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1. Introduction. Stochastic processes and stochastic differential equations on real

Banach spaces and manifolds on them were intensively studied (see, e.g., [2, 4, 5,

12, 13, 14, 34, 35, 36, 39] and the references therein). The stochastic processes con-

sidered there were with values in either real Banach spaces or manifolds on them.

The results of these investigations were used in many mathematical and theoreti-

cal physical problems. In particular, stochastic processes on some Lie groups were

studied. On the other hand, the development of non-Archimedean functional analysis,

non-Archimedean quantum physical theories and quantum mechanics poses problems

of developing measure theory, and stochastic processes on non-Archimedean Banach

spaces and manifolds on them [15, 16, 17, 37, 38, 40]. Some steps in this direction

were made in [1, 3, 7, 8, 9, 10, 19, 41]. In those articles, real-valued and complex-valued

stochastic processes were considered, also stochastic processes with values in non-

Archimedean fields and linear spaces over them, but with compact or locally compact

supports of transition measures, were considered. There, pseudodifferential stochas-

tic equations based on pseudodifferential operators in the sense of Vladimirov [40]

were also considered. These pseudodifferential operators are quite different from an-

tiderivational operators of Schikhof [37]. The latter serve as the non-Archimedean ana-

log of the indefinite integration, while the former serve as non-Archimedean analogs

of the classical pseudodifferential operators. There can be different variants of non-

Archimedean stochastic processes, depending on whether the time parameter is either

non-Archimedean or real, a space is of functions either complex-valued or with values

in a non-Archimedean field. Then transition measures may be either complex-valued

or with values in a non-Archimedean field. It totally gives eight variants. The case of

the non-Archimedean time and a space of functions with values in a non-Archimedean

space was not practically considered in [1, 3, 7, 8, 9, 10, 19, 41]. The present paper is

devoted to the latter variant and its meaning is primarily in its applicability for investi-

gations of unitary representations of totally disconnected nonlocally compact groups. It

also permits the construction of volume elements associated with transition measures
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on an infinite-dimensional over non-Archimedean field manifolds, quasi-invariant rel-

ative to the corresponding diffeomorphism group. Then such stochastic processes on

manifolds can be applied in the non-Archimedean quantum field theory and gauge

theory. The above-cited papers do not permit considering the quasi-invariant transi-

tion measures of stochastic processes and then such measures on nonlocally compact

spaces or groups.

In preceding works of the author, measures and stochastic processes on non-

Archimedean Banach spaces and totally disconnected topological groups with values

in non-Archimedean spaces were investigated [25, 26, 29, 30, 31, 32, 22, 23, 27]. Quasi-

invariant measures on groups and manifolds were used for investigations of their rep-

resentations [21, 24, 28].

In this paper, non-Archimedean stochastic processes and stochastic antiderivational

equations (with the non-Archimedean time parameter) on manifolds on Banach spaces

over non-Archimedean fields are investigated. Moreover, wider classes of stochastic

processes are considered in this work than in preceding works of the author [30, 31,

32, 33]. Analogs of Lèvy processes were studied in [1, 8, 9, 19, 20, 41]. In [20], specific

classes of non-Archimedean Gaussian-type measures and Wiener-type processes were

defined and investigated, having more properties analogous to the classical case than

in preceding works. In this paper, Itô bundles on non-Archimedean Banach manifolds

are defined and investigated. For this specific transformation, formulas of stochastic

processes, which were not studied by other authors, are proved.

It is necessary to note that in this paper not only manifolds treated by the rigid

geometry are considered, but also much wider classes. For them, the existence of an

exponential mapping is proved. A rigid non-Archimedean geometry serves mainly for

needs of the cohomology theory on such manifolds, but it is too restrictive and operates

with narrow classes of analytic functions [11]. It was introduced at the beginning of the

sixties of the 20th century. Few years later, wider classes of functions were investigated

by Schikhof [37]. In this paper, classes of functions and antiderivation operators by

Schikhof, and their generalizations from the works [25, 26, 23], are used. The contents

of this paper do not intersect with the previous works cited above.

The results of this paper permit the consideration of stochastic processes on non-

Archimedean manifolds as well as more general classes of stochastic processes on

non-Archimedean Banach spaces and totally disconnected topological groups. Some

other principal differences of the classical and non-Archimedean stochastic analyses

are discussed in [30, 31, 32, 33]. All results of this paper are obtained for the first

time.

2. Stochastic processes on non-Archimedean manifolds. To avoid misunderstand-

ing, definitions and notations are given at first.

2.1. Definitions and notes. LetM be a Cn-manifold on a Banach space X over a non-

Archimedean field K complete relative to its norm with an atlas At(M) := {(Uj,φj) : j ∈
ΛM}, such that Uj is an open covering of M , φj : Uj → φj(Uj) is a homeomorphism,

φj(Uj) is open in X, φl ◦φ−1
j :φj(Uj∩Ul)→φl(Uj∩Ul) is a diffeomorphism of class

Cn for each Uj ∩Ul �= ∅, and the space Cn(U,Y) of functions from an open subset
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U ⊂ X into a Banach space Y over K is defined in terms of difference quotients (see

[25, 26, 37]).

Since the derivative (φl◦φ−1
j )′(x) is a linear continuous operator on φj(Uj∩Ul)×X

of class Cn−1 for each n ≥ 1, and there exists a derivative of an inverse operator

(φj ◦φ−1
l )′(y) on φl(Uj ∩Ul)×X, then (φl ◦φ−1

j )′(x) ∈ GL(X) for each x ∈ φj(Uj ∩
Ul), where GL(X) is the group of invertible K-linear bounded operators of X onto

X. Therefore, for each n ≥ 1, there exists a functor T such that T(φl ◦φ−1
j )(x) :=

(φl,j(x),φ′l,j(x)) for each x ∈ (φl ◦φ−1
j )(Uj ∩Ul), T(φj(Uj)) := φj(Uj)×X, where

φl,j := (φl ◦φ−1
j ). For n ≥ 1, put TM = ⋃

j∈ΛM TUj with the atlas At(TM) := {(Uj ×
X,Tφj) : j ∈ΛM}, such that Tφj : TUj →φj(Uj)×X is a homeomorphism, Tφj|{x}×X =:

Txφj is a bounded continuous operator on X by the second argument for each x ∈Uj .
Thus TM = ⋃x∈M TxM , where Txφj : TxUj → Tφj(x)φj(Uj) is a K-linear isomorphism

for each j ∈ ΥM , where Tφj(x)φj(Uj)= {φj(x)}×X. TM is called the total tangent space

of M , TxM is called the tangent space of M at x. The projection τ := τM : TM →M is

given by τM(s)= x for each vector s ∈ TxM , τM is called the tangent bundle.

2.1.1. IfM and N are two Cl-manifolds on Banach spaces X and S over K with l≥n,

where At(N) := {(Vj,ψj) : j ∈ ΛN}, and f : M → N is a continuous mapping, then by

definition, f ∈ Cn(M,N), if ψl ◦ f ◦φ−1
j ∈ Cn(Wl,j ,Y ) for each Wl,j := φj(f−1(Vl)∩

Uj) �= ∅. A norm in Cn(X,S) induces a complete uniformity in Cn(M,N). If n≥ 1 and

f ∈ Cn(M,N), then there exists Tf : TM → TN and Tf ∈ Cn−1(TM,TN).

2.1.2. Let H and X be two Banach spaces over a non-Archimedean field K. Let M
be a Cl-manifold on X and let P be a manifold with a mapping π : P → M such that

π is surjective and π−1(x) =: Px =: Hx is a Banach space over K isomorphic to H for

each x ∈ M , π is called a projection, π−1(x) is called a fibre of π over x. Suppose

that P is supplied with an atlas At(P)= {(Uj,φj,Pφj) : j ∈ΛM} consistent with At(M),
such that pr1 ◦Pφj = φj ◦π|PUj on π−1(Uj) for each j, where pr1 : Uj ×H → Uj and

pr2 :Uj×H →H are projections, Pφj is bijective, Pxφj = Pφj|Hx :Hx → {φj(x)}×H is

a Banach space isomorphism, Pφl◦(Pφj|P(Ul∩Uj))−1 :φj(Uj∩Ul)×H →φl(Uj∩Ul)×H
is a Cn-diffeomorphism, l ≥ n. Two atlases are called equivalent if their union is an

atlas. (P,M,π) is called a vector bundle over M with fibre on H. P is called the total

space of π , and M the base space of π .

Let (P1,M1,π1) and (P2,M2,π2) be two vector bundles with spaces H1 and H2 for the

fibres of π1 and π2, respectively. Suppose that there are two Cn-mappings F :M1 →M2

and PF : P1 → P2 such that π2 ◦PF = F ◦π on P1 and the restriction PxF := PF|H1,x :

H1,x →H2,F(x) is a K-linear mapping. Then (F,PF) is called a morphism from (P1,M1,π1)
to (P2,M2,π2).

2.1.3. A Cm-vector field on M is a Cm-mapping Ψ :M → TM such that τM ◦Ψ = id. If

F :M →N is a Cm-morphism and Ψ :M → TN is such that τN ◦Ψ = F , then Ψ is called a

vector field along F .

Suppose that K is spherically complete, then a topologically adjoint space H∗ of K-

linear functionals on a Banach space H over K separates points of H, H∗ �=∅ (see [38,

Lemma 4.3.5]). The bundle of r -fold contravariant and s-fold covariant tensors over M
is defined by L(τ∗, . . . ,τ∗,τ, . . . ,τ ;ρ) : L(T∗M,. . . ,T∗M,TM,. . . ,TM ;KM)→M or shortly
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τrs : Trs M →M , where τ∗ and T∗M are repeated r times, τ and TM are repeated s times,

and ρ : KM=M×K→M is the trivial bundle overM . Here, L(α1, . . . ,αr ;β) :L(A1, . . . ,Ar ;B)
→M denotes a vector bundle overM , where (Aj,M,αj) and (B,M,β) are vector bundles,

α−1
k (x) = Hk,x , k = 1, . . . ,r , β−1

H (x) = Yx , L(A1, . . . ,Ar ;B) := ⋃
x∈M L(H1,x, . . . ,Hr,x ;Yx),

Hk,x and Yx are isomorphic to Banach spaces Hk and Y , respectively, over K. For each

chart (Uj,φj) of M , the bundle chart (Uj,φj,L(A1, . . . ,Ar ;B)φj) is given by

L
(
A1φj(x), . . . ,Arφj(x);Bφj(x)

)
: L
(
H1,x, . . . ,Hr,x ;Yx

)
�→ L(H1, . . . ,Hr ;Y

)
, (2.1)

such that for Ψx ∈ L(H1,x, . . . ,Hr,x ;Yx), its image is

L
(
A1φj(x), . . . ;Bφj(x)

)
Ψx = Bφj(x)◦Ψx ◦

(
A1φj(x)−1×···×Arφj(x)−1), (2.2)

Akφj(x)−1 :Hk,x →Hk is the K-linear isomorphism of Banach spaces as well as Bφj(x) :

Y → Yx , L(H1, . . . ,Hr ;Y) is the Banach space of all continuous mappings f :H1×···×
Hr → Y such that f is K-linear by each variable zk ∈Hk, k= 1, . . . ,r .

If Ψ :M → κTM is a Cm-mapping, such that κ ◦Ψ = id, then Ψ is called a tensor field

(of type κ), where (κTM,M,κ(τ)) is a tensor bundle over M . If (P,N,π) is a vector

bundle and F : M → N is a morphism, then a morphism θ : M → P , with π ◦θ = F , is

called a section along F .

2.1.4. LetM be a Cn-manifold on a Banach space X over a spherically complete non-

Archimedean field K and let �nM denote the set of all Cn-vector fields on M , where

n≥ 2. Let Γ = jΓ :φj(Uj)�yj � Γ(yj)∈ L(X,X;X) be a Cn−2-mapping such that

φ′l,j · jΓ
(
yj
)=φl,j ′′ + lΓ(yl)◦(φ′l,j×φ′l,j), (2.3)

for each two charts withUj∩Ul �= ∅. This {jΓ} is called the family of Christoffel symbols

jΓ on M .

A covariant derivation �n−1M2 � (Ψ ,Φ)�∇ΨΦ ∈�n−2M is given by

∇ΨΦ
(
yj
)= Φ′(yj)·Ψ(yj)+Γ(yj)(Ψ(yj),Φ(yj)), (2.4)

where Ψ(yj) and Φ(yj) are principal parts of Ψ and Φ on (Uj,φj). If M with At(M) is

supplied with Γ , then M possesses a covariant derivation.

2.1.5. For a Cn-vector bundle (P,M,π) on X×H, with n≥ 2, define a K-(linear) con-

nection as a bundle morphismK : TP → P such thatπ ◦K =π ◦τP . This mappingK in its

local representation jK = Pφj ◦K ◦TPφ−1
j for bundle charts (Uj,φj,Pφj) of (P,M,π)

and (TUj,Tφj,TPφj) of (TP,P,τP ) is given by {Uj,Ξ}×(X×H)� (x,Ψ ,Φ,z)� (x,z+
jΓ(x)(Φ,Ψ)) ∈ {x}×H. The Christoffel symbol jΓ(x) : Uj → L(X,H;H) is of class of

smoothness Cn−2. For it, the horizontal space TΨh is defined as the kernel of K|TΨP :

TΨP →Hq, q =π(Ψ).
For a section Ψ : M → P in (P,M,π), define the covariant derivation of Ψ in the

direction Φ ∈ TxM by

∇ΦΨ(x)=K◦TxΨ ·Φ. (2.5)
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2.2. Let X be either finite-dimensional over a local field K space or of countable type

such that a sequence of subspaces Sn is given by Sn ⊂ Sn+1 and Sn �= Sn+1 for each

n ∈ N, cl(
⋃
nSn) = X, and a dimension dimK Sn =:m(n) of Sn over K is finite. Let U

be a clopen bounded subset in Sn. Consider an antiderivation operator P(l,s) on the

Banach space C((t,s−1),U →K) of functions f :U →K with definite partial difference

quotients having continuous extensions (see [25, 26, Section I.2]), and denote P(l,s)
on U by PU(l,s), where t ∈ [0,∞), 1 ≤ s ∈ Z, l = [t]+1, [t] is an integer part of t. In

particular, C((t,0),U →K) is denoted here by Ct(U,K).

2.3. Definition and note. Now let U be a clopen bounded subset in X with dimKX =
∞. For each f ∈ C0((t,s−1),U →K), there exists a sequence of cylindrical functions fn,

such that f =∑nfn and limn‖f̂n‖C((t,s−1),Un→K) = 0, where fn is a cylindrical function

on U such that fn(x) = f̂n(πnx), f̂n is a function on Un := Sn∩U , πn : X → Sn is a

projection on Sn. For each t <∞, there exists U of sufficiently small diameter δ such

that ‖PUn(l,s)‖ ≤ 1 for each n, since it is sufficient to take δ|j|+n/|(j+ū)!| ≤ 1 for each

j with |j′| = 0, . . . , l−1, j = j′ +s′ū, s′ ∈ {0,1, . . . ,s−1} (see [25, 26, Definition I.2.11]).

For U of diam(U) satisfying such condition, define PU(l,s)f :=∑nPUn(l,s)fn.

For U as above, the space PC0((t,s),U → Y) := Y ⊕ PU(l,s)C0((t,s − 1),U → Y),
where Y is a Banach space over K, is defined as well as 2

PC0((t,s),U → Y) := Y ⊕
PU(l,s)PC0((t,s−1),U → Y) for s ≥ 2.

Lemma 2.1. An image PU(t,s)(C((t,s − 1),U → Y)) denoted by P,0C((t,s),U → Y)
is contained in C((t,s),U → Y) and does not coincide with the latter space. The space

P,0C((t,s),U → Y) can be supplied with a norm denoted by ‖∗‖U,(t,s),P , relative to which

it is complete, and PU(l,s) : (C((t,s−1),U → Y),‖∗‖C((t,s−1),U→Y)) → (P,0C((t,s),U →
Y),‖∗‖U,(t,s),P ) is continuous.

Proof. First, consider dimKX <∞. If f ∈ P,0C((t,s),U → Y), then ∂ū(P(t,s)f )(x)=
f(x) for each x ∈ U (see [25, 26, Corollary I.2.16]). On the other hand, there is g ∈
C((t,s),U → Y) for which ∂ejg(x) = 0 in the notation of [25, 26, Definitions 2.4.1 and

2.11 I.], for example, locally constant g.

Now let X be infinite-dimensional, then from taking the limit of fn, this statement

follows in the general case. Consider an image PU(l,s)(B(C((t,s−1),U → Y),0,1))=: V
of the closed ball in C((t,s),U → Y) containing 0 and with the unit radius. Let f ∈
PC((t,s),U → Y), then there exists g ∈ C((t,s − 1),U → Y), such that PU(l,s)g = f .

On the other hand, ‖g‖C((t,s−1),U→Y) < ∞ and there exists a constant 0 �= c ∈ K, such

that cg ∈ B(C((t,s−1),U → Y),0,1). Therefore, cf ∈ V , since PU(l,s) is the K-linear

operator, that is, V is the absorbing subset. Since the ball B(C((t,s−1),U → Y),0,1) is

K-convex, then V is K-convex. Evidently, 0∈ V .

Consider a weak topology on C((t,s),U → Y), then it induces a weak topology on its

K-linear subspace PC((t,s),U → Y). In particular, each evaluation functional hx(f) :=
f(x) is K-linear and continuous on the latter space, where x ∈ U . In view of [25, 26,

Theorem I.2.15], PU(l,s) is continuous from C((t,s − 1),U → Y) → C((t,s),U → Y).
Therefore, V is bounded-relative to the weak topology, since U is compact and V is

bounded-relative to a weaker topology generated by evaluation functionals. Let η be

a Minkowski functional on P,0C((t,s),U → Y) generated by V . It generates a norm in
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P,0C((t,s),U → Y), relative to which it is complete. Since V is the unit ball relative to this

norm and PU(l,s)−1(V) is the unit ball in C((t,s−1),U → Y), then PU(l,s) is continuous

relative to this topology.

Note 2.2. In view of Lemma 2.1, the definitions in Sections 2.1.1, 2.1.2, 2.1.3, 2.1.4,

and 2.1.5 can be spread on C0((t,s)) and 2
PC0((t,s)) manifolds, that is, (φl,j − id) ∈

C0((t,s)) and (φl,j− id) ∈ 2
PC0((t,s),Wl,j → X), respectively, for each charts Ul and Uj

with Ul∩Uj �= ∅, where φj(Uj) are bounded clopen subsets in X of sufficiently small

diameter, as in Section 2.3, if X is infinite-dimensional over K.

Note 2.3. Consider the space of functions �(t,s)M = C0((t,s),M →K), then∇S(aV+
bW) = a∇SV +b∇SW , ∇S(fV) = S(f)V +f∇SV , where S,V ,W ∈ �(t,s)M , and �(t,s)M
denotes the set of all C0((t,s))-vector fields on M . Considering the foliation of M and

taking the limit, we get for a given chart (Uj,φj),

∇SV
(
φj
)=∑

k

{∑
i
Si
(
φj
)(∂Vk
∂φij

)(
φj
)+∑

i,l
Si
(
φj
)
Vl
(
φj
)
Γ ki,l
(
φj
)}
ek, (2.6)

where (φj,ei) are basic vector fields on φj(Uj), S(φj) =
∑
i Si(φj)ei, Γ(φj) =∑

i,l,k Γ ki,l(φj)ei⊗el⊗ek, ei(ej) = δij for each i and j ∈ α. Therefore, there exist a tor-

sion tensor T(S,V)=∇SV−∇VS−[S,V] and a curvature tensor R(S,V)W =∇S∇VW−
∇V∇SW−∇[S,V]W for each S,V andW ∈�(t,s)M , such that T(S,V)=−T(V,S),R(S,V)W
= −R(V,S)W and T(φj)(S,V) = Γ(φj)(S,V) − Γ(φj)(V ,S),T(φj) ∈ L(X,X;X),
R(φj)(S,V)W = DΓ(φj) · S(V,W) − DΓ(φj) · V(S,W) + Γ(φj)(S,Γ(φj)(V ,W)) −
Γ(φj)(V ,Γ(φj)(S,W)),R(φj)∈ L(X,X,X;X) analogously to [18, Lemma 1.5.3].

Theorem 2.4. Let M be a 2
PC0((t,s))-manifold with s ≥ 2, then there exist a clopen

neighborhood T̃M of M in TM and an exponential C0((t,s))-mapping exp : T̃M →M of

T̃M on M .

Proof. Let M be embedded into TM as the zero-section of the bundle τM . Con-

sider the non-Archimedean geodesic equation∇ċ ċ = 0 with initial conditions c(0)= x0,

ċ(0)=y0, x0 ∈M , y0 ∈ Tx0M , where c(b) is a 2
PC0((t,s))-curve onM , c : B(K,0,1)→M .

For a chart (Uj,φj) containing a point x of M , let φj ◦c(b) :=ψj(b), thus

ψj ′′(b)+Γ
(
ψj(b)

)(
ψ̇j(b),ψ̇j(b)

)= 0. (2.7)

Since ψj ∈ 2
PC0((t,s)), then there exists f ∈ C((t,s−2),B → X) such that ψj = y1+

PB(l,s)(y2+PB(l,s−1)f ), where B := B(K,0,1),y1,y2 ∈ Y . Therefore, ψ̇j =y2+PB(l,s−
1)f and ψj ′′s = f ; consequently, f satisfies the equation

f(b)+Γ(y1+P2(y2+P1f
)∣∣
b
)(
y2+P1f

∣∣
b,y2+P1f

∣∣
b
)= 0, (2.8)

where P2 := PB(l,s) and P1 := PB(l,s−1). Consider a marked point b0 ∈ B. At first, there

exists r > 0 such that (2.8), and hence (2.7), has a unique solution in B(K,b0,r ). For

this, consider the iterational equation

fm+1(b)+Γ
(
y1+P2(y2+P1fm

)∣∣
b
)(
y2+P1fm

∣∣
b,y2+P1fm

∣∣
b
)= 0, (2.9)
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where fm is a sequence of functions. From Γ ∈ C0((t,s−2)), since M is the 2
PC0((t,s))-

manifold, it follows that fm+1 ∈ C((t,s−2)) for each fm ∈ C((t,s−2)). Then

fm+1(t)−fm(t)=−Γ
(
y1+P2(y2+P1fm

)∣∣
t
)(
y2+P1fm

∣∣
t ,y2+P1fm

∣∣
t
)

+Γ(y1+P2(y2+P1fm
)∣∣
t
)(
y2+P1fm−1|t ,y2+P1fm−1|t

)
−Γ(y1+P2(y2+P1fm

)∣∣
t
)(
y2+P1fm−1|t ,y2+P1fm−1|t

)
+Γ(y1+P2(y2+P1fm−1

)∣∣
t
)(
y2+P1fm−1|t ,y2+P1fm−1|t

)
.

(2.10)

In view of the ultrametric inequality, bilinearity of Γ(x)(a,b) by a, b, continuity by x,

and continuity of P1 and P2 for each x0 ∈M and each t0 ∈ B(K,0,1), there exist r > 0

and ε > 0 such that

∥∥fm+1−fm
∥∥≤ Cε2‖Γ‖∥∥fm−fm−1

∥∥ for each t ∈ B(K, t0,r) and each
∥∥y0

∥∥< ε,
(2.11)

where C > 0 is a constant related to P1 and P2. There exists 0< r <∞ such that ‖P1‖ ≤
1, ‖P2‖ ≤ 1, and P2P1f ∈Gj,k ⊂Uj for each f ∈Gj,k, since t and s are finite (see above),

where Gj,k is a clopen subset in Uj , ‖Γ‖ is a norm of Γ on Gj,k×X2 as a bilinear operator

on X for each x ∈Gj,k. In view of continuity of Γ and boundedness ofφj(Uj) for each j,
it is possible to choose a locally finite covering Gj,k subordinated to Uj , such that ‖Γ‖ is

finite on Gj,k, k∈N. Therefore, choosing Cε2‖Γ‖< 1, we get a convergent sequence on

B(K, t0,r )×Gj,k×B(X,0,δ), and due to the fixed point theorem, there exists a unique

solution in B(K, t0,r ). In view of compactness of B(K,0,1), there exists a solution on

it. Let f and g be two functions providing solutions ψf = P2P1f and ψg = P2P1g
of the problem on B(K,0,1), then P2P1f(tl)= P2P1g(tl), P1f(tl)= P1g(tl) for a finite

number of points t0 = 0, t1, . . . , tk ∈ B(K,0,1), such that on each B(K, tj ,rj), a solution is

unique for a given initial condition, 0< rj ≤ 1 for each j, and
⋃
j B(K, tj ,rj)= B(K,0,1).

This implies that

Γ
(
P2(y2+P1f

)∣∣
t
)(
y2+P1f

∣∣
t ,y2+P1f

∣∣
t
)

−Γ(P2(y2+P1(f +c1,l
))∣∣

t
)(
y2+P1(f +c2,l

)∣∣
t ,y2+P1(f +c2,l

)∣∣
t
)= c1,l

(2.12)

for each l and each t ∈ B(K, tl,rl). On the other hand, P1c and P2c are not locally

constant for a constant c �= 0, Γ(φj)(a,b) is bilinear by (a,b) ∈ X2 and satisfies (2.3),

hence (2.12) may be satisfied only for c1,l = c2,l = 0 for each l; consequently, a solution

is unique.

Since f ∈ C0((t,s−2)), then ψj ∈ PC0((t,s)) for each j, since ψj =y1+PB(l,s)(y2+
PB(l,s−1)f ). Moreover, caS(t)= cS(at) for each a∈ B(K,0,1) such that |aS(φj(q))|<
ε, since dcS(at)/dt = a(dcS(z)/dz)|z=at . In view of continuity of P2 and P1 and Γ
operators, for each x0 ∈M , there exist a chart (Uj,φj) and clopen neighborhoods V1

and V2, φj(x0) ∈ V1 ⊂ V2 ⊂φj(Uj) and δ > 0, such that from S ∈ TM with τMS = q ∈
φ−1
j (V1) and |S(φj(q))| < δ, it follows that the geodesic cS with cS(0) = S is defined

for each t ∈ B(K,0,1) and cS(t)∈φ−1
j (V2). Due to paracompactness of TM andM , this

covering can be chosen locally finite [6].
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This means that there exists a clopen neighborhood T̃M of M in TM such that a

geodesic cS(t) is defined for each S ∈ T̃M and each t ∈ B(K,0,1). Therefore, define

the exponential mapping exp : T̃M → M by S � cS(1), denote by expx := exp|T̃M∩TxM
a restriction to a fibre. Then exp has a local representation (x0,y0)∈ V1×B(X,0,δ)�
ψj(1;x0,y0)∈ V2 ⊂φj(Uj). From (2.7) and (2.8) , it follows that exp is of C0((t,s))-class

of smoothness from T̃M onto M .

Corollary 2.5. If M is a 2
PC0((t,s))∩C∞-manifold with s ≥ 2, then exp ∈ C∞(T̃M,

M).

Note 2.6. If M is an analytic manifold, then exp : T̃M →M is a locally analytic map-

ping. Theorem 2.4 gives an exponential manifold mapping for a wider class of mani-

folds than that treated by the rigid geometry.

2.4. Note and definitions. Let M be a C∞-manifold and let τM : TM → M be the

tangent bundle, θ :M×H →M a trivial bundle overM with a Banach space fibre H over

K. There exists the bundle L1,r (θ,τM) over M with the fibre L1,r (H,X), where r ≥ 1,

and the spaces Ln,r (H,X) were defined in [27] and [31, Section 2].

LetM be aC∞-manifold with functionsφl,j satisfying [31, Conditions (4.13)]. Suppose

that w is a stochastic process with values in H, and ξ a stochastic process with values

in X, such that λ{ω : w(t,ω) ∈ C0 \C1} = 0, where H and X are Banach spaces over

a local field K (see [31, Definition 4.1]; here X has another meaning than X in [31,

4.1 Remark and definition]). Let a ∈ Lq(Ω,�,λ;C0(BR,Lq(Ω,�,λ;C0(BR,X)))) and E ∈
Lr (Ω,�,λ;C0(BR,L(Lq(Ω,�,λ;C0(BR,H)),Lq(Ω,�,λ;C0(BR,X))))),

ξ(t,ω)= ξ0(ω)+
(
P̂ua

)
(u,ω,ξ)

∣∣
u=t+

(
P̂w(u,ω)E

)
(u,ω,ξ)

∣∣
u=t , (2.13)

where 1≤ r ,s,q ≤∞, 1/r +1/s = 1/q, w ∈ Ls(Ω,�,λ;C0
0 (BR,H)), ξ ∈ Lq(Ω,�,λ;C0(BR,

X)). Since H and X are isomorphic to c0(αH,K), and c0(αX,K), then Ln,r (X,H) has

the embedding into Ln,r (H,H) for αX ⊂ αH , and Ln,r (H,H) has an embedding into

Ln,r (X,X) for αH ⊂ αX . Inclusions Range(E) ⊂ X, Range(w) ⊂ H, and Range(ξ) ⊂ X
reduce this case to [30, Theorem 3.3]. In view of [31, Lemma 2.2 and formula (4.14)],

dφ
(
ξ(t,ω)

)= J(φ,a,E)adt+J(φ,a,E)Edw, (2.14)

where

J(φ,a,E) :=
∞∑
m=0

[m!]−1
m∑
l=0

(
m
l

)
P̂ul,wm−lφ

(m+1)◦(a⊗l⊗E⊗(m−l)) |u=t . (2.15)

For stochastic processes of type (i) in Theorem 3.4 [30], it is necessary to consider

the following generalization of [31, Theorem 4.7].

Note 2.7. Consider a ∈ L∞(Ω,�,λ;C0(BR,Lq(Ω,�,λ;C0(BR,X)))) and E ∈ L∞(Ω,�,
λ;C0(BR,L(Lq(Ω,�,λ;C0(BR,H)),Lq(Ω,�,λ;C0(BR,X))))),a= a(t,ω,ξ), E = E(t,ω,ξ),
t∈BR ,ω∈Ω, ξ ∈ Lq(Ω,�,λ;C0(BR,X)), ξ0 ∈ Lq(Ω,�,λ;X), w ∈ L∞(Ω,�,λ;C0

0 (BR,H)),
1 ≤ q ≤ ∞, where a and E satisfy the local Lipschitz condition (see [30, Theorem 3.3,
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condition (LLC)]). Suppose that ξ is a stochastic process of type

ξ(t,ω)= ξ0(ω)

+
∞∑

m+b=1

m∑
l=0

(
P̂ub+m−l,w(u,ω)l

[
am−l+b,l

(
u,ξ(u,ω)

)◦(I⊗b⊗a⊗(m−l)⊗E⊗l)])∣∣u=t ,
(2.16)

such thatam−l,l∈C0(BR1×B(Lq(Ω,�,λ;C0(BR,X)),0,R2),Lm(X⊗m;X)) (continuous and

bounded on its domain) for each n, l, 0<R2 <∞, and

lim
n→∞

sup
0≤l≤n

∥∥an−l,l∥∥C0(BR1×B(Lq(Ω,�,λ;C0(BR,X)),0,R2),Ln(X⊗n,X)) = 0 (2.17)

for each 0 < R1 ≤ R when 0 < R < ∞, or for each 0 < R1 < R when R = ∞, for each

0<R2 <∞.

Moreover, suppose that a function f satisfies the conditions

f(u,x)∈ C∞(T ×H,X) (2.18)

and

lim
n→∞ max

0≤l≤n
∥∥(Φ̄nf )(t,x;h1, . . . ,hn;ζ1, . . . ,ζn

)∥∥
C0(T×B(K,0,r )l×B(H,0,1)n−l×B(K,0,R1)n−l,X) = 0

(2.19)

for each 0 < R1 < ∞, where hj = e1, ζj ∈ B(K,0,r ) for variables corresponding to

t ∈ T = B(K, t0,r ), and hj ∈ B(H,0,1), ζj ∈ B(K,0,R1) for variables corresponding to

x ∈H.

Analogously, a, E, al,m for ξ with values inM are considered, substituting C0(BR,H)
on C0(BR,M).

Theorem 2.8. If conditions (2.17) are satisfied, then (2.16) has the unique solution in

BR . If, in addition, conditions (2.18) and (2.19) are satisfied, then

f
(
t,ξ(t,ω)

)= f (t0,ξ0
)

+
∑

m+b≥1,0≤m∈Z,0≤b∈Z

(
(m+b)!)−1

×
∑

l1,...,lm

(
m+b
m

)(
P̂ub+m−l,w(u,ω)l

[(
∂(m+b)f/∂ub∂xm

)(
u,ξ(u,ω)

)

◦(al1,n1⊗···⊗alm,nm
)

◦(I⊗b⊗a⊗(m−l)⊗E⊗l)])∣∣u=t ,
(2.20)

where l1+···+ lm =m+b− l, n1+···+nm = l, l1, . . . , lm, n1, . . . ,nm are nonnegative

integers.

Proof. The first part of the theorem follows from [30, 3.4] and embeddings of

Section 2.4. Since σn ◦σm(t) = σn ◦σm+j(t) for each n ≥ m, j > 0, and σ0(t) = t0,
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then from [31, Formula (2.4)], it follows that

P̂ul+b,wmal+b,m ◦
(
I⊗b⊗a⊗l⊗E⊗m)∣∣u=tn+1

u=tn = al+b,m
(
tn
)

◦((tn+1−tn
)⊗b⊗(a(tn)(tn+1−tn

))⊗l
⊗(E(tn)(w(tn+1

)−w(tn)))⊗m),
(2.21)

where other arguments are omitted for shortening the notation. Therefore, the second

part of this theorem follows from [31, Formulas (4.15)] and (2.16).

Note 2.9. Let conditions (2.16), (2.17) (2.18), and (2.19) be satisfied and φ= f inde-

pendent of t. Then, due to [31, Lemma 2.2] and Theorem 2.8 above, formula (2.14) is

valid with new operator J,

J(φ,a,E) :=
∞∑
m=0

[m!]−1
∑

l1,...,lm

P̂ul,wm−lφ
(m+1)◦(al1,n1 , . . . ,alm,nm

)◦(a⊗l⊗E⊗(m−l)),
(2.22)

where l1+···+lm = l, n1+···+nm =m−l.
Definition 2.10. Let (Π,M,π) be a bundle on a manifoldM with fibres X⊕L(H,X)

for each x ∈ M and with transition functions J(φ,a,E) : (a,E) � (J(φ,a,E)a,J(φ,a,
E)E), where φ = φj,l for each pair of charts (Uj,φj) and (Ul,φl) with Uj ∩Ul �= ∅,

a∈X, E ∈ L(H,X), J(φ,a,E) is given by either (2.15) or (2.22).

2.5. Definition and note. Let t ∈ T ⊂K, where K is a local field and T is clopen in K.

Let also (Uj,φj) be a chart of a manifold M on a Banach space X over K, x ∈ Uj ⊂M ,

(a,E) ∈ π−1(x) (see Definition 2.10). By �x(a,E) is denoted a collection of M-valued

stochastic processes ξ, such that ξ ∈ Uj with probability 1, where φj ◦ξ is a solution

of either (2.13) or (2.16) for each j. Then, �x(a,E) is called the germ of the diffusion

process at the point x defined by a pair (a,E). It is, in addition, with a given family of

sections al,m of bundles (Πl+m,M,πl+m) with fibres Lm+l(X⊗m+l;X), such that al,m,x ∈
π−1
l+m(x) in Note 2.7. Therefore, Section 2.4 is the particular case of Note 2.7.

A section � of the vector bundle (Π,M,π) is the non-Archimedean analog of Itô’s

field over M .

Theorem 2.11. Let φ and ψ be two functions satisfying-conditions of either Section

2.4 or Note 2.7 such that Dom(φ)⊃ Range(ψ). Then

Jψ(x)(φ,a,E)◦Jx(ψ,a,E)= Jx(φ◦ψ,a,E), (2.23)

Jx(id,a,E)= id . (2.24)

Proof. Since al,m,x ∈ Ll+m(X⊗l+m;X), then Jx(φ,a,E)al,m,x ◦(a⊗l⊗E⊗m)= al,m,x ◦
((Jx(φ,a,E)a)⊗l⊗ (Jx(φ,a,E)E)⊗m) for each 0 ≤ l, m ∈ Z, and x ∈M , where a = ax ,

E = Ex , (ax,Ex)∈π−1(x). Each of the derivativesφ(m) andψ(m) is anm-polylinear op-

erator on X. Therefore, (φ◦ψ)(m)(x)=∑l1+···+lb≥m,1≤b≤mRb ◦(Ql1⊗···⊗Qlb), where
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Rb andQl are the b-linear and l-linear operators corresponding up to constant multipli-

ers to φ(b)(z)|z=ψ(x) and ψ(l)(x). Then
∑
kQlj (∆kξ1, . . . ,∆kξlj ) = P̂ulj,1 ,wlj,2Qlj (a⊗lj,1⊗

E⊗lj,2) for nonnegative lj,1 and lj,2 with lj,1+ lj,2 = lj , and ξi(t,ω) = P̂ua|u=t for i =
1, . . . , lj,1, ξi(t,ω) = P̂wE|u=t for i = lj,1+1, . . . , lj . Moreover,

∑
kQlj (∆kξ1, . . . ,∆kξlj−1,

ξlj ) = P̂ulj,1 ,wlj,2Qlj (a
⊗lj,1 ⊗ E⊗lj,2)v for nonnegative lj,1 and lj,2, lj,1 + lj,2 = lj − 1,

and ξi(t,ω) = P̂ua|u=t for i = 1, . . . , lj,1, ξi(t,ω) = P̂wE|u=t for i = lj,1 + 1, . . . , lj − 1,

ξlj = v , where either v = a or v = E. Therefore, φ : �x(a,E) → �φ(x)(Ja,JE), where

J = J(φ,a,E). In view of [31, Theorem 4.7] and Theorem 2.8, formulas (2.15) and (2.22)

satisfy the equality

Jx(φ,a,E)=φ′
(
ξ0
x
)
, (2.25)

where ξ0 is a stochastic process being the solution of either (2.13) or (2.16), x ∈ M ,

ξ0
x ∈ TxM . On the other hand, (φ(ψ)(x))′ = φ′(ψ(x)) ·ψ′(x) for each x ∈ Dom(ψ).

Therefore, from ξ ∈ Dom(ψ) and Range(ψ) ⊂ Dom(φ), formula (2.23) follows. From

id′ = I, where I is a unit operator, formula (2.24) follows.

2.6. Remark and definition. Apart from the classical case, here the bundle associ-

ated with the operator J(φ,a,E) in general is not quadratic. It may be polynomial only

in a particular case given by [31, Theorem 4.5].

Let f = exp, where exp := expM is the exponential mapping for M . Consider �(x,0)(a,
E) a stochastic processes germ at a point y = 0 in the tangent space TxM . Then

exp∗x �(x,0)(a,E) = �x(J(expx,a,E))(a,E) is a stochastic processes germ at x ∈ M .

Therefore, φj ◦exp∗x �(x,0)(a,E)= �φ(x)(J(φj ◦expx,a,E))(a,E) for each chart (Uj,φj)
of M . The germ exp∗x �(x,0)(a,E) is called a stochastic differential bundle.

Corollary 2.12. To a functor J, there corresponds a bundle (JM,M,πJ), and a fibre

JMx :=π−1
J (x)may be identified with the space �x(JM) of stochastic processes germ. To a

morphism f :M →N of manifolds, there corresponds a bundle morphism �(f )= f∗f∗,

where f∗ξ := f(ξ).
Proof. If f :M → N is a manifold morphism, then � is transformed as (ax,Ex)�

(aff(x),E
f
f(x)), where aff(x) = J(f ,a,E)ax , Eff(x) = J(f ,a,E)Ex , and afl,m,f(x)(t,f

∗ξ) =
al,m,x(t,ξ) for each x ∈ M . The stochastic process ξ0

x satisfies the antiderivational

equation

ξ0
x =

∑
l,m
P̂ul,wmal,m,x ◦

(
a⊗lx ⊗E⊗mx

)
(2.26)

and its differential has the form

dξ0
x =

∑
l,m
lP̂ul−1,wmal,m,x ◦

(
a⊗(l−1)
x ⊗E⊗mx

)
axdt

+
∑
l,m
mP̂ul,wm−1al,m,x ◦

(
a⊗lx ⊗E⊗(m−1)

x
)
Exdwx.

(2.27)
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Hence

f
(
ξ0
x(t,ω)

)=∑
l,m
P̂ul,wma

f
l,m,f(x)

(
u,f

(
ξ0
x(u,ω)

))◦(aff(x)⊗l⊗Eff(x)⊗m
)∣∣∣
u=t . (2.28)

Therefore, f∗ : expM∗x (dξ0
x)� expN∗f(x)(f

∗dξ0
x), where

f∗dξ0
x =

∑
l,m
lP̂ul−1,wma

f
l,m,f(x) ◦

(
aff(x)

⊗(l−1)⊗Eff(x)
⊗m)

aff(x)dt

+
∑
l,m
mP̂ul,wm−1afl,m,f(x) ◦

(
aff(x)

⊗l⊗Eff(x)
⊗(m−1))

Eff(x)df
(
wx

) (2.29)

for f -related mappings expM and expN .

Theorem 2.13. Let exp : T̃M →M be the exponential mapping of a manifoldM . Then

J(exp,a,E) : JT̃M → JM is a bundle morphism. If (U,φ) is a chart of M , then

J
(
expφφ(x),a

φ
x ,E

φ
x
)(
aφx ,E

φ
x
)= (Saφx ,SEφx ), (2.30)

where S := (d[φ◦expx ◦[φ′(x)]−1](z)/dz)|z=ξ0
x
.

Proof. The first statement of the theorem follows from Theorem 2.11 and Corollary

2.12. Consider the mapping F(z) := [φ◦expx ◦[φ′(x)]−1](z) for a chart (TUj,Tφj) of

TM , whereφ=φj . The mapping F is the local representation of exp in terms of coordi-

nate mappings. Hence J(expφφ(x),a
φ
x ,E

φ
x ) = [dF(z)/dz]|z=ξ0

x
, where ξ0

x is a solution of

either (2.13) or (2.16) in TxM . In particular, F ′(0)= id and F ′′(0)·(v,v)=−Γ(x)(v,v),
but in general ξ0

x may be nonzero.

Definition 2.14. Let � be a section of the bundle (Π,M,π). Consider the differen-

tial

dξ(t,ω)= exp∗ξ(t,ω)�
(
aξ(t,ω),Eξ(t,ω)

)
(2.31)

and the corresponding antiderivational equation

ξ(t,ω)= expξ(t,ω)

{ ∑
l,b,m

P̂ul+b,wmab+l,m,ξ(t,ω)
(
u,ξ(u,ω)

)

◦(I⊗b⊗a⊗lξ(t,ω)⊗E⊗mξ(t,ω)) |u=t
}
.

(2.32)

Suppose that there exist a neighborhood Vx � x and a stochastic process belonging to

the germ expx(�(ax,Ex)) = �x(J(expx,ax,Ex))(ax,Ex) such that Ps,x{ω : ξx(t,ω) ∈
Vx, t �= s} = 1, where Ps,x(W) := P(W : ξ(s,ω)= x), W ∈�. If this is satisfied for νξ(s)-
a.e. x ∈M , then it is said that ξ(t,ω) possesses a stochastic differential governed by

the field �, where νξ(s)(∗) := P ◦ξ−1(s,∗). An M-valued ξ satisfying (2.32) is called an

integral process of the field �(t).
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Definition 2.15. An atlas At(M)= {(Uj,φj) : j} of a manifoldM on a Banach space

X over K is called uniform if its charts satisfy the following conditions:

(U1) for each x ∈ M , there exist neighborhoods U2
x ⊂ U1

x ⊂ Uj such that for each

y ∈U2
x , there is the inclusion U2

x ⊂U1
y ;

(U2) the image φj(U2
x) ⊂ X contains a ball of the fixed positive radius φj(U2

x) ⊃
B(X,0,r ) := {y :y ∈X, ‖y‖ ≤ r};

(U3) for each pair of intersecting charts (U1,φ1) and (U2,φ2), transition mappings

φl,j = φl ◦φ−1
j are such that supx ‖φ′l,j‖ ≤ C and supx ‖φl,j(x)‖ ≤ C , where

C = const> 0 does not depend on φl and φj .

Remark 2.16. Consider a measurable space (M,�), where � is a σ -algebra on M .

Define a random mapping S(t,τ ;ω) : M → M for each t,τ ∈ T by x � S(t,τ ;ω;x) =
S(t,τ ;ω)◦x. Suppose that

(1) the mapping x×ω� S(t,τ ;ω;x) is �×�-measurable for each t,τ ∈ T ;

(2) the random variable S(t,τ ;ω;x) is �-measurable and does not depend on �

for each t, τ , x. Moreover, let also all other conditions of [30, Definition 3.8] be

satisfied (with the notation S(t,τ ;ω) here instead of T(t,s;ω) there).

Proposition 2.17. Let ξ be a stochastic process given by (2.16) and let also max(‖a(t,
ω,x)− a(v,ω,x)‖,‖E(t,ω,x)− E(v,ω,x)‖) ≤ |t − v|(C1 + C2‖x‖b) for each t and

v ∈ B(K, t0,R) λ-almost everywhere by ω ∈ Ω, where b, C1, and C2 are nonnegative

constants. Then ξ with probability 1 has a C0-modification and q(t)≤max{M‖ξ0‖s ,|t−
t0|(C1+C2q(t))} for each t ∈ B(K, t0,R), where q(t) := sup|u−t0|≤|t−t0|M‖ξ(u,ω)‖s and

N � s ≥ b ≥ 0. Moreover, if λ{ω :w(t,ω) ∈ C0 \C1} = 0, then for λ-a.e. ω, there exists

ξ′ and λ{ω : ξ(t,ω)∈ C0 \C1} = 0.

Proof. In view of Theorem 2.8 applied to f(t,x)= xs , we have

f
(
t,ξ(t,ω)

)= f (t0,ξ0
)

+
s∑
k=1

∑
l1,...,lk

(
P̂uk−l,w(u,ω)l

[(
s
k

)
ξs−k

(
u,ξ(u,ω)

)

◦(al1,n1⊗···⊗alk,nk
)◦(a⊗(k−l)⊗E⊗l)

])∣∣
u=t ,

(2.33)

where l1+···+ lk = k− l, n1+···+nk = l. From the conditions of Note 2.7, and in

particular (2.17), it follows that

M
∥∥ξ(t,ω)∥∥s ≤max

(
M
∥∥ξ0

∥∥s ,∣∣t−t0∣∣d(P̂ s∗)
(
C1+C2 sup

|u−t0|≤|t−t0|
M
∥∥ξ(u,ω)∥∥s))

(2.34)

since |tj − t0| ≤ |t− t0| for each j ∈ N, and M‖ξ(t,ω)− ξ(v,ω)‖s ≤ |t−v|(1+C1+
C2d(P̂s∗)sup|u−t0|≤max(|t−t0|,|v−t0|)M‖ξ(u,ω)‖s) since |tj − vj| ≤ |t − v| + ρj for each
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j ∈N, where 0< ρ < 1,

d
(
P̂ s∗
)

:= sup
(a�=0,E �=0,f �=0,alj ,nj �=0,j=1,...,k)

max
s≥k≥l≥0

∥∥∥∥(k!)−1P̂uk−l,wl
(
∂kf
∂kx

)

◦(al1,n1⊗···⊗alk,nk
)◦(a⊗(k−l)⊗E⊗l)

∥∥∥∥
× 1(
‖a‖k−lC0(BR,H)

‖E‖lC0(BR,L(H))
‖f‖Cs(BR,H)

∏k
j=1

∥∥alj ,nj∥∥
) ,

(2.35)

hence d(P̂s∗) ≤ 1, since f ∈ Cs as a function by x and (Φ̄sg)(x;h1, . . . ,hs ;0, . . . ,0) =
Dsxg(x)·(h1, . . . ,hs)/s! for each g ∈ Cs and due to the definition of ‖g‖Cs . Considering

in particular polyhomogeneous g on which d(P̂s∗) takes its maximum value, we get

d(P̂s∗)= 1. From conditions on w, al,k, a, and E, it follows that ξ(t,ω) with probability

1 has a C0-modification (see [30, Theorem 3.4]), ξ ∈ Lq(Ω,�,λ;C0(BR,H)).
The last statement of this proposition follows from [31, Lemma 2.2].

Theorem 2.18. Suppose that M is a manifold which either satisfies the conditions of

Corollary 2.5 or is analytic, At(M) is uniform (see Definition 2.15). Let a, E, am,l, and

w corresponding to a section � satisfy the conditions of Note 2.7 with λ{ω :w(t,ω) ∈
C0 \C1} = 0. Then there exists a unique up to stochastic equivalence random evolution

family S(t,τ ;ω) for a solution ξ(t,ω) of (2.32).

Proof. Consider a solution of the non-Archimedean stochastic equation

ξ(t,ω)= expξ(t,ω)

{ ∑
m,b,l

P̂um+b,wlam+b,l,ξ(t,ω)
(
u,ξ(u,ω)

)

◦(I⊗b⊗a⊗mξ(t,ω)⊗E⊗lξ(t,ω))∣∣u=t
} (2.36)

corresponding to (2.31). On each chart of the uniform atlas At(M) of M fields {am,l :

m,l}, a, E, and w are λ-a.e. bounded due to the conditions of Note 2.7. For each two

charts (Uj,φj) and (Ul,φl) with Uj∩Ul �= ∅, a transition mappingφ :=φj,l is bounded

together with its derivatives, hence Γ is bounded on each Uj since the covering {Uj : j}
of M can be chosen locally finite due to paracompactness of M [6].

In view of [30, Theorem 3.4], Corollary 2.12 and equation (2.30) have a unique solu-

tion onM . Let (a,E) be a section of the bundle (Π,M,π) andal,m sections of the bundles

(Πl+m,M,πl+m) (see Definition 2.10 and Section 2.5). Consider a family ζy(x) of func-

tions of the class C1(M,K) on M such that ζy(x)= 0 if x ∉U1
y , ζy(x)= 1 if x ∈U2

y of

the uniform atlas (see Definition 2.15), then ayx := ζy(x)ax , Eyx := ζy(x)Ex , ayl,m,x :=
ζy(x)al,m are local fields. Then, there exists the local evolution family Sy(t,τ ;ω) for
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each local solution (i.e, with local coefficients)

ξy(t,ω)= expξy(t,ω)

{ ∑
m,b,l

P̂um+b,wla
y
m+b,l,ξy (t,ω)

(
u,ξ(u,ω)

)

◦
(
I⊗b⊗(ayξy(t,ω))⊗m⊗(Eyξy(t,ω))⊗l

)∣∣∣
u=t

}
,

(2.37)

due to [30, Theorem 3.4] and Theorem 2.8 above. Therefore, Sy(t,τ ;ω) ◦x ∈ U1
y for

each x ∈U2
y . Glueing together local solutions with the help of transition functions φl,j

of charts with nonvoid intersections Ul∩Uj leads to the conclusion that a stochastic

process ξ is a solution of the stochastic antiderivational equation (2.36) on M , if and

only if, for each t ∈ T for νξ(t)-a.e. x ∈M , it coincides Pt,x-a.e. with some local solution

of this equation inside U2
x , since {U2

x : x ∈M} is a covering of M .

Consider a local representation ξφ :=φ(ξ), then there exists the corresponding Sφ

generated by dξφ such that Sφ(t,τ ;ω)◦ξφ(τ,ω) =φ(S(t,τ ;ω)◦ξ(τ,ω)) for each t,
τ ∈ T ⊂K, φ∈ {φj : j}.

In view of Proposition 2.17, there exists δ > 0 such that P{ω : Sx(t,τ ;ω)◦x ∉U2
x} ≤

P{sup‖φ(Sx(t,τ ;ω)◦x)‖> 1} ≤ C|t−τ| for each t,τ ∈ T , such that |t−τ|< δ, where

C > 0 is a constant. Consider a family Υ of all finite partitions q of T into disjoint

unions of balls B(K, tqk ,r
q
k ), where tqk ∈ T , 0 < rqk ≤ εq, 0 < εq < δ for each q ∈ Υ .

Let q ≤ v if and only if q ⊂ v , then Υ is ordered by this relation. Consider a linearly

ordered subsequence Υ0 := {qk : k∈N} in Υ with limk→∞ sup{rqkj : j ∈ qk} = 0, and for it,

define ξk(t,ω) := Sξk−1(tl,ω)(t,tl;ω)◦ξk−1(tl,ω) for each k and t ∈ B(K, tvl ,rvl ) for each

tl ∈ qk−1 and each k ≥ 1, where v = qk−1, ξ(t0,ω) = x, ξ1(tl,ω) := ξ(tl,ω) for each

tl ∈ q1. Also define Sk(t,t0;ω) ◦x = Sξk−1(tl,ω)(t,tl;ω) ◦ ξk−1(tl). Consider z(s,ω) :=
Sy(s,t

q
k ;ω) ◦y ∈ U2

y for each s ∈ B(K, tqk ,rqk ). For each t ∈ B(K, tqk ,rqk ), the equality

Sy(t,t
q
k ;ω)◦y = Sz(s,ω)(t,s;ω)◦z(s,ω) is satisfied since Sy(t,t

q
k ;ω)◦y = Sy(t,s;ω)◦

Sy(s,t
q
k ;ω)◦y due to the existence of a local solution.

PutΩΥ0 :=⋃k∈Υ0
Ωk, whereΩk :=⋂l∈qkΩk,l, whereΩk,l := {ω : Sξk(tl,ω)(s,tl)◦ξk(tl,ω)

∈ U2
ξk(tl,ω)

, s ∈ B(K, tvl ,rvl )}. From the existence of a local solution, it follows that

Sk(t,t0) ◦x = Sl(t,t0) ◦x for each k ≥ l and each ω ∈ Ωl. In view of Theorem 2.13,

there exists limqk∈Υ0 Sk(t,t0;ω) = S(t,t0;ω). For each two linearly ordered subsets Λ1

and Λ2 in Υ , there exists a linearly ordered subset Λ in Υ such that Λ⊃Λ1∪Λ2, hence

this limit does not depend on the choice of Υ0. Events Ωk,l and Ωk,j are independent

in total for each l �= j: P(Ωk,l ∩Ωk,j) = P(Ωk,l)P(Ωk,j). Since K is a finite algebraic

extension of the corresponding Qp , then there exists n ∈ N such that K as the Qp-

linear space is isomorphic to Qn
p . Choose Υ0 such that for each qk ∈ Υ0, the supremum

supl∈qk r
qk
l =: δk ≤ p−k and card(tl : tl ∈ qk∩B(K, t0,ps))=:mk,s ≤ psnk. In view of the

ultrametric inequality from ‖α(ω)+β(ω)‖ ≥ δ, it follows that max(|α(ω)|,|β(ω)|)≥ δ
for each two random variables α and β. Therefore, from Proposition 2.17 applied to

φj(ξ)−φj(ξ0), and the inclusion ξ(t,ω)∈ Lq(Ω,�,λ;C0(T ,M)), it follows that P{Ωk :

t ∈ T ∩ B(K, t0,ps)} ≥ (1−Ckp−k)psnk , where limkCk = 0, since ξ(t,ω) is uniformly

continuous on T ∩B(K, t0,ps) for λ-a.e. ω. Therefore, P{ΩΥ0 : t ∈ T ∩B(K, t0,ps)} ≥
limk exp(−Cksn)= 1 for each given s ∈N.
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From Sk(t,t0;ω) ◦x = Sk(t,s;ω) ◦ Sk(s,t0;ω) ◦x and taking the limit by q ∈ Υ , it

follows that S satisfies the evolution property S(t,t0;ω)◦x = S(t,s;ω)◦S(s,t0;ω)◦x.

Then S(t,t0;ω)◦x is a measurable function of x, since it is a superposition S(t,t0;ω)◦
x = Sk(t,t0;ω)◦x of locally measurable functions.

Corollary 2.19. Let the conditions of Theorem 2.18 be satisfied and let f be a func-

tion on T ×M such that each f ◦φ−1
j satisfies conditions (2.18) and (2.19) on its domain.

Then, a generating operator of an evolution family S(t,τ ;ω) of a stochastic process

η(t,ω)= f(t,ξ(t,ω)) is given by the equation

A(t;ω)η(t,ω)=
∑

m+b≥1,0≤m∈Z
0≤b∈Z

(
(m+b)!)−1

m∑
l=0

(
m+b
m

)

×
∑

l1+···+lm=m−l
n1+···+nm=l

{
b
(
P̂ub+m−l−1,w(u,ω)l

[(
∂b∇mf
∂ub∂xm

)(
u,ξ(u,ω)

)

◦(al1,n1⊗···⊗alm,nm
)

◦(I⊗(b−1)⊗a⊗(m−l)⊗E⊗l)])∣∣u=t
+(m−l)

(
P̂ub+m−l−1,w(u,ω)l

[(
∂b∇mf
∂ub∂xm

)(
u,ξ(u,ω)

)

◦(al1,n1⊗···⊗alm,nm
)

◦(I⊗b⊗a⊗(m−l−1)⊗E⊗l)]a)∣∣u=t
+l
(
P̂ub+m−l,w(u,ω)l−1

[(
∂b∇mf
∂ub∂xm

)(
u,ξ(u,ω)

)

◦(al1,n1⊗···⊗alm,nm
)

◦(I⊗b⊗a⊗(m−l)⊗E⊗(l−1))]Ew′
u(u,ω)

)∣∣
u=t

}
.

(2.38)

Proof. In view of Theorem 2.18, there exists a generating operator S(t,τ ;ω) of an

evolution family. For each chart (Uj,φj), the stochastic process f ◦φ−1
j (ξ) is given

by (2.20). Consider the covariant differentiation (∇f/∂x) ·h = ∇hf on the manifold

M , where h ∈ TxM . For a random variable belonging to Lq(Ω,�,λ;C1(M,X)), its de-

rivative and partial difference quotients Φ̄1f ◦φ−1
j (x;h;b) are naturally understood

as elements of the corresponding spaces Lq(Ω,�,λ;C0(Wj,X)) such that each limit

limx→x0 g(x,ω) = c(ω) is taken in Lq(Ω,�,λ;C0(M,X)), where Wj := {(x,h,b) ∈ Uj×
X×K : x+bh∈Uj}. In other words, it exists if and only if limx→x0 ‖g(x,ω)−c(ω)‖Lq =
0, where c ∈ Lq(Ω,�,λ;X). Then f(t,ξ(t,ω))= limk f (t,Sk(t,t0;ω)◦x). For each chart,

put fj(t,∗) := f(t,φ−1
j (∗)φj ◦Sy), where Sy(t,τ ;ω)y does not leave for λ-a.e. ω∈Ω

a clopen subset Uj inM for each t and τ ∈ Tj , Tj ⊂ T ,
⋃
j Tj = T , Tj is a clopen subset in
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T . Then define f(t,Sk(t,τ ;ω)x)′x ·h= f ′x(t,Sk(t,τ)◦x)Ak(t,τ ;ω)h and take the limit.

From [31, Lemma 2.2], the statement of this corollary follows.

Remark 2.20. In the particular case in Section 2.4, formula (2.38) simplifies. When

the family of Γ , together with all its covariant derivatives along a and Ew′, is equiuni-

formly bounded on eachUj , then (2.38) can be written in another form using the identity

∇m+1f ·(h1, . . . ,hm) =∇hm+1(∇mf ·(h1, . . . ,hm))−
∑m
l=1(∇mf)·(h1, . . . ,hl−1,∇hm+1hl,

hl+1, . . . ,hm), in particular with hl ∈ {a,Ew′}.
In a weak topology, C0(T ,c0(α,K)) is isomorphic to c0(α,K)T . Let θ : K → R be a

continuous surjective quotient mapping, such that θ(B(K,0,1))= [0,1]. Then, for each

ξ ∈ Lq(Ω,�,λ;c0(α,K)T ), there exists θ(ξ)∈ Lq(Ω,�,λ;c0(α,R)θ(T)) that induces a sur-

jective mapping θ∗ from Lq(Ω,�,λ;c0(α,K)T ) onto Lq(Ω,�,λ;c0(α,R)θ(T)). Therefore,

for each stochastic process η in Lq(Ω,�,λ;c0(α,R)θ(T)), there exists a stochastic pro-

cess ξ in Lq(Ω,�,λ;c0(α,K)T ) such that θ(ξ)= η. On the other hand, K is a projective

limit of discrete rings Sπn isomorphic to the quotient of K by the equivalence relation

associated with disjoint subsets xj +πnB(K,0,1) in K, j = 0,1,2, . . . , x0 := 0, π ∈ K,

|π| =max{|x| : |x| < 1, x ∈ K}. Therefore, Lq(Ω,�,λ;c0(α,K)T ) is isomorphic as the

topological space to projective limit of modules Lq(Ω,�,λ;c0(α,Sπn)Sπn ) over discrete

rings Sπn . Since simple functions are dense in Lq, consequently, ξ is equal to the projec-

tive limit of stochastic processes with values in discrete modules c0(α,Sπn) over rings

Sπn . This opens a possibility of approximation of stochastic processes by stochastic

processes with values in discrete modules. Certainly, there is not any simple relation

between classical and non-Archimedean stochastic equations, so, if ξ satisfies definite

stochastic antiderivational equation relative tow, it is a problem to find a classical sto-

chastic equation which θ(ξ) satisfies relative to either θ(w) or a standard stochastic

process (Wiener, Lèvy) and vice versa.

Theorem 2.18 and Corollary 2.19 are applicable in particular to totally disconnected

Lie groups over non-Archimedean fields of characteristic zero.

In [29], wide classes of nonnegative (in particular also quasi-invariant) measures ν on

non-Archimedean Banach spaces Y were considered, as well as having abundant fami-

lies of compact subsets of positive measure. Then ν induces a (quasi-invariant) measure

µ on a manifold M modelled on Y (see [21, Theorem 3.2], which can be generalized to

the class of manifolds considered here). If f ∈ L1(M,µ,C), then λ(dx) = f(x)µ(dx)
is a measure on M . In particular, f , and hence λ with a compact support, can be con-

sidered, but with losing its quasi-invariance property. Therefore, stochastic processes

having transition measures of compact supports are particular cases of those consid-

ered herein.
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