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ON THE EXTENDIBILITY OF THE DIOPHANTINE TRIPLE {1,5,c}
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We study the problem of extendibility of the triples of the form {1,5,c}. We prove that
if ¢y = s,% + 1, where (si) is a binary recursive sequence, k is a positive integer, and the
statement that all solutions of a system of simultaneous Pellian equations z% —cix?% = cx — 1,
522 —cxy? = ¢ — 5 are given by (x,y,z) = (0,+2,+sy), is valid for 2 < k < 31, then it is
valid for all positive integer k.

2000 Mathematics Subject Classification: 11D09, 11D25.

1. Introduction. Let n be an integer. A set of positive integers {a;,az,...,an,} is said
to have the property D(n) if a;aj+n is a perfect square for all 1 <i < j <m; such a
set is called a Diophantine m-tuple or a P,, set of size m. The problem of construction
of such sets was studied by Diophantus (see [4]). A famous conjecture related to this
problem is as follows.

CONJECTURE 1.1. There does not exist a Diophantine quadruple with the property
D(-1).

For certain triples {a,b,c} with 1 ¢ {a,b,c}, the validity of this conjecture can be
verified by simple use of congruences (see [5]). The case a = 1 is more involved and the
first important result concerning this conjecture was proved in 1985 by Mohanty and
Ramasamy [8]; they proved that the triple {1,5,10} cannot be extended. Also, Brown
[5] proved the conjecture for the triples {n?+1, (n+1)2+1, (2n+1)2 + 1}, where
n # 0(mod4), for the triples {2, 2n?2 +2n+1, 2n? + 6n + 5}, where n = 1(mod4),
and proved nonextendibility of triples {17,26,68} and {1,2,5}. In 1998, Kedlaya [7]
verified it for the triples {1,2,145}, {1,2,4901}, {1,5,65}, {1,5,20737}, {1,10,17}, and
{1,26,37}. Since Dujella [6] has proved the conjecture for all triples of the form {1,2,c},
the consideration of triples of the form {1,5,c} seems to be the natural next step.

In the present paper, we will study the extendibility of all triples of the form {1,5,c}.
In our proof, we will follow the strategy of [6].

2. Preliminaries. Since the triple {1,5,c} satisfies the property D(—1), therefore
there exist integers s, t such that ¢ —1 = s and 5¢ — 1 = t? which imply

t>—5s2 = 4. (2.1

If this triple can be extended to a Diophantine quadruple, then there are integers d, x,
v, z such that

d-1=x?, 5d—-1=192, cd—-1=2z% (2.2)
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Eliminating d, we get
z2—cx?=c-1, z>—cy® =c-5; (2.3)

itis obvious that if all the solutions of this system are given by (x,y,z) = (0, +2,+/c—1),
then, from (2.2), we get d = 1, so the triple {1,5,c} cannot be extended.

The Pell equation (2.1) has three classes of solutions and all the solutions are given
by

ty+s; = (3++/5)(9+4V5)%,
t+s = (=3++/5)(9+4V5)%, (2.4)
)+ sy =2(9+45)".
Hence, if the triple {1,5,c} is a Diophantine triple with the property D(—1), then there

exists a positive integer k such that the integer ¢ has the following three formulas (see

[3D:

c=cj = 11—0[(7+3x/§)2(161+72x/§)k+(7—3\/5)2(161—72\/§)k+6], (2.5)
c=cf = %[(7—3@)2(161+72\E)"+ (7+35)°(161-72v/3) +6],  (2.6)
c=c = %[(161+72\/§)k+(161—72\/§)k+3]. (2.7)

The main result of this paper is in the following theorem, where c; denotes one of
the formulas in (2.5), (2.6), and (2.7).

THEOREM 2.1. Let k be a positive integer and let ¢ = 5,‘3 + 1, where (sy) is a binary
recursive sequence. If the statement that all solutions of a system of simultaneous Pellian
equations

Z2—x? =cp—1, 5z —ciy?=cr-5 (2.8)

are given by (x,v,z) = (0,+2,+5sy) is valid for k < 31, then it is valid for all positive
integer k.

REMARK 2.2. The theorem is true when k = 0 [5] and k = 1 (see [1, 7, 8]). So we will
suppose that k > 2. For simplicity, we will omit the index k and we will divide the proof
of the theorem into many lemmas.

3. A system of Pellian equations. There are finite sets

{z8" +x{vei=1.2,.. 6o},

‘ | (3.1
{ziﬁ\/ngny)\/E:j: 1,2,...,jo},
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of elements of Z| /c] and Z|-/5¢], respectively, such that all solutions of (2.8) are given
by

z+xye = (2 +xVe) (e —1+25v0)", i=1,..,m=0, (3.2)
Zx@+y\/——( D54y e )(IOck—1+2tr) i=1,...n=0, (3.3)

respectively (see [6]). A
From (3.2), we conclude that z = v for some index i and integer m, where

v’ =z, v’ =@c-1Dzy +2sexy’, v, = (e, v, (3.4)

and from (3.3), we conclude that z = w){’ for some index J and integer n, where
w =2V, =(10c-1)zY +2tey?,  wl, = oc-2)wY) —wy'. (3.5
Thus we reformulated system (2.8) to finitely many Diophantine equations of the form

v =w (3.6)

If we choose representatives z((f) +x0” J/c and zl f+ym /¢ such that Iz(()i)l and Izij)l
are minimal, then, by [9, Theorem 108a], we have the following estimates:

< 12c(c71)<c,
V2 (3.7)
<4c-(c-5)<c

4. Application of congruence relations. In the following lemma, we prove that if

(2.2) has a nontrivial solution, then the initial terms of sequences vy(n and w(J ) a

restricted.

0<

re

LEMMA 4.1. Letk > 2 be the least positive integer (if it exists) for which the statement of
Theorem 2.1 isnotvalid. Let1 <i<ip, 1< J < jo, and let v andw(’) be the sequences
defined in (3.4) and (3.5). If the equation v = wy(ﬂ) has a solution, then Izéwl = Izij)l =s.

PROOF. From (3.4) and (3.5), it follows easily by induction that

vzz = (()”(modZC),
wi = 2 (mod2¢),
(4.1)

v = -z (mod2c),

wyl) = -2z (mod2¢).
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Therefore, if the equation vf,? = wy(Lj ' has a solution in integers m and n, then we must
have \zé”l = \ziﬁ |. Now, let dg = ((zé”)2 +1)/c; then we have
(i) % (i)
do—lz(xo), Sdo—lz(yl ), cdo—lz(zo),
c2—c+1
c

4.2)
do <

Assume that do > 1. It follows from (4.2) that there exists a positive integer [ < k such
that dg = ¢;. But now the system

zZ2—cx®=¢c -1, 52—y’ =c;-5 4.3)
has a nontrivial solution (x,y,z) = (sk,tk,zéi)), contradicting the minimality of k. So,
do =1 and Iz(()‘)l =5. O

The following lemma can be proved easily by induction (we will omit the superscripts
(i) and (j)).

LEMMA 4.2. Let {v,,} and {w,} be the sequences which have the initial terms in
Lemma 4.1; then

Um = (=1)™ (20— 2cm?zo — 2csmxp) (mod 8c?),
4.4
wy = (=1)"(z1 —10cn’z; — 2ctny;) (mod 8c?). 44

REMARK 4.3. Since we may restrict ourselves to positive solutions of system (2.8),
we may assume that zgp = z; = s. Notice that xo =0 and y; = 2.

LEMMA 4.4. If vy, = wy,, then m and n are both even or odd.

PROOF. Suppose m is odd and n is even and let m = 2» and n = 21+ 1. Lemma 4.2
and the relation zg = z; = s imply

s=cs(21+1)? +20cr?s = 4ctr (mod 4c?) (4.5)

and we have a contradiction to the fact that ¢ does not divide s.
The same proof holds for the case where m is even and n odd. |

LEMMA 4.5. If v, = wy, thenn <m < n./5.

PROOF. From relations (3.4) and (3.5), w; > v;. Let w; > v;, where [ > 0; then
Wiz < (20c = 2)wy — v = (20c —2)wi — [(4c —2)vi1 — V2], (4.6)
hence
Wisp = V2 < (20€ = 2)wiin — (4€ = 2) V4. (4.7)

But (20c —2)w;1 — (4c —2)v;41 > 0, which implies w;.» < vy:2. So, if the equation v, =
wy, has a solution and n + 0, then v,, < v, = w,,. But the sequence v, is increasing, so
m>n.
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Now, from (3.4), we have

VUm =

[(2c—1+25v8)™ + (2c—1-25/8)™] > %(2c-1+25¢z)m, 4.8)

N«

and from (3.5), we have

W = %(s 5+2.0)[(10¢ - 1+ 265¢)" + (10c — 1 - 2tv/5¢)"]
4.9)
< %(mc— 1+2t50)" < %(10c—1 +2¢3/50)" 2,

Since k = 2, therefore from (2.5), (2.6), and (2.7), we have ¢ > 3026. Thus v,, = w,
implies

m In(10c—1+2t+/5¢)

ntl)2 < In(2c—1+25./c) <1.1712. (4.10)

If n =0, then m =0, and if n > 1, then (4.10) implies
m < 1.1712n+0.5856 < n+/5. (4.11)
|

LEMMA 4.6. Ifvy,, = wy, andn # 0, thenn > (1/2) i/c.

PROOF. (1) The case where m and n are both even.
We assume that n < (1/2) %/c. Using Lemma 4.2 and from v,, = w,, we get

2c(2m)?s+2cs(2m)xo = 10c(2n)%s —2ct(2n) y1 (mod 8c?). (4.12)
But xp =0 and y; = 2, so
8cm?s = 40cn®s +8ctn(mod8c?), (4.13)
which implies
s(5n*—m?) = +tn(modc). (4.14)
On the other hand, we have, from Lemma 4.5,
|s(5n%-m?) | sﬁ4n2<4ﬁ(% %)Z:C. (4.15)

Also, since ¢ > +/5/4 3/c3, then

tn<ﬁn<ﬁf§4c—\/§%<c. (4.16)

So, from (4.14), (4.15), and (4.16), we get

s(5n® —m?) = +tn. 4.17)
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Also, from (4.14), we have
s2(5m% - m?)? = 2n2(modc).
But s2 = t2(modc), so (4.18) becomes
(m?-5n2)* = n%(modc).
Now, since
2 2 1 4
5n°2-m?) < (4n®) =16n*<16-(=ic) =c,
2
1, , 1
n<§\/E:n <Z\/E<C’
so, from (4.19), (4.20), we get
(5n%-m?)* =n’.

Finally, from (4.17) and (4.21), we get t2 = s2, which is impossible.
(2) The case where m and n are both odd.

(4.18)

(4.19)

(4.20)

(4.21)

We assume that n < (1/2) i/c. Using Lemma 4.2 and from v,, = w;,, where xo = 0

and y; = +2, we get

s(5n?=m?) = +2tn(modc).
As above,

|s(5n?-m?)| <c,

and since

2tn < 2v/5cn <+/5¢ic <,
therefore (4.22), (4.23), and (4.24) imply

s(5n® —m?) = +2tn.

Also, from (4.22), we have

s2(5n% - m?)? = 4t>n%(modc),

which implies (m? —5n?)? = 4n?(modc). But (5n° -m?)? < c and 4n? < ¢, so

(5n%-m?)* = 4n?.

Finally, from (4.25) and (4.27), we get t2 = s2, which is impossible.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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5. Linear forms in logarithms

LEMMA 5.1. If vy, = wy, then

0 < nlog (10c—1+2t/5¢) —mlog (10c —1+2t/5¢) Ho{(;%E <o) . (5.1)
PROOF. We suppose that
p=s(c-1+2s/0)", q-= %(5 5+2./¢)(10c—1+2ty/5¢)". (5.2)
If v,, = wy, then, from (4.8) and (4.9), we get
p+sipl=q+ ?q‘l- (5.3)
It is clear that p > 1 and g > 1; also
p-a= %q’l —s?’pl<(c-Dg ' =(c-Dpt=(c-Dp-ap'a' (64

If p > g, then from (5.4), we get pq < c — 1, which is impossible since g > 1 and p >
(4s./C)s = 4s°,/c =4(c—1)/c > ¢ > c—1.Hence q > p, and we may assume that m > 1.
Furthermore

-1
14 14 a-p
0<lo (7) - 1o (7)=—1o (1——). (5.5)
& qa & qa & a
Since —log(1 —x) < x +x2, therefore, from (5.5), we get
B N

0<1og(1) <u+(u> . (5.6)

p q q

But from (5.3), we deduce that p > qg—(c—1)p ' >q—(c—1), so

pl<(@-(c-1)7Y (5.7)
hence, from (5.3) and (5.7), we get
1 -5 _ 4cq+c?+5 4cq+c?+5
- ~1(@-(c-1)) "= 1 . .
a-p<(c-1(q-(c-1)) S <aGa_5c:5) < 4 (5.8)
But g > (s+/5—2./¢)(4¢) implies
2 2 2
c c ¢ (5.9)

a " (sv5-270)(4c) dc &

so (5.8) becomes

T [aer o f]at <[aes fos]a = (Feus)a
<ldc+—+= <|4c+-=+5 =(—c+5 . (5.10)
a a ql? 471 4 1
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From (5.6) and (5.10), we get
0<lo —<<—1 C+5>61_1+(—1 C+5>2 -2 (5.11)
g ] ] q . -

Now, we will estimate ((17/4)c+5)g~'. From (2.5), (2.6), and (2.7), we have ¢ > 20, so

17 -1 (E >71_£ s 17 1.9
<4c+5>q < 4c+5c —4+C<4+4—2. (5.12)

Thus (5.11) becomes

a _(17 ) -1 (H )2 -2
0<logp<(4c+5q + 4c+5 q

(17 [ (z >] g(z Ja
—(4C+5)q 1+ 4c+5q <2 4c+5q

_ 1117 _ V5 oo n
= (4c+5>5£i2ﬁ(10c 1+2t/5¢)

_ 5.13
<11J§(%c+%)(10c—1+2w§) " (>-13)
<11(+/5) (3c+;>(4\/5c—1ﬁ)’"
<11(+/5) (3c+;>(4c)‘"
<4c(4c)™™.

But
q s/5+2./c
logE =nlog (10c —1+2ty/5¢) —mlog (10c — 1 +2t+/5¢) +logT. (5.14)
So, (5.13) and (5.14) complete the proof of the lemma. |

Now, to prove the theorem, we apply the following theorem.

THEOREM 5.2 [2]. For a linear form Q + 0 in logarithms of | algebraic numbers

«1,..., & with rational coefficients bq,...,by,
log|Q| = —18(1+ DT 32d) 2R (1) - - - h' (o) log(21d) log B, (5.15)
where B = max(|b,|,...,|bi|) and where d is the degree of the number field generated
bycxl,...,oq.
Here
h(x) = %max(h((x),llog(xl,l) (5.16)

and h(x) denotes the standard logarithmic Weil height of «.
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6. Proof of Theorem 2.1. (1) The case where m and n are both even.
We consider the equation vy, = w», with n # 0. We apply the above theorem and
we have | = 3, d = 4, B =2m, where

o1 =10c—1+2t/5¢,
o =2c—-1+2s/c,

(6.1)
o = s/5+2¢
3 \/§S .
The equations satisfied by &, oz, 3 are
o —(20c-2)x; +1 =0,
o3 —(4c-2)op +1 =0, (6.2)
(5¢-5)03—(10c—10)x3+¢c—5=0 = 05 — 203 + SCc_—SS =0
Hence
, 1 1
h () = §logcx1 < ElogZOc,
h () = %log(xg < %logélc, (6.3)
, 1, sJ/5+2yc 1
h —log ——=——— < = log(1+2c).
(o) = 5 log 55 <glog(l+2c)
From Lemma 5.1, where 1 is even, we have
logQ < (4c)' 2" = —(2n—1)log4c. (6.4)

So, from Theorem 5.2, we get

(2n—1)log4c <18x4!1x3*(32x4)°>x %10g(20c)><% log(4c)x%log(2c+1)log24><10g2m.

(6.5)
Now, using Lemmas 4.5 and 4.6, we get
(2n—-1) < 2.07431 x 10" x1og 8000n* x log (800n* + 1) x (log 2+/5n), (6.6)
which implies that
n<2x10', (6.7)

and finally,

c < 256(107%). (6.8)
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To find k in the first class, substitute in (2.5); hence

klog (161 +72+/5) <log256+771og10—log (7 —3+/5), (6.9)
which implies k < 31. Similarly, we find that in the other two classes, k < 31.
(2) The case where m and n are both odd.
In this case, using Lemma 5.1, where n is odd, relation (6.4) becomes
logQ < (4c)™°" = —(2n—1)log4c. (6.10)
Hence (6.6) becomes
2n < 2.07431 x 10" x1og 8000n* x log (800n* + 1) x (log 2v/5n), (6.11)

which implies that n < 2 x 1019, and finally ¢ < 256(107%), hence k < 31.
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