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DOUBLE-DUAL n-TYPES OVER BANACH SPACES
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Let E be a Banach space. The concept of n-type over E is introduced here, generalizing the
concept of type over E introduced by Krivine and Maurey. Let E′′ be the second dual of E
and fix g′′1 , . . . ,g′′n ∈ E′′. The function τ : E×Rn → R, defined by letting τ(x,a1, . . . ,an) =
‖x+∑ni=1aig

′′
i ‖ for all x ∈ E and all a1, . . . ,an ∈R, defines an n-type over E. Types that can

be represented in this way are called double-dual n-types; we say that (g′′1 , . . . ,g′′n)∈ (E′′)n
realizes τ . Let E be a (not necessarily separable) Banach space that does not contain �1. We
study the set of elements of (E′′)n that realize a given double-dual n-type over E. We show
that the set of realizations of this n-type is convex. This generalizes a result of Haydon and
Maurey who showed that the set of realizations of a given 1-type over a separable Banach
space E is convex. The proof makes use of Henson’s language for normed space structures
and uses ideas from mathematical logic, most notably the Löwenheim-Skolem theorem.

2000 Mathematics Subject Classification: 46B04, 46B20.

1. Introduction. We first give a definition of n-types over Banach spaces and show

how this definition generalizes the definition of type given by Krivine and Maurey.

For every x̄ = (x1, . . . ,xn)∈ En, define τx̄ : E×Rn→R by setting

τx̄
(
y,a1, . . . ,an

)= ∥∥∥∥∥y+
n∑
i=1

aixi

∥∥∥∥∥ (1.1)

for all y ∈ E and for all a1, . . . ,an ∈R.

Definition 1.1. Let E be a Banach space and fix n ∈ N. For every x̄ ∈ En, let τx̄
be defined as above. A function τ : E → R is an n-type over E if τ is a function in the

closure (with respect to the topology of pointwise convergence) of the set of functions

{τx̄ : x̄ ∈ En}.
Krivine and Maurey [3] defined types over a Banach space E in the following way. For

every x ∈ E, let tx : E → R be defined by tx(y) = ‖y +x‖ for all y ∈ E. Then a type

over E is a function t : E → R in the closure (with respect to the topology of pointwise

convergence) of the set {tx : x ∈ E}.
The types introduced by Krivine and Maurey coincide with the 1-types introduced in

Definition 1.1 above. Indeed, every 1-type over E, τ defines a type (in the sense of Krivine

and Maurey) by letting t(x)= τ(x,1) for all x ∈ E. Conversely, if t is a type (in the sense

of Krivine and Maurey), define τ(x,a)= |a|t((1/a)x) if a≠ 0 and τ(x,0)= ‖x‖. With

this definition, τ is a 1-type over E.
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The definition of n-type over a Banach space E given above reflects an analyst’s view

of an n-type as a description of an n-tuple of elements (u1, . . . ,un) from a Banach

space ultrapower of E. This notion of n-type coincides with the model theorist’s notion

of quantifier-free n-type over E in the language of Banach spaces. The reader is referred

to [2] for more details.

Let E′′ denote the second dual of E and let ḡ′′ = (g′′1 , . . . ,g′′n)∈ (E′′)n. Define τḡ′′ : E×
R→R by setting τḡ′′(y,a1, . . . ,an)= ‖y+

∑n
i=1aig

′′
i ‖ for ally ∈ E and alla1, . . . ,an ∈R.

By the principle of local reflexivity, the function τḡ′′ is an n-type over E. Types that can

be realized in this way are called double-dual n-types over E.

Suppose that A⊆ E and ḡ′′ = (g′′1 , . . . ,g′′n)∈ (E′′)n. We let tp(ḡ′′/A) denote the func-

tion τ : A×Rn → R defined by setting τ(x,a1, . . . ,an) = ‖x+
∑n
i=1aig

′′
i ‖ for all x ∈ A

and all a1, . . . ,an ∈R.

Let τ be a double-dual n-type over E. Following the notation introduced in [1], we let

Rep[τ]= {ḡ′′ ∈ (E′′)n : τ = τḡ′′
}

(1.2)

be the set of elements of (E′′)n that realize τ .

2. Statement of the main theorem. The purpose of this paper is to prove the fol-

lowing theorem.

Theorem 2.1. Let E be a Banach space that does not contain �1. Let τ be a double-

dual n-type over E. Then Rep[τ] is convex.

If we take n= 1, we obtain the following proposition.

Proposition 2.2. Let E be a Banach space that does not contain �1. Let τ be a double-

dual 1-type over E. Then Rep[τ] is convex.

The previous proposition is a generalization of a result of Haydon and Maurey [1,

Theorem 3.2].

Theorem 2.3 (Haydon and Maurey). Let E be a separable Banach space that does not

contain �1. Let τ be a double-dual 1-type over E. Then Rep[τ] is convex.

The proof provided in [1] requires the hypothesis that E is separable. The purpose

of this paper is to show how methods from model theory can be used to remove this

hypothesis.

The proof of Proposition 2.2 will be provided in Section 3. The following proposition

shows that Theorem 2.1 is an immediate consequence of Proposition 2.2.

Proposition 2.4. Let E be a Banach space. Suppose that Rep[τ] is convex whenever

τ is a double-dual 1-type over E. Then Rep[τ] is convex whenever τ is a double-dual

n-type over E.

Proof. Let τ be a double-dual n-type over E and suppose that τ is realized in (E′′)n

by (g′′1 , . . . ,g′′n). For any given n-tuple (a1, . . . ,an)∈Rn, consider the function

D(a1,...,an) : (E′′)n �→ E′′, (
u′′1 , . . . ,u

′′
n
) � �→ n∑

i=1

aiu′′i . (2.1)

This map is σ(E′′,E′)-continuous and linear.
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Therefore, D−1
(a1,...,an)(Rep[tp(

∑n
i=1aig

′′
i /E)]) is convex for all a1, . . . ,an ∈R. Thus

Rep
[
tp
(
g′′1 , . . . ,g

′′
n
)]= ⋂

(a1,...,an)∈Rn
D−1
(a1,...,an)

Rep

tp

 n∑
i=1

aig′′i /E

 (2.2)

is convex.

3. Lemmas. The proof of Proposition 2.2 requires a sequence of lemmas, which will

be discussed in this section. The proof of the proposition will be provided at the end

of this section.

Throughout this section, we assume that E is a Banach space that does not contain �1.

We denote by E′ its dual and by E′′ its second dual. If F is any Banach space and G ⊆ F ′,
we denote by σ(F,G) the topology on F induced by open sets of the form {x ∈ F |
〈x,gi〉 ≤ ε for all i = 1, . . . ,n}, where n ∈ N, g1, . . . ,gn ∈ G, and ε > 0. The closure of a

set V ⊆ F with respect to this topology is denoted by σ(F,G)cl(V). The weak∗-topology

on E′′ is therefore denoted by σ(E′′,E′). For brevity, we write Ṽ = σ(E′′,E′)cl(V) for

any V ⊆ E′′.
If F is a normed space and M > 0, we let �M(F) = {x ∈ F | ‖x‖ ≤ M} denote the

closed M-ball in F .

Let τ be a double-dual 1-type over E. Let S = Rep[τ] and g′′1 ,g
′′
2 ∈ S. In order to prove

that S is convex, we need to show that the line segment joining g′′1 and g′′2 is contained

in S. Set M = ‖g′′1 ‖.
We will use Henson’s language for normed space structures. See [2] for more details.

It is assumed that the reader is familiar with the concepts of normed space structures [2,

Sections 2 and 3], positive bounded formulas (Section 5), approximate satisfaction and

approximate elementary substructures (Section 6), and the Löwenheim-Skolem theorem

(Section 9).

Consider the �-structure (E,E′,E′′) whose sorts are R, E, E′, and E′′ and whose func-

tions are addition, scalar multiplication and the norm for each sort, the absolute value

function for real numbers, the constants g′′1 and g′′2 , and the following additional func-

tions:

E �→ E′′, x � �→ I(x) := the canonical image of x in E′′,

E′′ �→R, x′′ � �→ d(x′′) := inf
{‖x′′ −s′′‖ : s′′ ∈ S},

E×E′ �→R, (x,x′) � �→ 〈x,x′〉,
E′ ×E′′ �→R, (x′,x′′) � �→ 〈x′,x′′〉.

(3.1)

Lemma 3.1. Let Ac be a separable subset of E. There exists a separable approximate

elementary substructure of (E,E′,E′′), (A,B,C) �A (E,E′,E′′), such that Ac ⊆ A and for

all c ∈ C and all δ > 0, the following condition holds:

(i) (A,B,C) �A d(c) ≤ δ implies that there exists a c0 ∈ C such that ‖c0−c‖ ≤ 2δ
and d(c0)= 0.

Furthermore, for any approximate elementary substructure of (E,E′,E′′), the follow-

ing holds:

(ii) if d(c) > 0, then there exists a∈A with ‖a+g′′1 ‖≠ ‖a+c‖.



1750 MARKUS POMPER

Proof. Using the downward Löwenheim-Skolem theorem [2, Theorem 9.14], choose

a separable approximate elementary substructure of (E,E′,E′′),

(
A0,B0,C0

)�A (E,E′,E′′), (3.2)

such thatAc ⊆A. Let c1,c2, . . . enumerate a dense subset ofC0. There exist e′′1 ,e
′′
2 , . . .∈ E′′

such that

∥∥cj−e′′j ∥∥≤ 2d
(
cj
)
, d

(
e′′j
)= 0, (3.3)

for all j ∈N.

There exists another separable approximate elementary substructure of (E,E′,E′′),

(
A1,B1,C1

)�A (E,E′,E′′), (3.4)

which contains (A0,B0,C0∪{e′′1 ,e′′2 , . . .}). We continue in this fashion through countably

many steps and then take

(A,B,C)= cl

( ∞⋃
k=1

(
Ak,Bk,Ck

))
. (3.5)

This structure is an approximate elementary substructure of (E,E′,E′′) in which (i)

holds.

Condition (ii) holds in every approximate elementary substructure of (E,E′,E′′). Sup-

pose (A,B,C) is an approximate elementary substructure of (E,E′,E′′) and c ∈ C such

that d(c)= δ1 > 0. Then c �∈ S = Rep[tp(g′′1 /E)]. Therefore, there exist e∈ E and δ2 > 0

such that |‖e+c‖−‖e+g′′1 ‖| ≥ δ2. Let m= ‖e‖+1. Hence

(E,E′,E′′)�A ∃mx
(∣∣‖x+c‖−∥∥x+g′′1 ∥∥∣∣≤ δ2

)
. (3.6)

Here, the variable x ranges over the sort associated with E. Condition (ii) follows be-

cause the same formula is approximately true in (A,B,C).

Lemma 3.2. Let (A,B,C) �A (E,E′,E′′) as in Lemma 3.1. There exists an isometric

embedding P : B→A′ such that 〈a,Pb〉 = 〈a,b〉 for all a∈A and all b ∈ B.

Proof. Define P : B → A′ by setting 〈a,Pb〉 = 〈a,b〉 for all b ∈ B and all a ∈ A. The

function P is linear; we need to show that it is an isometry. Let 1> ε > 0. Observe that

(A,B,C)�A ∀1b
(‖b‖ ≤ (1−ε)3∨∃1a

(〈a,b〉 ≥ (1−ε)4)) (3.7)

because the same sentence is approximately true in the structure (E,E′,E′′) by the

definition of the norm of a linear functional. Here, the variable b ranges over B and a
ranges over A. Now, fix b ∈ B of norm 1 and set b0 = (1−ε)b. Consider the sentence

∀1−εb
(‖b‖ ≤ (1−ε)2∨∃(1−ε)−1a

(〈a,b〉 ≥ (1−ε)2)). (3.8)
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Because this sentence is true in (A,B,C), there exists a ∈ A such that ‖a‖ ≤ (1−ε)−1

and 〈a,b0〉 ≥ (1−ε)2. Then

‖Pb‖ = (1−ε)−1
∥∥Pb0

∥∥≥ 〈
a,Pb0

〉
(1−ε)‖a‖ ≥

(1−ε)2
(1−ε)(1−ε)−1

= (1−ε)2. (3.9)

Thus, ‖P‖ ≥ 1. For each b ∈ B, Pb is the restriction of b to A and we obtain ‖Pb‖ ≤ 1.

The following lemma is not needed but is of its own interest.

Lemma 3.3. Let (A,B,C)�A (E,E′,E′′) as in Lemma 3.1. Let U denote the unit ball of

A′ and let V denote the unit ball of PB. Then V is σ(A′,A)-dense in U .

Proof. Let Ṽ = σ(A′,A)cl(V). Lemma 3.2 and the weak∗-lower semicontinuity of

the norm yield Ṽ ⊆U . Suppose Ṽ ≠U . Then there exists b0 ∈U \Ṽ . Since Ṽ is convex and

weak∗-closed (i.e., σ(A′,A)-closed) and {b0} is σ(A′,A)-compact, there exist a weak∗-

continuous linear functional a of norm at most 1 and real numbers r < s such that for

all b ∈ Ṽ ,

〈a,b〉 ≤ r < s < 〈a,b0
〉≤ 1. (3.10)

Since Ṽ is symmetric about the origin, we get

∣∣〈a,b〉∣∣≤ r < s < 〈a,b0
〉≤ 1 (3.11)

for all b ∈ Ṽ . Because a is a weak∗-continuous linear functional on A′, we see that

a∈�1(A). But then

(A,B,C)�A ∃1a
((‖a‖ ≥ s)∧∀1b

(−r ≤ 〈a,b〉 ≤ r)), (3.12)

where r < s ≤ 1 are as before. Here, the variable a ranges over the sort associated with

A and b ranges over the sort associated with B. We may then choose ε > 0 such that

(1+ε)3r < s. Set λ= (1+ε). Because

(E,E′,E′′)�A ∃1a
((‖a‖ ≥ s)∧∀1b

(−r ≤ 〈a,b〉 ≤ r)), (3.13)

we obtain

(E,E′,E′′)� ∃λa
((‖a‖ ≥ λ−1s

)∧∀1/λb
(−λr ≤ 〈a,b〉 ≤ λr)). (3.14)

Fix such an element a∈ E. We obtain

‖a‖ = sup
{〈a,b〉 : b ∈�1(E′)

}
= sup

{
(1+ε)〈a,b〉 : b ∈�(1+ε)−1(E′)

}
≤ (1+ε)2r < (1+ε)−1s ≤ ‖a‖.

(3.15)

This is a contradiction.
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Let (xk)k∈N enumerate a dense set in A and {λ1,λ2, . . .} enumerate a dense set in R.

Without loss of generality, x0 = 0, λ0 = 0, and λ1 = 1.

Lemma 3.4. Let (A,B,C) �A (E,E′,E′′) as in Lemma 3.1 and let P be as given by

Lemma 3.2. For i = 1,2, there exists a bounded sequence (ai,j)j∈N in A such that

limj→∞〈ai,j −g′′i ,b〉 = 0 for all b ∈ B and ‖xk1 + λk2a1,j + λk3a2,j‖ ≤ ‖xk1 + λk2g
′′
1 +

λk3g
′′
2 ‖+2−j+1 for all 1≤ k1,k2,k3 ≤ j ∈N.

Proof. Let b1,b2, . . . enumerate a dense set in B. Fix j ∈ N. Let k1,k2,k3 ≤ j and

consider the set

Uk1,k2,k3,j =
{(
e1,e2

)∈ E2 :
∥∥xk1+λk2e1+λk3e2

∥∥< ∥∥xk1+λk2g
′′
1 +λk3g

′′
2

∥∥+2−j
}
.
(3.16)

Observe that Uk1,k2,k3,j is an open convex set. Furthermore, (g′′1 ,g
′′
2 )∈ ◦(Ũk1,k2,k3,j) for

all k1,k2,k3 ≤ j. Thus

(
g′′1 ,g

′′
2

)∈ ⋂
k1,k2,k3≤j

◦(
Ũk1,k2,k3,j

)
. (3.17)

A consequence of the Hahn-Banach theorem (see [5, Section 15, Lemma II.E., pages 76–

79]) yields that
⋂
k1,k2,k3≤j Uk1,k2,k3,j is not empty and

(
g′′1 ,g

′′
2

)∈ ◦(∼( ⋂
k1,k2,k3≤j

Uk1,k2,k3,j

))
. (3.18)

Therefore, there exists (e1,j ,e2,j) ∈
⋂
k1,k2,k3≤j Uk1,k2,k3,j such that |〈ei,j−g′′i ,bk〉| ≤ 2−j

for i= 1,2 and all k≤ j.
Let y1,y2 be variables that range over the sort associated with E. For all k1,k2,k3 ≤ j,

let φk1,k2,k3,j(y1,y2) be the positive bounded �(A,B,C)-formula∥∥xk1+λk2y1+λk3y2

∥∥−∥∥xk1+λk2g
′′
1 +λk3g

′′
2

∥∥≤ 2−j . (3.19)

For all k≤ j, let ψk,j(y1,y2) be the positive bounded �(A,B,C)-formula∣∣〈y1−g′′1 ,bk
〉∣∣≤ 2−j∧∣∣〈y2−g′′2 ,bk

〉∣∣≤ 2−j. (3.20)

Let ρj(y1,y2) be the positive bounded �(A,B,C)-formula∧
k1,k2,k3≤j

φk1,k2,k3,j
(
y1,y2

)∧∧
k≤j
ψk,j

(
y1,y2

)
. (3.21)

Recall that M = ‖g1‖. By the initial observation, we have

(E,E′,E′′)�A ∃M+1y1∃M+1y2ρj
(
y1,y2

)
. (3.22)

Because (A,B,C)�A (E,E′,E′′), we have

(A,B,C)�A ∃M+1y1∃M+1y2ρj
(
y1,y2

)
. (3.23)
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We may therefore choose a1,j and a2,j in A such that∥∥xk1+λk2a1,j+λk3a2,j
∥∥< ∥∥xk1+λk2g

′′
1 +λk3g

′′
2

∥∥+2−j+1 (3.24)

for all k1,k2,k3 ≤ j and |〈ai,j − g′′i ,bk〉| ≤ 2−j+1 for i = 1,2 and all k ≤ j. Further,

‖ai,j‖ ≤ M+1. Thus, the sequences (ai,j)j∈N are bounded for i = 1,2. The statement

of the lemma follows because {b1,b2, . . .} is dense in B and (ai,j)j∈N is bounded for

i= 1,2.

The hypothesis that E does not contain �1 has not been used so far. In the following

two lemmas, we make use of this hypothesis.

Lemma 3.5. Let (A,B,C) �A (E,E′,E′′) as in Lemma 3.1. There exists an isometric

embedding Q : span(A∪{g′′1 ,g′′2 }) → A′′ such that 〈Pb,Q(Ia+λg′′1 +µg′′2 )〉 = 〈b,Ia+
λg′′1 +µg′′2 〉 for all a∈A, b ∈ B, and λ,µ ∈R.

Proof. Using Lemma 3.4, there exists, for each i=1,2, a bounded sequence (ai,j)j∈N
in A such that limj→∞〈ai,j −g′′i ,b〉 = 0 for all b ∈ B and ‖xk1 + λk2a1,j + λk3a2,j‖ ≤
‖xk1+λk2g

′′
1 +λk3g

′′
2 ‖+2−j+1 for all 1≤ k1,k2,k3 ≤ j ∈N. Because A does not contain

�1 and the sequence (ai,j)j∈N is bounded, we may apply Rosenthal’s theorem [4]. We

obtain a function j : N → N with m ≤ j(m) < j(m+ 1) for all m ∈ N such that the

subsequence (ai,j(m))m∈N is σ(A,A′)-Cauchy for each i= 1,2. We then define, for every

i= 1,2, a linear functional Ψi ∈A′′ by setting Ψi(a′)= limm→∞〈ai,j(m),a′〉 for alla′ ∈A′.
We then define a linear operator Q : span(A∪{g′′1 ,g′′2 })→ A′′ by setting Qg′′i = Ψi for

i = 1,2 and Qa = Ja for all a ∈ A. (Here, J : A→ A′′ denotes the canonical embedding

from A into A′′.)
It is immediate from the definition that Q fixes IA pointwise and 〈Pb,Q(Ia+λg′′1 +

µg′′2 )〉 = 〈b,Ia+λg′′1 +µg′′2 〉 for all a∈A, b ∈ B, and λ,µ ∈R.

We show that Q is an isometry. Let λ,µ ∈R and a∈A. Because P(B)⊆A′, we have∥∥Q(λg′′1 +µg′′2 +a)∥∥= sup
{〈
Q
(
λg′′1 +µg′′2 +a

)
,a′
〉

: a′ ∈�1(A′)
}

≥ sup
{〈
Q
(
λg′′1 +µg′′2 +a

)
,a′
〉

: a′ ∈�1
(
P(B)

)}
= sup

{〈
λg′′1 +µg′′2 +a,b

〉
: b ∈�1(B)

}
= ∥∥λg′′1 +µg′′2 +a∥∥.

(3.25)

On the other hand, the norm isσ(A′′,A′)-lower semicontinuous. Thus, for all integers

k1,k2,k3 ∈N, we have∥∥Q(xk1+λk2g
′′
1 +λk3g

′′
2

)∥∥≤ liminf
m→∞

∥∥Q(xk1+λk2a1,j(m)+λk3a2,j(m)
)∥∥

≤ liminf
m→∞

(∥∥xk1+λk2a1,j(m)+λk3a2,j(m)
∥∥+2−j(m)+1)

≤ ∥∥xk1+λk2g
′′
1 +λk3g

′′
2

∥∥.
(3.26)

Therefore, Q is an isometry.

Let C0 = span(A∪{g′′1 ,g′′2 }). Since every element g′′ ∈ S realizes tp(g′′1 /E), every

element c ∈Q(S∩C0) realizes tp(g′′1 /A). Indeed, if c ∈Q(S∩C0), then c =Q(g′′) for
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some g′′ ∈ S∩C0. Then, for every a∈A, we have

‖a+c‖ = ‖a+g′′‖ = ∥∥a+g′′1 ∥∥. (3.27)

So, Q(S∩C0)⊆ Rep[tp(g′′1 /A)]∩Q(C0).
Conversely, Q(S ∩ C0) ⊇ Rep[tp(g′′1 /A)]∩Q(C0). Indeed, if c ∈ Rep[tp(g′′1 /A)]∩

Q(C0), there exists g′′ ∈ C0 such that Q(g′′) = c. We show that g′′ ∈ S: suppose that

g′′ �∈ S. Then d(g′′) > 0, and by Lemma 3.1(ii), there exists a∈A such that ‖a+g′′‖≠
‖a+ g′′1 ‖. But then ‖a+ c‖ = ‖a+Qg′′‖ = ‖a+ g′′‖ ≠ ‖a+ g′′1 ‖, which contradicts

the assumption that c ∈ Rep[tp(g′′1 /A)]. Therefore, g′′ ∈ S∩C0, and so c = Q(g′′) ∈
Q(S∩C0).

We obtain

Q
(
S∩C0

)= Rep
[
tp
(
g′′1 /A

)]∩Q(C0
)
. (3.28)

The following lemma shows that S contains all convex combinations of g′′1 and g′′2 .

Because g′′1 and g′′2 are arbitrary elements of S = Rep[τ], this shows that Rep[τ] is

convex.

Lemma 3.6. Let (A,B,C) �A (E,E′,E′′) as in Lemma 3.1 and let Q be as given by

Lemma 3.5. Then Q(C∩S) contains all convex combinations of Qg′′1 and Qg′′2 , and S
contains all convex combinations of g′′1 and g′′2 .

Proof. Let λ∈ [0,1]. By construction, the signature has constants g′′1 and g′′2 of the

sort associated with E′′. Therefore, g′′1 ,g
′′
2 ∈ C . Since g′′1 ,g

′′
2 ∈ S, we obtain g′′1 ,g

′′
2 ∈

S∩C . By the previous remark, Q(g′′1 ) and Q(g′′2 ) are elements of Rep[tp(g′′1 /A)]. Since

A is separable, Theorem 2.3 yields that Rep[tp(g′′1 /A)] is convex. Therefore

Q
(
λg′′1 +(1−λ)g′′2

)= λQg′′1 +(1−λ)Qg′′2 ∈ Rep
[
tp
(
g′′1 /A

)]∩Q(C0
)
. (3.29)

By (3.28),

λg′′1 +(1−λ)g′′2 ∈ S∩C0 ⊆ Rep
[
tp
(
g′′1 /E

)]
. (3.30)

We are now ready to prove Proposition 2.2.

Proof. Let E be a Banach space that does not contain �1, and let τ be a double-dual

1-type over E. Let g′′1 ,g
′′
2 ∈ S = Rep[τ]. Let A0 ⊆ E be any separable set. Then choose

an approximate elementary substructure (A,B,C)� (E,E′,E′′) as in Lemma 3.1. Choose

the isometric embeddingQ as in Lemma 3.5. By Lemma 3.6, S = Rep[τ] contains all lin-

ear combinations of the form λg′′1 +(1−λ)g′′2 . Because g′′1 ,g
′′
2 ∈ Rep[τ] were arbitrary,

we obtain that Rep[τ] is convex.

4. Remarks and questions. We conclude this paper by remarking that the hypothe-

sis that E does not contain �1 in Proposition 2.2 cannot be removed. Indeed, let E = �1.

Choose g′′ ∈ E′′ in the band �⊥⊥1 with ‖g′′‖ = 1. Then τg′′(x)= ‖x+g′′‖ = ‖x‖+‖g′′‖ =
‖x‖ + 1 and τ−g′′(x) = ‖x − g′′‖ = ‖x‖ + ‖g′′‖ = ‖x‖ + 1 for all x ∈ E. Therefore,

−g′′ ∈ Rep[τg′′], which shows that Rep[τg′′] is not convex.
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Haydon and Maurey also proved that Rep[τ] is compact with respect to the weak∗-

topology if E is separable and τ is a double-dual 1-type over E.

This poses the following question.

Question 4.1. Let E be a (not necessarily separable) Banach space that does not

contain �1. Let τ be a double-dual 1-type over E. Is then Rep[τ] compact with respect

to the weak∗-topology on E′′?
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