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PRODUCT PARTITIONS AND RECURSION FORMULAE

M. V. SUBBARAO
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To my late friend Vincent C. Harris

Utilizing a method briefly hinted in the author’s paper written in 1991 jointly with V. C.
Harris, we derive here a number of unpublished recursion formulae for a variety of product
partition functions which we believe have not been considered before in the literature. These
include the functionsp∗(n;k,h) (which stands for the number of product partitions ofn> 1
into k parts of which h are distinct), and p∗(d)(n;m) (which stands for the number of product
partitions of n into exactly m parts with at most d repetitions of any part). We also derive
recursion formulae for certain product partition functions without the use of generating
functions.

2000 Mathematics Subject Classification: 11P81, 11P82.

1. Introduction. This paper is prompted (and provoked) by a remark made by Kim

and Hahn in the introduction of their paper [11] that appeared in this journal a few years

back. They said: “we find recursive formulae for the multipartite function p(n1, . . . ,nj).
The most useful formula known to this day for actual evaluation of the multipartite

partition function is presented in Theorem 4.”

Evidently, they have not noticed the famous paper of Cheema and Motzkin (see [5,

Theorem 3.1]) that appeared almost thirty years earlier, wherein Kim and Hahn’s result

is stated and proved along with some other recursion formulae.

Kim and Hahn also gave in [11, Theorem 6] a product partition version of their [11,

Theorem 4], which already appeared in a slightly disguised form in [10, equation 4]

of Harris and Subbarao almost nine years earlier. We are not trying to downgrade the

importance of the recursive relation for the product partition that Kim and Hahn ob-

tained independently of Harris and Subbarao. For example, it played an important role

in Kim’s proof that settled an important conjecture of Canfield et al. [1] regarding the

distribution of highly factorable numbers. In fact, the author believes that the Harris-

Subbarao-Kim-Hahn recursion formula for the product partition functions p∗(n) rep-

resenting the number of product partitions of n> 1, repetition of parts allowed, is the

first recursion formula that appeared in the literature for any product partition func-

tion. It is, however, true that a recursive formula for the function q∗(n)—representing

the number of product partitions of n > 1 into distinct parts—was worked out in the

special case when n is square-free by de Bruijn (see [6, Section 6.1, formula (6.1.1)]) in

the name of class-partitions of a finite set. Also, in the name of Bell numbers (see, e.g.,

Carlitz [2]), a recursive relation for q∗(n)was known earlier for square-free values of n.
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The simple method of obtaining recursion formulae for product partition functions

that we describe in Section 3 is applicable to almost all product partition functions. To

illustrate this fact, we will derive recursive formulae for a diverse collection of product

partition functions in this paper, giving proofs only in a few cases.

In Section 5, we obtain new recursion formulae of a different kind for a certain class

of product partitions without using this method, and in fact without any appeal to their

generating functions.

2. Some functions and their generators. Recall that by a product (or multiplicative)

partition of n> 1 we mean a representation of n as an unordered product of integers

greater than 1; the terms in the product are called “parts” of the product partition. Three

basic product partition functions are p∗(n), q∗(n), and e∗(n). Here, p∗(n) (resp.,

q∗(n)) denotes the number of product partitions of n with repetition of parts allowed

(resp., not allowed). The function e∗(n) denotes the excess of the number of product

partitions of n into an even number of distinct parts over those into an odd number

of such parts. While p∗(n) and q∗(n) were first introduced into the literature (in a

different notation) by MacMahon [12], e∗(n) came into the literature only in 2001 (see

[14]). Some other product partition functions that we consider here, along with the

condition attached to them, are the following:

(i) p∗(k)(n): product partitions of n with no part occurring more than (k−1) times;

(ii) p∗(k)(n): number of product partitions of n, where each part can occur in at

most k colours;

(iii) q∗(k)(m;n): number of product partitions of n into exactly m parts, no part re-

peating more than (k−1) times;

(iv) p∗(k,h;n): number of product partitions of n into exactly k parts of which ex-

actly h parts are different.

Remark 2.1. Recursion formulae for the additive analogue of p∗(k)(n) and p∗k (m,n)
were considered by Dutta [7] and Dutta and Debnath [8]. The additive analogue of

p∗(k,h;n), but not its recursion formula, was considered by Cheema [4].

The generating function for p∗(n) was given by MacMahon [12]—who in fact started

the study of product partitions in 1924—as

1+
∞∑
n=2

p∗(n)n−s =
∏
n≥2

(
1−n−s)−1, Res > 1. (2.1)

We prefer to take this in the following form (in analogy with the generating function

for the additive partition function p(n)):

1+
∞∑
n=2

p∗(n)xlnn =
∞∏
n=2

(
1−xlnn)−1, 0<x <

1
e
. (2.2)

As explained in [10], we obtain (2.2) from (2.1) by a change of variable. Also, (2.2)

arises from the observation that p∗(n) is the number of solutions of the Diophantine
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equation

x2 ln2+x3 ln3+···+xn lnn= lnn, n > 1. (2.3)

As explained in [10], the series in (2.2) is uniformly and absolutely convergent in any

closed interval contained in (0,1/e). Thus, arranging series according to powers of x,

taking logarithms, differentiating termwise, and equating coefficients of lnn powers of

x can be done.

Similar remarks apply for all the series and products that are involved in the follow-

ing generating function results (all summations and products, unless stated explicitly

otherwise, are from n= 2 to ∞):

1+
∑
q∗(n)xlnn =

∏(
1+xlnn),

1+
∑
e∗(n)xlnn =

∏(
1−xlnn),

1+
∑
p∗(k)(n)x

lnn =
∏(

1−xk lnn)∏(
1−xlnn

) ,
1+

∑
p∗(k)(n)xlnn =

∏(
1−xlnn)−k,

1+
∑

n≥2;m≥1

p∗(k)(m;n)tmxlnn =
∏(

1−tkxk lnx

1−txlnn

)
,

1+
∑
n≥2
k≥1

0≤h≤k

p∗(k,h;n)xlnnzkth =
∏
n≥2

(
1+ xlnnz

1−xlnnz
t
)
.

(2.4)

Remark 2.2. It is of some interest to notice that if k+1 is a prime number, then

p∗(k+1)(n)≡ p∗(k)(n)(modk+1). (2.5)

The additive analogue of this is also true, as noticed by Dutta and Debnath [8].

3. Preliminary remarks on product partition function recurrences. As is well

known, to every product partition of n > 1 with canonical representation n =∏k
i=1p

ai
i , there corresponds uniquely a partition of the vector a = (a1, . . . ,ak). Con-

versely, given a vector partition of a = (a1, . . . ,ak), we can associate with it a product

partition of the integer n = ∏k
i=1p

ai
i , where the pi’s are arbitrarily chosen distinct

primes. We can therefore say that, in general, any given statement concerning vector

partitioning of a specified set of vectors has an equivalent statement concerning prod-

uct partitions of a corresponding set of natural numbers greater than 1. As a simple

illustration of this general principle, we quote two theorems due to Cheema [3] and

Subbarao [13], respectively.

Theorem 3.1 [3]. The number of partitions of (n1,n2, . . . ,ns) into vectors with at least

one component odd is equal to the number of partitions of (n1,n2, . . . ,ns) into distinct

parts (vectors). Note that the same result holds if the parts are required to have nonzero

components.
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Theorem 3.2 [13]. The number of product partitions of n into distinct parts equals

the number of product partitions of n into parts (repetitions allowed) none of which is a

square integer.

Note that Cheema’s theorem is an extension of a well-known theorem of Euler that

corresponds to the case when s = 1. Extending this idea, it is in principle possible to

obtain a recursion formula for a product partition function f(n) from a given recursion

formula for the vector partition analogue of f(n).
Similarly, the reverse of this is in general possible but it gets more and more difficult

as the partition function f(n) becomes more and more complicated. Thus, from the

recursion formula (3.1.1) of Cheema and Motzkin [5] for u(n1, . . . ,ns)—the number of

unrestricted partitions of the vector (n1, . . . ,ns)—namely,

niu
(
n1, . . . ,ns

)= ∑
ki≥0

(
u
(
n1−k1, . . . ,ns−ks

)∑t ki
t

)
, (3.1)

the summation on the right-hand side being over all t dividing ∆—the g.c.d. of the set

of k’s—it is not too difficult, though not too easy, to derive the recursion formula for

the product partition function p∗(n) of Harris and Subbarao [10]:

∑
d|n

lndp∗
(
n
d

)
= p∗(n) lnn, (3.2)

where d=∏∞
i=1di, di = d1/i if this is an integer and di = 1 otherwise.

This is actually what Kim and Hahn [11] did for p∗(n). The reverse process is also

possible of course. But this is not the natural or simplest way to do. The best way to

obtain a recursion formula for a given product partition function g(n) in terms of g(m)
for m<n is to do so by a direct process without recourse to the recursion formula for

the corresponding vector partition function. This is the main purpose of this paper.

We provide here a simple method which we illustrate by deriving recursion formulae

for three diverse product partition functions that involve one, two, and three variables,

respectively.

4. Recursion relations

Theorem 4.1. Let di,r be defined, for i= 1,2, . . ., as follows:

d(i,r) =




1, if d1/i is not an integer,

d1/i, if d1/i is an integer and d is not an r th power integer,

d−1/i, if d1/i is an integer and d is an r th power integer.

(4.1)

Define

d(r) =
∞∏
i=1

d(i,r). (4.2)
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Then p∗(r)(n) satisfies the recursion

∑
d|n

lnd(r)p∗(r)
(
n
d

)
= p∗(r)(n) lnn. (4.3)

Proof. We have

∞∏
n=2

(
1−xlnnr

1−xlnn

)
= 1+

∞∑
n=2

p∗(r)(n)x
lnn. (4.4)

Taking logarithms and differentiating with respect to x, we have

( ∞∑
j=2

lnj
∞∑
i=1

xi lnj
)(

1+
∞∑
k=2

p∗(r)(k)x
lnk

)
−
( ∞∑
j=2

lnj
∞∑
i=1

xi lnj
r
)(

1+
∞∑
k=2

p∗(r)(k)x
lnk

)

=
∞∑
n=1

p∗r (n) lnn.

(4.5)

Call the left-hand side S1−S2. Then it is not difficult to see that

S1 =




∞∑
n=2

∑
d|n

d�=an r th power integer

lnd(i,r)



(

1+
∞∑
k=1

p∗(r)x
lnk

)
,

S2 =




∞∑
n=2

∑
d|n

d=r th power integer

lnd(i,r)



(

1+
∞∑
n=1

p∗(r)x
lnk

)
.

(4.6)

The result now follows.

Remark 4.2. For r =∞, the theorem gives the recursion formula for p∗(n), and for

r = 2, it gives the recursion for q∗(n), namely,

∑
d|n

lndq∗
(
n
d

)
= q∗(n) lnn, (4.7)

where

d=
∞∏
i=1

di,

di =



d1/i, if this is an integer and d is not a square integer,

d
1/i
, if this is an integer and d is a square integer,

1, in all other cases.

(4.8)

This may be compared with its vector partition version given by Cheema and Motzkin

(see [5, equation (3.1.2)]).



1730 M. V. SUBBARAO

4.1. Recursion formula for q∗(k)(m;n) using its generating function.

1+
∑

n≥2,m≥1

q∗(k)(m;n)tmxlnn =
∞∏
n=2

(
1−tkxk lnn)(1−txlnn)−1. (4.9)

Taking logs and differentiating with respect to x, we get, after a little simplification,

∞∑
n=2

∞∑
m=1

q∗(k)(m;n)tmxlnn lnn=


1+

∑
m≥1
n≥2

q∗(k)(m;n)tmxlnn


(S(1)−S(k)), (4.10)

where

S(k)=
∞∑

i,j=1

k(lnj)tkixki lnj =
∑
d

(∑
i
kdiktik

)
xlnd, d= jik. (4.11)

Hence, equating coefficients of xlnn on both sides of the above equation, we get, after

a routine simplification, the recursion formula

(lnn)q∗(k)(m;n)=
∑
d|n

∑
i≥1

(
lndi

)
q∗
(
m−i; n

d

)

−
∑
d|n

∑
i

lndkikq
∗
(
m−ik, n

d

)
,

(4.12)

where, as usual, di = d1/i if this is an integer and di = 1 otherwise.

4.2. Recursion formula for p∗(k,h;n). Starting with the generating function for

f(u,v ;n), taking logarithms, and differentiating with respect to x, we have, after a

routine simplification,

∞∑
n=2

∞∑
m=1

∑
1≤v≤u

lnnp∗(u,v ;n)zutvxlnn

=

 d
dx

∞∏
n=2

(
1−xlnnz

)− d
dx

∞∏
n=2

(
1−xlnnz(1−t))




×




1+
∑
n,u,v

n≥2,u≥1
1≤v≤u

p(u,v ;n)xlnnzutv




= (S1−S2
)
T , say.

(4.13)

We want to equate the coefficients of xlnnzkth on both sides of this equation. We

write

S1 =
∞∑
j=2

lnj
∞∑
i=1

zixi lnj . (4.14)
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Write d= ji, then j = d1/i = di, say, where, as usual, di = 1 if d1/i is not an integer and

di = 1 otherwise.

S1 =
∑

1≤i<∞
zi lndi ·xlnd. (4.15)

Remembering that p∗(n,k,h)= 0 if k < h, we see that the coefficient of xlnnzkth in

S1T is

∑
d|n

∑
1≤i≤k−h

(
lndi

)
p∗
(
n
d
,k−i,h

)
. (4.16)

Note that for p∗(n/d,k− i,h) to be unequal to 0, we should have k− i ≥ h, that is,

i≤ k−h.

Similarly, we have

S2 =
∑

1≤i<∞

(
lndi

)
zi(1−t)ixlnd

=
∑

1≤i<∞

(
lndi

)
zi
(

1−
(
i
1

)
t+

(
i
2

)
t2−···±(−1)iti

)
xlnd.

(4.17)

Hence, the coefficient of xlnd, xkth in S2T is

∑
d|n

∑
i

1≤i≤k

∑
1≤�≤h

0≤h−�<k−i

(
lndi

)
(−1)�

(
i
�

)
p∗
(
n
d
,k−i,h−�

)
. (4.18)

Hence, the recurrence relation for p∗(k,h;n) is given by

(lnn)p∗(u,v,n)=
∑
d|n

1≤i≤k−h

(
lndi

)
p∗
(
n
d
,k−i,h

)

−
∑
d,i,�

d|n,1≤i≤k−h
0≤h−�≤k−i

(
lndi

)
(−1)�

(
i
�

)
p∗
(
n
d
,k−i,h−�

)
.

(4.19)

5. Recursion formulae without using generating series. Using only the definition

and combinatorial arguments, we can obtain recursion formulae for certain product

partition functions. We illustrate this by working out the details for the function f(k;n)
defined below.

Definition 5.1. For positive integers k and n > 1, f(k;n) denotes the number of

product partitions of n> 1 into exactly k parts each greater than 1, repetition of parts

being allowed. Further, we define f(k;n)= 0 whenever n is not an integer greater than

1 or k is not an integer greater than or equal to 1.

We also use the following definition.
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Definition 5.2. For natural numbers a, b, we write a‖b to mean that a|b and g.c.d.

(a,b/a)= 1.

It is easily seen that this implies that if ak‖b, then ak+1 � b.

Theorem 5.3. For an integer n> 1 and a divisor d> 1 of n, write

S(d,t)= f
(
k−1;

n
d

)
+f

(
k−2;

n
d2

)
+···+f

(
k−t; n

dt

)
, (5.1)

where t is defined by dt‖n. Then

kf(k;n)=
∑

1<d|n
S(d,t). (5.2)

Proof. Since each of the f(k;n) product partitions of n> 1 contains k parts (which

are not necessarily distinct), the total number T(k;n) of all the parts in all the f(k;n)
partitions is kf(k;n). We will now obtain T(k;n) by using a different method of count-

ing the parts in all the f(k;n) partitions. Namely, first note that any part, say d, that

occurs in any of the f(k;n) partitions is (by the definition of product partitions) nec-

essarily a divisor of n. Fixing the divisor d of n for a moment, clearly d occurs one or

more times in f(k−1,n/d) of these product partitions. Similarly, d occurs two or more

times in f(k−2;n/d2) of these product partitions, and so on.

Now, the number of these product partitions under consideration in each of which

d occurs exactly once is equal to the number of those product partitions in which d
occurs one or more times minus the number of those product partitions in which d
occurs two or more times. This means that d occurs exactly once in f(k−1;n/d)−
f(k−2;n/d2) partitions. Similarly, in each of f(k−2;n/d2)−f(k−3;n/d3) partitions,

d occurs exactly two times, and so on. Hence, the total number of times d occurs in all

the f(k;n) partitions is equal to

f
(
k−1;

n
d

)
−f

(
k−2;

n
d2

)
+2

(
f
(
k−2;

n
d2

)
−f

(
k−3;

n
d3

))
+···

= f
(
k−1;

n
d

)
+f

(
n−2;

n
d2

)
+··· .

(5.3)

This proves the theorem.

Using a similar procedure, we see that we have a recursive formula for the func-

tion p(k)(m;n)—the number of product partitions of n into exactly k parts, no part

repeating more than m times. We define p(k)(m;n) = 0 if n is not an integer greater

than 1.

Theorem 5.4. For n> 1, k≥ 1, 1<d|n, write

S∗(d,u)=
u∑
i=1

p∗(k−i)
(
m;

n
di

)
, (5.4)
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where u=min(t,m), t being given by dt‖n. Then

kp∗(k)(m;n)=
∑

1<d|n
S∗(d,u). (5.5)

Remark 5.5. In the summation (5.4), we can take i= 1 to ∞, because for i > u, the

terms in the summation vanish. A similar remark applies to the sum in (5.1).

A numerical example. We illustrate the use of Theorem 5.3 to evaluate f(3;60).
Since 60 can be written as a product of three integers greater than 1, namely, 15·2·2,

10·3·2, 6·5·2, 5·4·3, we have f(3;60)= 4.

The divisors d> 1 of 60 are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60:

∑
1<d|60

S(d,t)= S(2,2)+S(3,1)+S(4,1)+S(5,2)+S(6,1)+S(10,1)+S(12,1)

+S(15,1)+S(20,1)+S(30,1)+S(60,1)

= 4+2+1+2+1+1+0+1+0+0+0

= 12= 3f(3,60).

(5.6)

Remark 5.6. Proceeding as in the proof of Theorem 5.3, we can obtain a recursive

formula for the product partition function that represents the number of product par-

titions of n into k distinct parts greater than 1, where k is any positive integer. We will

not go into details.

Remark 5.7. H. Gupta [9] considered an additive version of our method for recursive

formula for j-partite numbers.

6. Concluding remarks

6.1. Following the method used in the previous section, it is very easy to show that

e∗(n) has the recursion formula

∏
d|n
de∗(n|d)=n−e∗(n), (6.1)

where, as usual, d =∏∞
i=1di, di = d1/i if d1/i is an integer and di = 1 otherwise. More

generally, p∗(k)(n) has the recursion formula

k
∏
d|n
dp∗(k)

(
n
d

)
=n(1/k)p∗(k)(n). (6.2)

6.2. The method that we used in Section 5 to obtain recursive formulae without using

generating functions is suitable for numerical work in evaluating functions. It has wide

applications, especially in deriving recursion formulae of product partitions into a fixed

number of parts. We will consider these in a separate paper.

6.3. The Euler pentagonal number theorem shows that the excess of the number of

additive partitions of n into an even number of distinct parts over those into an odd

number of such parts is bounded—in fact, this excess is −1, 0, or 1.
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Table 6.1

k 1 2 3 4 5 6 7 8 9 10 20

f(k) −1 0 1 1 −2 −9 −9 50 287 412 −981680358

Cheema and Motzkin showed in [5, Theorem 2.I] that for the analogous function in

the case of partitions of two-dimensional vectors (n1,n2), the analogous absolute value

is unbounded. We can in fact show that the same is true for the analogous function in

the case of vector partitions of k-dimensional vectors for every k≥ 2. Even more than

this follows from the more general theorem (see [14, Theorem 2.9]) which implies that

if f(k) denotes the value of c∗(p1p2 ···pk), where p1,p2, . . . ,pk are distinct arbitrarily

chosen primes, then, as k→∞, log |f(k)|/k is unbounded—and, in fact,

limsup
k→∞

(
ln
∣∣f(k)∣∣
k logk

)
= 1. (6.3)

There are many unsolved problems concerning e∗(n) and p∗(n) (see [14, 15]). We

content ourselves mentioning only the following.

(I) Is k= 2 the only value of k for which f(k)= 0?

(II) Are f(3)= f(4)= 1 and f(6)= f(7)=−9 the only cases of f(k) taking a value

more than once?

For the convenience of the reader, we give the first few values of f(k) in Table 6.1.

Also, f(30)= 17235101634875315375.

It may be of some interest to know that for 2 ≤ n ≤ 100, the function e∗(n) takes

only the values −1, 0, or 1. It takes the value 0 forty times, −1 twenty-eight times,

and 1 thirty-one times. The problem of distribution of the values of e∗(n) is open. In

particular, the density of those n for which e∗(n)=−1,0, or 1 is an open problem [14].

Yang [15] has proved—as conjectured by Subbarao and Verma [14]—that f(k)
changes sign infinitely often and that |f(k)| is not ultimately monotonic, that is, there

is no fixed integer k0 such that |f(k)| is monotonic for all k > k0.
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