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A CHARACTERISTIC INITIAL VALUE PROBLEM FOR
A STRICTLY HYPERBOLIC SYSTEM
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Consider the system Autt +Cuxx = f(x,t), (x,t) ∈ T for u(x,t) in R2, where A and C
are real constant 2× 2 matrices, and f is a continuous function in R2. We assume that
detC ≠ 0 and that the system is strictly hyperbolic in the sense that there are four distinct
characteristic curves Γi, i= 1, . . . ,4, in xt-plane whose gradients (ξ1i,ξ2i) satisfy det[Aξ2

1i+
Cξ2

2i]= 0. We allow the characteristics of the system to be given bydt/dx =±1 anddt/dx =
±r , r ∈ (0,1). Under special conditions on the boundaries of the region T = {(x,t) : 0≤ t ≤
1,(−1+r +t)/r ≤ x ≤ (1+r −t)/r}, we will show that the system has a unique C2 solution
in T .

2000 Mathematics Subject Classification: 35L50, 35L20, 35C15.

1. Introduction. In the single equation case, Kal’menov [1] used separation of vari-

ables to explicitly find the eigenvalues and a complete set of eigenfunctions in L2(T1)
for

utt−uxx = λu, (x,t)∈ T1,

u(x,0)= 0, 0≤ x ≤ 2,

u(t,t)=u(1+t,1−t), 0≤ t ≤ 1,
(1.1)

where

T1 =
{
(x,t) : 0≤ t ≤ 1, t ≤ x ≤ 2−t} (1.2)

is a triangular region bounded by two characteristics and the x-axis. In [3], Kreith gen-

eralized the result of Kal’menov [1] to the case where separation of variables was not

necessarily possible, that is, the problem

utt−uxx = λpu, (x,t)∈ T1,

u(x,0)= 0, 0≤ x ≤ 2,

u(t,t)=u(1+t,1−t), 0≤ t ≤ 1,
(1.3)

where u ∈ R and p is a positive continuous function in T1. In [3], Kreith used a sym-

metric Green’s function to show the existence of the eigenvalues and a complete set

of eigenfunctions in Lp2 (T1). His technique involved converting the eigenvalue problem

(1.3) to an integral equation with a symmetric kernel. Both of these works were signifi-

cant because problems (1.1) and (1.3) constituted selfadjoint boundary value problems
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for hyperbolic equations comparable to the ones for traditional elliptic equations. In

addition, the boundary conditions in these problems imply u(1,1)= 0. On the physical

grounds, this means the string which was in equilibrium initially is again in equilib-

rium at a point at another time. In this context, one can think of the point (1,1) as a

generalized conjugate point for the initial condition u(x,0)= 0 [3].

In an attempt to extend Kreith’s case to systems, we now consider

Autt+Cuxx = f(x,t), (x,t)∈ T , (1.4)

where

T =
{
(x,t) : 0≤ t ≤ 1,

−1+r +t
r

≤ x ≤ 1+r −t
r

}
, (1.5)

and apply similar but modified boundary conditions on the boundaries of T ,

u(x,0)= 0, 1− 1
r
≤ x ≤ 1+ 1

r
, 0< r < 1, (1.6)

u
(
r −1+t
r

,t
)
=u

(
1+ t

r
,1−t

)
= g(r ;t), 0< r < 1, 0≤ t ≤ 1. (1.7)

The function g is taken to be C2 in t for t ∈ [0,1] for any r ∈ (0,1), and its components

g1 and g2 vanish monotonically to zero as t goes to zero or one in [0, t0]∪ [t1,1] for

some t0 < t1, t0, t1 ∈ (0,1). For the sake of specificity, we assume that the constant

matrices A and C with detC ≠ 0 are such that

C−1A=

−1−d−r 2 −d−d2−r 2−dr 2

c
c d


 . (1.8)

We note here that the boundary conditions (1.6) and (1.7) imply the compatibility con-

dition u(1,1) = 0, which in turn means that the system which was in equilibrium at

time t = 0 will come to rest at the point x = 1 at the time t = 1 again. Assumption (1.8)

will guarantee the strict hyperbolicity [2] of system (1.4). In fact, let the polynomial q
be q(ξ,η) = det[Aξ2+Cη2]. Then, q(1,m) = (detC)(det[C−1A+m2I]), where I is the

identity matrix and has four distinct roots m=±1 and m=±r . If we let the equations

of the characteristics be t =φ(x), then they will satisfy dt/dx =±1 and dt/dx =±r .

Accordingly, the characteristics of (1.4) are Γ1 : t = x+k1, Γ2 : t =−x+k2, Γ3 : t = rx+k3,

and Γ4 : t = −rx+k4. We choose the characteristics t = rx+1−r and t = −rx+1+r
in xt-plane, and form the triangular region T , described above, bounded by these lines

and the x-axis. To find the points in condition (1.7), start at a point ((r −1+t)/r ,t)
on t = rx+1−r , and draw a line parallel to t = −rx+1+r . At the point of intersec-

tion of this line with the x-axis, draw a line parallel to t = rx+1−r to meet the line

t =−rx+1+r at the point (1+t/r ,1−t).
The original purpose of this study was to generalize the work in [3] to the case of a

boundary value problem for a hyperbolic system which would be selfadjoint. But, after

successfully defining the right domain T and converting problem (1.4), (1.5), (1.6), and

(1.7) to an integral equation over T , the kernel of the integral operator did not turn
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out to be symmetric. This precluded a statement similar to the one in [3] regarding the

eigenfunctions and eigenvalues of (1.4), (1.5), (1.6), and (1.7) with f(x,t) = λp(x,t)u.

However, we were able to show, as we will explain in the sequel, that the problem does

have a solution. The method is constructive and produces a solution which is C2 and

unique in T .

We mention further that characteristic boundary value problems for different hyper-

bolic systems have been studied in [2] extensively. What is different about our work

here is that in addition to prescribing data on the characteristics, we also assume the

extra condition (1.6) about u on the x-axis.

2. The first-order system. We change the second-order system (1.4) to a first-order

system by introducing

u=
[
u1

u2

]
, uit = vi, uix = vi+2, i= 1,2. (2.1)

System (1.4) becomes

[
02 −I2
A 02

]
vt+

[
I2 02

02 C

]
vx =

[
0

f

]
, (2.2)

where 02 and I2 are 2×2 zero and identity matrices. Multiply (2.2) by [ I2 02
02 C ]−1 to obtain

[
02 −I2
C−1A 02

]
vt+

[
I2 02

02 I2

]
vx =

[
I2 02

02 C

]−1[
0

f

]
. (2.3)

We rewrite system (2.3) in the form

Ãvt+vx = F, (2.4)

where

Ã=
[

02 −I2
C−1A 02

]
, F =

[
I2 02

02 C

]−1[
0

f

]
=
[

0

C−1f

]
. (2.5)

Based on our assumption on the form of the matrix C−1A in (1.8), we note that the

eigenvalues of the matrix Ã are ±1 and ±r . Let K be the matrix whose columns are the

eigenvectors ki, i= 1, . . . ,4, corresponding to the eigenvalues −1, 1, −r , r , respectively.

Making the change of variables v =Kw, we obtain

ÃKwt+Kwx = F, (2.6)
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where K is the matrix

K =




−1+d
c

1+d
c

−d+r
2

cr
d+r 2

cr

1 −1
1
r

−1
r

−1+d
c

−1+d
c

−d+r
2

c
−d+r

2

c
1 1 1 1



. (2.7)

Multiplying (2.6) by K−1, we obtain

Λwt+wx =K−1F, (2.8)

where K−1 is

K−1 = 1
−2+2r 2



c d+r 2 c d+r 2

c d+r 2 c d+r 2

cr (1+d)r c 1+d
cr (1+d)r c 1+d


 (2.9)

and Λ is a 4×4 diagonal matrix with numbers −1, 1, −r , r on its main diagonal. Letting

wi, Fi, i = 1, . . . ,4, be the components of the vectors w, F and noting that F1 = F2 = 0

and K−1F is of the form

K−1F =



c1F3+c2F4

c1F3+c2F4

−c1F3+c3F4

−c1F3+c3F4


 , (2.10)

where

c1 = c
−2+2r 2

, c2 = d+r 2

−2+2r 2
, c3 = 1+d

2−2r 2
, (2.11)

system (2.8) will be

−w1t+w1x = c1F3+c2F4, (2.12)

w2t+w2x = c1F3+c2F4, (2.13)

−rw3t+w3x =−c1F3+c3F4, (2.14)

rw4t+w4x =−c1F3+c3F4. (2.15)

We solve system (2.12), (2.13), (2.14), and (2.15), in the triangle T , next.

3. The solution of the system. Consider (2.12). Take two points P and Q in the

triangle T , along the characteristic dx/dt = −1, and integrate along the segment PQ
in the direction of the vector 〈−1,1〉. Let the arc length be s, then

w1(P)−w1(Q)= 1√
2

∫
PQ

(
c1F3+c2F4

)
ds. (3.1)
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Integrate (2.13) in T from point P to point P1 along the characteristic dx/dt = 1, in the

direction of the vector 〈1,1〉. We have

w2(P)−w2
(
P1
)=− 1√

2

∫
PP1

(
c1F3+c2F4

)
ds. (3.2)

Integrate (2.14) from point P to point R in T along the characteristic dt/dx = −r , in

the direction of the vector 〈−1,r〉,

w3(P)−w3(R)= 1√
1+r 2

∫
PR

(−c1F3+c3F4
)
ds. (3.3)

Similarly, if we integrate (2.15) from point P to point R1 in T along the characteristic

dt/dx = r , in the direction of 〈1,r〉, we have

w4(P)−w4
(
R1
)=− 1√

1+r 2

∫
PR1

(−c1F3+c3F4
)
ds. (3.4)

Recall that v = Kw and v = [u1t ,u2t ,u1x,u2t]tr . Then, (3.1), (3.2), (3.3), and (3.4) will

become

(
c1
(
u1t+u1x

)+c2
(
u2t+u2x

))|PQ = 1√
2

∫
PQ

(
c1F3+c2F4

)
ds, (3.5)

(−c1
(
u1t−u1x

)−c2
(
u2t−u2x

))|PP1
=− 1√

2

∫
PP1

(
c1F3+c2F4

)
ds, (3.6)

(−c1
(
ru1t+u1x

)+c3
(
ru2t+u2x

))|PR = 1√
1+r 2

∫
PR

(−c1F3+c3F4
)
ds, (3.7)

(
c1
(
ru1t−u1x

)−c3
(
ru2t−u2x

))|PR1
=− 1√

1+r 2

∫
PR1

(−c1F3+c3F4
)
ds. (3.8)

Now, take (3.5) and integrate it along the characteristic dt/dx = 1 in the direction of the

vector 〈−1,−1〉, so that the parallelogram PQQ2Q1 inside T is completed. We choose

the vertex Q on characteristic boundary t = rx+1−r , and Q1 on the x-axis, then

c1u1(P)+c2u2(P)= c1u1(Q)+c2u2(Q)−c1u1
(
Q2
)−c2u2

(
Q2
)

+
∫
PQQ2Q1

(
c1F3+c2F4

)
dxdt.

(3.9)

Note here that since we assumed u = 0 along the x-axis, there are no terms involving

c1u1(Q1)+c2u2(Q1). Also, (3.9) gives a relationship between the values of the expres-

sion c1u1+ c2u2 at two points P and Q2 inside T and point Q on the characteristic

boundary, where points P , Q, Q2, and Q1 are vertices of a parallelogram inside T with

sides along the characteristics dt/dx =±1. As it turns out, (3.6) will provide the same

result if we put the point P1 on the characteristic boundary t = −rx+1+r and inte-

grate along the characteristic dt/dx =−1 in the direction of the vector 〈1,−1〉. In this
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case, we complete the parallelogram PP1P2P3 with vertices P and P2 in the interior of

T and P3 on the x-axis, that is,

c1u1(P)+c2u2(P)= c1u1
(
P1
)+c2u2

(
P1
)−c1u1

(
P2
)−c2u2

(
P2
)

+
∫
PP1P2P3

(
c1F3+c2F4

)
dxdt.

(3.10)

In (3.7), if we put the point R on a characteristic boundary t = rx+1−r and integrate

along the characteristic dt/dx = r in the direction of the vector 〈−1,−r〉 so that the

parallelogram PRMP1 in T is completed with P1 on the x-axis, R andM on t = rx+1−r ,

and P in T , we have

−c1u1(P)+c3u2(P)=−c1u1(R)+c3u2(R)+c1u1(M)−c3u2(M)

+
∫
PRMP1

(−c1F3+c3F4
)
dxdt.

(3.11)

The integration of (3.8) in the direction 〈1,−r〉 will result in the same equation as in

(3.10), that is,

−c1u1(P)+c3u2(P)=−c1u1
(
R1
)+c3u2

(
R1
)+c1u1

(
R2
)−c3u2

(
R2
)

+
∫
PR1R2R3

(−c1F3+c3F4
)
dxdt,

(3.12)

where P is in T , R1 and R2 are on t = −rx + 1+ r , and R3 is on the x-axis. Now,

we are in a position to apply condition (1.7). Write (3.11) for the parallelogram whose

side PR meets the characteristic boundary t = −rx+1+r and the side RM is on the

characteristic boundary t = rx+1−r . Denoting the vertex (0,0) of T by O, (3.11) for

the parallelogram P ′OMP1 becomes

−c1u1(P ′)+c3u2(P ′)=−c1u1(O)+c3u2(O)+c1u1(M)−c3u2(M)

+
∫
P ′OMP1

(−c1F3+c3F4
)
dxdt.

(3.13)

Since u(P ′)=u(M) and u(O)= 0, (3.13) yields

c1u1(M)−c3u2(M)=−1
2

∫
P ′OMP1

(−c1F3+c3F4
)
dxdt. (3.14)

This time, write (3.12) for the parallelogram P ′′ROM′, where the side OR is along the

characteristic boundary t = rx+1−r , the side OM′ is on the characteristic boundary

t =−rx+1+r , and the point P ′′ is on the x-axis:

−c1u1(R)+c3u2(R)=−c1u1(O)+c3u2(O)+c1u1(M′)−c3u2(M′)

+
∫
P ′′ROM′

(−c1F3+c3F4
)
dxdt,

(3.15)

which, upon using u(M′)=u(R) and u(O)= 0, yields

−c1u1(R)+c3u2(R)= 1
2

∫
P ′′ROM′

(−c1F3+c3F4
)
dxdt. (3.16)
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P ′′

M′

Figure 3.1. The regions in the definition of G(P ;x,t).

From (3.11), (3.14), and (3.15), we obtain

−c1u1(P)+c3u2(P)= 1
2

∫
P ′′ROM′

(−c1F3+c3F4
)
dxdt

− 1
2

∫
P ′OMP1

(−c1F3+c3F4
)
dxdt

+
∫
PRMP1

(−c1F3+c3F4
)
dxdt.

(3.17)

Equation (3.17) can be put in the compact form

−c1u1(P)+c3u2(P)=
∫∫
T
G(P ;x,t)

(−c1F3+c3F4
)
dxdt, (3.18)

where G is Green’s function with values described as follows. Fix a point P in the trian-

gular region T bounded by t = 0 and characteristics t = rx+1−r and t =−rx+1+r .

From P , draw lines parallel to these characteristics so that one line meets the side

t =−rx+1+r at P ′ and t = 0 at P1. The other line meets t = rx+1−r at R and t = 0

at P ′′. From P1, draw a line parallel to t =−rx+1+r to meet the line t = rx+1−r at

M . From P ′′, draw a line parallel to t = rx+1−r to meet t =−rx+1+r at M′. Then G
is defined by

G(P ;x,t)=




1
2
, (x,t)∈ PRMP1∪PP ′M′P ′′,

0, (x,t)∈ T \(PRMP1∪PP ′M′P ′′
)
;

(3.19)

see Figure 3.1.

Now we consider (3.9) and (3.10). From either one of these equations, we can calculate

the value of c1u1(P)+c2u2(P) by using the data g given in condition (1.7). For instance,

using (3.10) with P and Q0 in T , R0 on t =−rx+1+r , and S0 on the x-axis, we have

c1u1(P)+c2u2(P)= c1u1
(
R0
)+c2u2

(
R0
)−c1u1

(
Q0
)−c2u2

(
Q0
)

+
∫
PR0Q0S0

(
c1F3+c2F4

)
dxdt.

(3.20)

For convenience, we denote

α= c1u1+c2u2. (3.21)
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In terms of notation (3.21), we have

α(P)=α(R0
)−α(Q0

)+
∫
PR0Q0S0

(
c1F3+c2F4

)
dxdt. (3.22)

But then, using (3.22) again, this time starting at the point Q0 and completing the

parallelogram Q0R1Q1S1, we have

α
(
Q0
)=α(R1

)−α(Q1
)+
∫
Q0R1Q1S1

(
c1F3+c2F4

)
dxdt. (3.23)

We substitute α(Q0) from (3.23) into (3.22) to obtain

α(P)=α(R0
)−α(R1

)+α(Q1
)−
∫
Q0R1Q1S1

(
c1F3+c2F4

)
dxdt

+
∫
PR0Q0S0

(
c1F3+c2F4

)
dxdt.

(3.24)

Continuing this process and writing (3.22) for the points Q1,Q2, . . . ,Qn, n = 0,1,2, . . . ,
we obtain the equation

α(P)=
m∑
n=0

(−1)nα
(
Rn
)+ m∑

n=0

(−1)n
∫∫
Qn−1RnQnSn

(
c1F3+c2F4

)
dxdt

+(−1)m+1α
(
Qm

)
,

(3.25)

where Q−1 = P . The parallelograms Qn−1RnQnSn,n= 0, . . . ,m, have vertices R0,R1, . . . ,
Rm, on the characteristic boundary moving toward the point (1+1/r ,0). The points

Q1,Q2, . . . ,Qm+1 are the vertices opposite P in T and S0,S1, . . . ,Sm are on the x-axis.

Now, we take the limit of (3.25) as m→∞:

lim
m→∞α(P)=

∞∑
n=0

(−1)nα
(
Rn
)+ lim

m→∞(−1)m+1α
(
Qm

)

+
∞∑
n=0

(−1)n
∫∫
Qn−1RnQnSn

(
c1F3+c2F4

)
dxdt

(3.26)

and note that in this process, the points Rm, Qm, and Sm all approach the point (1+
1/r ,0) in T . Since data is zero at this point by condition (1.7), we must have

lim
m→∞(−1)m+1α

(
Qm

)= 0. (3.27)

The series involving the integrals over the parallelograms converges because the union

of all these parallelograms is still a subset of the region T and the function c1F3+c2F4 is

integrable over T , being continuous there. It now remains to ascertain the convergence

of
∑∞
n=0(−1)nα(Rn). For this purpose, we use the assumption, in condition (1.7), that

the components g1 and g2 of the data function g along the characteristics are monoton-

ically decreasing to zero in the set [0, t0]∪[t1,1], t0 < t1 for some t0, t1 in (0,1). Then,

the infinite sum
∑∞
n=0(−1)nα(Rn) converges because it is a monotonically decreasing

alternating series with limn→∞α(Rn) = 0. Since the positions of the points Rn on the
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Figure 3.2. The regions in the definition of H(P ;x,t).

characteristics depend on the point P , we show this dependence by Rn = Rn(r ,P) and

write

∞∑
n=0

(−1)nα
(
Rn(r ,P)

)= c1h1(r ;P)+c2h2(r ;P), (3.28)

where h1 and h2 are the limiting functions of the series
∑∞
n=0(−1)nu1(Rn) and

∑∞
n=0

(−1)nu2(Rn), respectively. If we rewrite (3.25) in terms of u1, u2 and use (3.27) and

(3.28), we have

c1u1(P)+c2u2(P)= c1h1(r ;P)+c2h2(r ;P)

+
∞∑
n=0

(−1)n
∫∫
Qn−1RnQnSn

(
c1F3+c2F4

)
dxdt.

(3.29)

We can rewrite (3.29) as follows:

c1u1(P)+c2u2(P)= c1h1(r ;P)+c2h2(r ;P)

+
∫∫
T
H(P ;x,t)

(
c1F3+c2F4

)
dxdt,

(3.30)

where

H(P ;x,t)=


(−1)n, (x,t)∈Qn−1RnQnSn, n= 0,1, . . . ,

0, (x,t)∈ T \∪∞0 Qn−1RnQnSn;
(3.31)

see Figure 3.2.

Putting (3.18) and (3.31) together, we can write

[
c1 c2

−c1 c3

][
u1(P)
u2(P)

]
=
[
c1 c2

0 0

][
h1(r ;P)
h2(r ;P)

]

+
∫∫
T

[
H 0

0 G

][
c1 c2

−c1 c3

][
F3

F4

]
dxdt.

(3.32)

Recall that [F3
F4
]= C−1f . Then, (3.32) can be rewritten in the form

u(P)= Lh(P)+
∫∫
T
N(P ;x,t)f (x,t)dxdt, P ∈ T , (3.33)
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where h = [h1
h2
] for h1, h2 are as defined in (3.28), L = [ c1 c2−c1 c3 ]

−1[c1 c2
0 0 ], and N =

C−1[H 0
0 G]. Equation (3.33) provides a unique solution to problem (1.4), (1.5), (1.6), and

(1.7) in C2(T). It is unique by the way it has been obtained. Therefore, we have the

following theorem.

Theorem 3.1. Let f(x,t) with values in R2 be a continuous function in T , and let

g(r ,t), also with values inR2, be C2 in t for t ∈ [0,1], for any r ∈ (0,1), and components

g1 and g2 that vanish monotonically to zero as t goes to zero or one in [0, t0]∪ [t1,1]
for some t0 < t1, t0, t1 ∈ (0,1). Let (1.4) be a strictly hyperbolic 2×2 system with constant

matrices A and C satisfying detC ≠ 0 and condition (1.8). Then, the boundary value

problem (1.4), (1.5), (1.6), and (1.7) has a unique solution of the form (3.33) in C2(T).
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