{equation*}
$$

(ix) If $1 / \alpha$ and $1 / \alpha \lambda \in \Gamma$, then

$$
\begin{equation*}
\left[C^{+}, C^{+}\right]=s_{(\alpha \lambda \mu)} \tag{3.28}
\end{equation*}
$$

Proof. (i) First, for any given X, the condition $\Delta(\lambda)\left(\left|\Delta^{+}(\mu) X\right|\right) \in s_{\alpha}$ is equivalent to

$$
\begin{equation*}
\left|\Delta^{+}(\mu) X\right| \in s_{\alpha}(\Delta(\lambda))=s_{(\alpha / \lambda)} \tag{3.29}
\end{equation*}
$$

since $\alpha \in \Gamma$. So $X \in s_{\alpha \lambda}\left(\Delta^{+}(\mu)\right)$ and applying Corollary 2.9, we conclude the first part of the proof of (i).

We have $\Delta(\lambda)\left(\left|C^{+}(\mu) X\right|\right) \in s_{\alpha}$ if and only if

$$
\begin{equation*}
\left|C^{+}(\mu) X\right| \in C(\lambda) s_{\alpha}=D_{1 / \lambda} \Sigma s_{\alpha} \tag{3.30}
\end{equation*}
$$

Since $\alpha \in \Gamma$, we have $\Sigma s_{\alpha}=s_{\alpha}$ and $D_{1 / \lambda} \Sigma s_{\alpha}=s_{(\alpha / \lambda)}$. Then, for $\alpha / \lambda \in \Gamma^{+}, X \in\left[\Delta, C^{+}\right]$if and only if

$$
\begin{equation*}
X \in w_{(\alpha / \lambda)}^{+1}(\mu)=s_{(\alpha(\mu / \lambda))} \tag{3.31}
\end{equation*}
$$

(ii) For any given $X, C(\lambda)\left(\left|\Delta^{+}(\mu) X\right|\right) \in s_{\alpha}$ is equivalent to

$$
\begin{equation*}
\Delta^{+}(\mu) X \in w_{\alpha}^{1}(\lambda) \tag{3.32}
\end{equation*}
$$

and since $\alpha \lambda \in \Gamma$ we have $w_{\alpha}^{1}(\lambda)=s_{\alpha \lambda}$. So

$$
\begin{equation*}
X \in s_{\alpha \lambda}\left(\Delta^{+}(\mu)\right)=s_{(\alpha(\lambda / \mu))^{-}} \tag{3.33}
\end{equation*}
$$

if $\alpha \lambda / \mu \in \Gamma$. Then (ii) is proved.
(iii) Here, $\Delta^{+}(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}$ if and only if

$$
\begin{equation*}
|\Delta(\mu) X| \in s_{\alpha}\left(\Delta^{+}(\lambda)\right)=s_{(\alpha / \lambda)^{-}} \tag{3.34}
\end{equation*}
$$

since $\alpha / \lambda \in \Gamma$. Thus

$$
\begin{equation*}
X \in C(\mu) s_{(\alpha / \lambda)^{-}}=D_{1 / \mu} \Sigma s_{(\alpha / \lambda)^{-}}=s_{\left(\alpha_{n-1} / \lambda_{n-1} \mu_{n}\right)} \tag{3.35}
\end{equation*}
$$

if $(\alpha / \lambda)^{-} \in \Gamma$, that is, $\alpha / \lambda \in \Gamma$.
(iv) If $\alpha / \lambda \in \Gamma$, we get

$$
\begin{align*}
\Delta^{+}(\lambda)(|C(\mu) X|) & \in s_{\alpha} \Longleftrightarrow|C(\mu) X| \in s_{\alpha}\left(\Delta^{+}(\lambda)\right) \\
& =s_{(\alpha / \lambda)^{-}} \Longleftrightarrow X \in \Delta(\mu) s_{(\alpha / \lambda)^{-}} . \tag{3.36}
\end{align*}
$$

Since $\mu(\alpha / \lambda)^{-} \in \Gamma$, we conclude that $\left[\Delta^{+}, C\right]=s_{\left(\mu(\alpha / \lambda)^{-}\right)}$.
(v) One has

$$
\begin{equation*}
\left[\Delta^{+}, \Delta^{+}\right]=\left\{X \mid \Delta^{+}(\mu) X \in s_{\alpha}\left(\Delta^{+}(\lambda)\right)\right\}, \tag{3.37}
\end{equation*}
$$

and since $\alpha / \lambda \in \Gamma$, we get

$$
\begin{equation*}
s_{\alpha}\left(\Delta^{+}(\lambda)\right)=s_{(\alpha / \lambda)^{-}} . \tag{3.38}
\end{equation*}
$$

We deduce that if $\alpha / \lambda \in \Gamma$,

$$
\begin{equation*}
\left[\Delta^{+}, \Delta^{+}\right]=S_{(\alpha / \lambda)^{-}}\left(\Delta^{+}(\mu)\right) . \tag{3.39}
\end{equation*}
$$

Then, from Corollary 2.9, if $\alpha / \lambda \in \Gamma$ and $(\alpha / \lambda)^{-} / \mu=\left(\alpha_{n-1} / \lambda_{n-1} \mu_{n}\right)_{n} \in \Gamma$,

$$
\begin{equation*}
s_{(\alpha / \lambda)^{-}}\left(\Delta^{+}(\mu)\right)=s_{\left((\alpha / \lambda)^{-} / \mu\right)^{-}}=s_{\left(\alpha_{n-2} / \lambda_{n-2} \mu_{n-1}\right)_{n}} . \tag{3.40}
\end{equation*}
$$

(vi) We have

$$
\begin{equation*}
C^{+}(\lambda)(|C(\mu) X|) \in s_{\alpha} \Leftrightarrow C(\mu) X \in w_{\alpha}^{+1}(\lambda), \tag{3.41}
\end{equation*}
$$

and since $\alpha \in \Gamma^{+}$, we have $w_{\alpha}^{+1}(\lambda)=s_{\alpha \lambda}$. Then for $\alpha \lambda \mu \in \Gamma, X \in\left[C^{+}, C\right]$ if and only if

$$
\begin{equation*}
X \in \Delta(\mu) s_{\alpha \lambda}=s_{(\alpha \lambda \mu)} . \tag{3.42}
\end{equation*}
$$

(vii) The condition $C^{+}(\lambda)(|\Delta(\mu) X|) \in s_{\alpha}$ is equivalent to

$$
\begin{equation*}
\Delta(\mu) X \in w_{\alpha}^{+1}(\lambda) \tag{3.43}
\end{equation*}
$$

and since $\alpha \in \Gamma^{+}$, we have $w_{\alpha}^{+1}(\lambda)=s_{\alpha \lambda}$. Thus

$$
\begin{equation*}
X \in s_{\alpha \lambda}(\Delta(\mu))=D_{1 / \mu} \Sigma s_{\alpha \lambda}=s_{(\alpha(\lambda / \mu))} \tag{3.44}
\end{equation*}
$$

since $\alpha \lambda \in \Gamma$. So (vii) holds.
(viii) First, we have

$$
\begin{equation*}
\left[C^{+}, \Delta^{+}\right]=\left\{X \mid \Delta^{+}(\mu) X \in w_{\alpha}^{+1}(\lambda)\right\}, \tag{3.45}
\end{equation*}
$$

and the condition $\alpha \in \Gamma^{+}$implies that $w_{\alpha}^{+1}(\lambda)=s_{\alpha \lambda}$. Thus

$$
\begin{equation*}
\left[C^{+}, \Delta^{+}\right]=\left\{X \mid \Delta^{+}(\mu) X \in s_{\alpha \lambda}\right\}=s_{\alpha \lambda}\left(\Delta^{+}(\mu)\right), \tag{3.46}
\end{equation*}
$$

and we conclude since

$$
\begin{equation*}
s_{\alpha \lambda}\left(\Delta^{+}(\mu)\right)=s_{(\alpha \lambda / \mu)^{-}} \quad \text { for } \frac{\alpha \lambda}{\mu} \in \Gamma . \tag{3.47}
\end{equation*}
$$

(ix) If $\alpha \in \Gamma^{+}$,

$$
\begin{equation*}
\left[C^{+}, C^{+}\right]=\left\{X \mid C^{+}(\mu) X \in w_{\alpha}^{+1}(\lambda)=s_{\alpha \lambda}\right\}=w_{\alpha \lambda}^{+1}(\mu) . \tag{3.48}
\end{equation*}
$$

We conclude that $w_{\alpha \lambda}^{+1}(\mu)=s_{(\alpha \lambda \mu)}$, since $\alpha \lambda \in \Gamma^{+}$.
Remark 3.4. Note that in Theorem 3.3, we have $\left[A_{1}, A_{2}\right]=s_{\alpha}\left(A_{1} A_{2}\right)=\left(s_{\alpha}\left(A_{1}\right)\right)_{A_{2}}$ for $A_{1} \in\left\{\Delta(\lambda), \Delta^{+}(\lambda), C(\lambda), C^{+}(\lambda)\right\}$ and $A_{2} \in\left\{\Delta(\mu), \Delta^{+}(\mu), C(\mu), C^{+}(\mu)\right\}$. For instance, we have

$$
\begin{equation*}
[\Delta, C]=\left\{X \left\lvert\,\left(\frac{\lambda_{n}}{\mu_{n}}-\frac{\lambda_{n-1}}{\mu_{n-1}}\right) \sum_{i=1}^{n-1} x_{i}+\frac{\lambda_{n}}{\mu_{n}} x_{n}=\alpha_{n} O(1)\right.\right\} \quad \text { for } \frac{\alpha \mu}{\lambda} \in \Gamma \tag{3.49}
\end{equation*}
$$

Similarly, under the corresponding conditions given in Theorems 3.1 and 3.3, we get

$$
\begin{align*}
& {[\Delta, \Delta]=\left\{X \mid-\lambda_{n-1} \mu_{n-2} x_{n-2}+\mu_{n-1}\left(\lambda_{n}+\lambda_{n-1}\right) x_{n-1}-\lambda_{n} \mu_{n} x_{n}=\alpha_{n} O(1)\right\},} \\
& {\left[\Delta, C^{+}\right]=\left\{X \left\lvert\, \frac{\lambda_{n}}{\mu_{n}} x_{n}+\left(\lambda_{n}-\lambda_{n-1}\right) \sum_{m=n-1}^{\infty} \frac{x_{m}}{\mu_{m}}=\alpha_{n} O(1)\right.\right\},} \tag{3.50}\\
& {\left[\Delta, \Delta^{+}\right]=\left\{X \mid-\lambda_{n-1} \mu_{n-1} x_{n-1}+\mu_{n}\left(\lambda_{n}+\lambda_{n-1}\right) x_{n}-\lambda_{n} \mu_{n+1} x_{n+1}=\alpha_{n} O(1)\right\},} \\
& {\left[\Delta^{+}, \Delta\right]=\left\{X \mid-\lambda_{n} \mu_{n-1} x_{n-1}+\left(\lambda_{n}+\lambda_{n+1}\right) \mu_{n} x_{n}-\lambda_{n+1} \mu_{n+1} x_{n+1}=\alpha_{n} O(1)\right\} .}
\end{align*}
$$

References

[1] B. de Malafosse, Systèmes linéaires infinis admettant une infinité de solutions [Infinite linear systems admitting an infinity of solutions], Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 65 (1988), 49-59 (French).
[2] __ Some properties of the Cesàro operator in the space s_{r}, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 48 (1999), no. 1-2, 53-71.
[3] , Bases in sequence spaces and expansion of a function in a series of power series, Mat. Vesnik 52 (2000), no. 3-4, 99-112.
[4] __, Application of the sum of operators in the commutative case to the infinite matrix theory, Soochow J. Math. 27 (2001), no. 4, 405-421.
[5] ___ Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), no. 2, 283-299.
[6] , Recent results in the infinite matrix theory, and application to Hill equation, Demonstratio Math. 35 (2002), no. 1, 11-26.
[7] , Variation of an element in the matrix of the first difference operator and matrix transformations, Novi Sad J. Math. 32 (2002), no. 1, 141-158.
[8] , On some BK spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 28, 1783-1801.
[9] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 2, 277-294.
[10] R. Labbas and B. de Malafosse, On some Banach algebra of infinite matrices and applications, Demonstratio Math. 31 (1998), no. 1, 153-168.
[11] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Mathematics, vol. 786, Springer-Verlag, Berlin, 1980.
[12] E. Malkowsky, The continuous duals of the spaces $c_{0}(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ, Acta Sci. Math. (Szeged) 61 (1995), no. 1-4, 241-250.
[13] , Linear operators in certain BK spaces, Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud., vol. 5, János Bolyai Mathematical Society, Budapest, 1996, pp. 259-273.
[14] F. Móricz, On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar. 54 (1989), no. 3-4, 319-327.
[15] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing, Amsterdam, 1984.

Bruno de Malafosse: Laboratoire de Mathématiques Appliquées du Havre (LMAH), Université du Havre, Institut Universitaire de Technologie du Havre, 76610 Le Havre, France

E-mail address: bdema1af@wanadoo.fr

