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RESTRICTED PARTITIONS
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We prove a known partitions theorem by Bell in an elementary and constructive way. Our
proof yields a simple recursive method to compute the corresponding Sylvester polynomials
for the partition. The previous known methods to obtain these polynomials are in general
not elementary.
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1. Proof of Bell’s theorem. The main purpose of this section is to prove the following

theorem, originally proved by Bell in [1], by elementary methods.

Theorem 1.1. For a fixed positive integer n, let A1, . . . ,An be positive integers and

let M′ be their least common multiple. For a fixed integer r ′, the number of nonnegative

solutionsXn,. . . ,X1 ofAn·Xn+···+A1·X1=M′K+r ′, which we indicate byDn(M′K+
r ′), is given by a polynomial in K, which is either the zero polynomial or a polynomial

with rational coefficients of degree n−1.

First, we need the following known result.

Lemma 1.2. For N ≥ 0 and m≥ 1, Hm(N)= 0m+1m+···+Nm is a polynomial in N
of degree m+1 with rational coefficients. Besides, Hm(−1)= 0.

For example, we have

H1(N)= 1
2
N2+ 1

2
N, H2(N)= 1

3
N3+ 1

2
N2+ 1

6
N. (1.1)

There exist several elementary methods to obtain the polynomials Hm(N).
We will see that Dn(M′K+r ′) is a polynomial as a direct consequence of Lemma 1.2.

The proof of Theorem 1.1. We are going to prove Bell’s theorem by mathemat-

ical induction. The theorem is clearly true for n = 1 since in this case, the number of

solutions to the equation A1·X1=A1·K+r ’ is given by the polynomials

D1(A1·K+r ′)= 1 if r ′ is multiple of A1,

D1(A1·K+r ′)= 0 if r ′ is not a multiple of A1.
(1.2)

Let n ≥ 1 be a given, and assume Theorem 1.1 holds for n−1; we will prove it is also

true for n.
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The equation corresponding to n is

An·Xn+A(n−1)·X(n−1)+···+A1·X1=M′ ·K+r ′. (1.3)

From the inductive hypothesis, we know the polynomials Dn−1(MK+r) describing the

number of solutions to A(n−1)·X(n−1)+···+A1·X1=M ·K+r for all r , where M
is the least common multiple of A(n−1),A(n−2), . . . ,A1.

We can write

M′ ·K+r ′ =An(α(K+c)+a)+b, (1.4)

where 0≤ b <An and 0≤ a<α.

Note that M′ ·K+r ′ ≥ 0 if and only if K ≥−c.

Letting the variable Xn run through all possible values of n′′ ∈ {0,1,2, . . . ,α(K+c)+
a}, we obtain

Dn(M′K+r ′)=
α(K+c)+a∑
n′′=0

Dn−1(Ann′′ +b). (1.5)

In order to directly use the induction hypothesis, we need to express each of the terms

Ann′′ +b or the form MK+r , for suitable K and r .

For that purpose, consider the set partition

{
0,1, . . . ,α(K+c)+a}

=
⋃

0≤i≤a
{αS+i : S = 0,1, . . . ,K+c}∪

⋃
a+1≤i≤α−1

{αS+i : S = 0,1, . . . ,K+c−1}. (1.6)

Letting β=M′/M , we have An·α=Mβ and, by (1.5), we obtain

Dn(M′K+r ′)=
a∑
i=0

K+c∑
S=0

Dn−1
(
M ·(β·S)+Ani+b)

+
α−1∑
i=a+1

K+c−1∑
S=0

Dn−1
(
M ·(β·S)+Ani+b).

(1.7)

Each Dn−1(M ·(β·S)+Ani+b) is, by induction hypothesis, a polynomial in S of degree

n− 2 or the zero polynomial. The proof of Theorem 1.1 now follows directly from

Lemma 1.2.

Note that (1.7) yields a recursive method to obtainDn from previousDn−1,Dn−2, . . . ,D1,

which we will demonstrate in the next section.

2. An example of building method. We are going to determine the polynomial

D3(12K+8) that corresponds to the equation

4X3+3X2+2X1= 12·K+8. (2.1)
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Since A3 = 4 and α = 3, (1.4) becomes 12 ·K+8 = 4 · (3K+2); therefore a = 2, b = 0,

and c = 0. Besides, M = 6 and β= 2. Therefore, (1.7) becomes

D3(12K+8)=
2∑
i=0

K∑
S=0

D2
(
6(2S)+4i

)

=
K∑
S=0

D2
(
6(2S)

)+
K∑
S=0

D2
(
6(2S)+4

)+
K∑
S=0

D2
(
6(2S)+8

)
.

(2.2)

Computation of D2(6K) that corresponds to the equation 3X2+2 ·X1 =
6K. Since A2 = 3 and α = 2, (1.4) becomes 6K = 3(2K); therefore a = 0, b = 0, and

c = 0. Besides, M = 2 and β= 3. Therefore, (1.7) becomes

D2(6K)=
0∑
i=0

K∑
S=0

D1
(
2(3S)+3i

)+
1∑
i=1

K−1∑
S=0

D1
(
2·(3S)+3i

)

=
K∑
S=0

D1
(
2(3S)

)+
K−1∑
S=0

D1
(
2(3S)+3

)
.

(2.3)

Since the polynomial that corresponds to the equation 2X1= 2K is D1(2K)= 1 and the

polynomial that corresponds to the equation 2X1= 2K+3 is D1(2K+3)= 0, we obtain

D2(6K)=K+1, and hence

D2
(
6(2S)

)= 2S+1. (2.4)

Computation of D2(6K+4) that corresponds to the equation 3 ·X2+2 ·
X1 = 6K+4. Since A2 = 3 and α = 2, (1.4) becomes 6K+4 = 3(2K+1)+1; therefore

a= 1, b = 1, and c = 0. Besides, M = 2 and β= 3. Therefore, (1.7) becomes

D2(6K+4)=
1∑
i=0

K∑
S=0

D1
(
2(3S)+3i+1

)

=
K∑
S=0

D1
(
2(3S)+1

)+
K∑
S=0

D1
(
2(3S)+4

)
.

(2.5)

Since the polynomial that corresponds to the equation 2X1= 2K+1 is D1(2K+1)= 0

and the polynomial that corresponds to the equation 2X1 = 2K+4 is D1(2K+4) = 1,

we obtain D2(6K+4)=K+1, and hence

D2
(
6(2S)+4

)= 2S+1. (2.6)

Computation ofD2(6K+8) that corresponds to the equation 3X2+2·X1=
6K+8. Since A2= 3 and α= 2, (1.4) becomes 6K+8= 3(2(K+1))+2; therefore a= 0,

b = 2, and c = 1. Besides, M = 2 and β= 3. Therefore, (1.7) becomes

D2(6K+8)=
0∑
i=0

K+1∑
S=0

D1
(
2(3S)+3i+2

)+
1∑
i=1

K∑
S=0

D1
(
2·(3S)+3i+2

)

=
K+1∑
S=0

D1
(
2(3S)+2

)+
K∑
S=0

D1
(
2(3S)+5

)
.

(2.7)
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Since the polynomial that corresponds to the equation 2X1= 2K+2 is D1(2K+2)= 1

and the polynomial that corresponds to the equation 2X1 = 2K+5 is D1(2K+5) = 0,

we obtain D2(6K+8)=K+2, and hence

D2
(
6(2S)+8

)= 2S+2. (2.8)

From (2.2), (2.4), (2.6), and (2.8), we have

D3(12K+8)=
K∑
S=0

(2S+1)+
K∑
S=0

(2S+1)+
K∑
S=0

(2S+2)

=
K∑
S=0

(6S+4)= 6H1(K)+4(K+1)

= 6
(

1
2
K2+ 1

2
K
)
+4(K+1)= 3K2+7K+4.

(2.9)

Remarks 2.1. (i) The recursive method to compute Dn(M′K+r ′), given in this arti-

cle, works well for relatively small values of n, but the computations get progressively

worse as n grows. (ii) A similar argument shows that there exist polynomials that count

the number of solutions X1, . . . ,Xn, where all Xi > 0.
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