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RESTRICTED PARTITIONS

RAFAEL JAKIMCZUK

Received 2 June 2003 and in revised form 9 September 2003

We prove a known partitions theorem by Bell in an elementary and constructive way. Our
proof yields a simple recursive method to compute the corresponding Sylvester polynomials
for the partition. The previous known methods to obtain these polynomials are in general
not elementary.
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1. Proof of Bell’s theorem. The main purpose of this section is to prove the following
theorem, originally proved by Bell in [1], by elementary methods.

THEOREM 1.1. For a fixed positive integer n, let Al,...,An be positive integers and
let M’ be their least common multiple. For a fixed integer v, the number of nonnegative
solutions Xn,..., X1 of An-Xn+---+Al-X1=M'K+7r’',whichwe indicate by D,,(M'K +
v'), is given by a polynomial in K, which is either the zero polynomial or a polynomial
with rational coefficients of degree n—1.

First, we need the following known result.

LEMMA 1.2. For N>=0andm >1,H,(N)=0"+1"+ ...+ N™ is a polynomial in N
of degree m + 1 with rational coefficients. Besides, Hy, (—1) = 0.

For example, we have

1

1l 1 _
Hl(N)—ZN +2N, HZ(N)—3

- 1. 5, 1
3, 42,2
N°+ 2N +6N. (1.1)

There exist several elementary methods to obtain the polynomials H,, (N).
We will see that D,,(M'K +7") is a polynomial as a direct consequence of Lemma 1.2.

THE PROOF OF THEOREM 1.1. We are going to prove Bell’s theorem by mathemat-
ical induction. The theorem is clearly true for n = 1 since in this case, the number of
solutions to the equation Al1-X1 = Al -K + 7’ is given by the polynomials

Di(A1-K+7v') =1 if v’ is multiple of Al,

1.2
D1 (A1-K+7v") =0 if v is not a multiple of Al. (1.2)

Let n > 1 be a given, and assume Theorem 1.1 holds for n — 1; we will prove it is also
true for n.
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The equation corresponding to n is
An-Xn+An-1)-X(n-1)+---+A1-X1=M"-K+7'. (1.3)

From the inductive hypothesis, we know the polynomials D,,—; (MK + %) describing the
number of solutions to A(n—-1)-X(n—-1)+---+A1-X1=M- K+ for all », where M
is the least common multiple of A(n—1),A(n-2),...,Al.

We can write

M -K+v' =An(x(K+c)+a)+b, (1.4)

where0<bh<Anand0<a < «.

Note that M’ - K+’ > 0 if and only if K > —c.

Letting the variable X7 run through all possible values of n”” € {0,1,2,...,&x(K+c) +
a}, we obtain

x(K+c)+a
Dp(M'K+7')= > Dp_1(Ann” +b). (1.5)

n'’=0

In order to directly use the induction hypothesis, we need to express each of the terms
Ann'’ + b or the form MK +r, for suitable K and v.
For that purpose, consider the set partition

{0,1,...,x(K +¢) +a}
- U {aS+i:5=0,1,....K+ciu  |J fas+i:s=0,1,....,K+c—1}. (1O

O<i<a a+l<i<ox-1
Letting B = M'/M, we have An - x = M and, by (1.5), we obtain

a K+c
Dy(M'K+7")=> > Dy 1(M-(B-S)+Ani+b)
i=0 $=0
-1 K+c-1
+ > > Dua(M-(B-S)+Ani+b).

i=a+1 S$=0

(1.7)

Each D,,_1 (M- (B-S)+Ani+b) is, by induction hypothesis, a polynomial in S of degree
n — 2 or the zero polynomial. The proof of Theorem 1.1 now follows directly from
Lemma 1.2. d

Note that (1.7) yields a recursive method to obtain D,, from previous D,,_1,Dy_»,...,D1,
which we will demonstrate in the next section.

2. An example of building method. We are going to determine the polynomial
D3 (12K + 8) that corresponds to the equation

4X3+3X2+2X1=12-K+8. (2.1)
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Since A3 =4 and @ = 3, (1.4) becomes 12-K+8 =4 - (3K + 2); therefore a =2, b = 0,
and ¢ = 0. Besides, M = 6 and S = 2. Therefore, (1.7) becomes

2 K
D3(12K+8) = > > D»(6(25) +4i)
i=05=0 2.2)
K K K
= > D2 (6(25)) + Z (6(25) +4) + Z (6(25)+8).

T
(=}

COMPUTATION OF D;(6K) THAT CORRESPONDS TO THE EQUATION 3X2+2-X1 =
6K. Since A2 = 3 and « = 2, (1.4) becomes 6K = 3(2K); therefore a = 0, b = 0, and
¢ = 0. Besides, M = 2 and B = 3. Therefore, (1.7) becomes

Mo
M=

1 —
D>(6K) = D1(2(35)+3i)+z Z (2-(38) +3i)

-
Il
(=}
%)
Il
(=}

o (2.3)

D1(2(3S)) + > D1(2(3S) +3).
$=0

Il
Mw

1%}
Il
<

Since the polynomial that corresponds to the equation 2X1 = 2K is D1 (2K) = 1 and the
polynomial that corresponds to the equation 2X1 = 2K + 3 is D (2K +3) = 0, we obtain
D,(6K) =K +1, and hence

D>(6(2S)) =25 +1. (2.4)

COMPUTATION OF D>, (6K +4) THAT CORRESPONDS TO THE EQUATION 3 - X2 + 2 -
X1 =6K+4. Since A2 =3 and &« = 2, (1.4) becomes 6K +4 = 3(2K + 1) + 1; therefore
a=1,b=1,and c = 0. Besides, M = 2 and B = 3. Therefore, (1.7) becomes

K
D> (6K +4) = z (2(38)+3i+1)

« (2.5)

1(238)+1) + Z (2(35) +4).
0 S=0

Mw I MH

S

Since the polynomial that corresponds to the equation 2X1 =2K+1is D;(2K+1) =
and the polynomial that corresponds to the equation 2X1 = 2K +4 is D; (2K +4) =1,
we obtain D, (6K +4) = K + 1, and hence

D> (6(2S)+4) =2S+1. (2.6)

COMPUTATION OF D> (6K +8) THAT CORRESPONDS TO THE EQUATION 3X2+2-X1 =
6K +8. Since A2 =3 and & = 2, (1.4) becomes 6K +8 = 3(2(K+1)) + 2; therefore a = 0,
b =2,and c = 1. Besides, M = 2 and S = 3. Therefore, (1.7) becomes

0 K+1 1 K
Dy(6K+8)=> > Di(2(38)+3i+2)+ > z (2-(38)+3i+2)
i=0 $=0 i=15=0
K+1 K (2.7)

= > Di(2(38)+2) + Z (2(38) +5).
§=0 §=0
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Since the polynomial that corresponds to the equation 2X1 =2K+2is D1(2K+2) =1
and the polynomial that corresponds to the equation 2X1 = 2K +5 is D1 (2K +5) =0,
we obtain D, (6K + 8) = K + 2, and hence

D3(6(25) +8) =25 +2. (2.8)

From (2.2), (2.4), (2.6), and (2.8), we have

K K K
D3(12K+8) = > (2S+1)+ > (2S+1)+ > (25+2)
5=0 5=0 $=0
K
= > (65+4) = 6H; (K) +4(K +1) (2.9)
5=0

6(%1(2 + %K) +4(K+1) =3K?+7K +4.

REMARKS 2.1. (i) The recursive method to compute D, (M'K +v"), given in this arti-
cle, works well for relatively small values of n, but the computations get progressively
worse as n grows. (ii) A similar argument shows that there exist polynomials that count
the number of solutions X1,...,Xn, where all Xi > 0.
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