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A two-step iterative scheme with errors has been studied to approximate the common fixed
points of two asymptotically nonexpansive mappings through weak and strong convergence
in Banach spaces.
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1. Introduction. In 1995, Liu [4] introduced iterative schemes with errors as follows.

(a) For a nonempty subset C of a normed space E and T : C → C , the sequence {xn}
in C , iteratively defined by

x1 = x ∈ C,
xn+1 =

(
1−an

)
xn+anTyn+un,

yn =
(
1−bn

)
xn+bnTxn+vn, n≥ 1,

(1.1)

where {an}, {bn} are sequences in [0,1] and {un}, {vn} are sequences in E
satisfying

∑∞
n=1‖un‖<∞,

∑∞
n=1‖vn‖<∞, is known as Ishikawa iterative scheme

with errors.

(b) With E, C , and T as in (a), the sequence {xn}, iteratively defined by

x1 = x ∈ C,
xn+1 =

(
1−an

)
xn+anTxn+un, n≥ 1, (1.2)

where {an} is a sequence in [0,1] and {un} a sequence in E satisfying
∑∞
n=1‖un‖<∞, is known as Mann iterative scheme with errors.

In 1999, Huang [2] studied the above schemes for asymptotically nonexpansive map-

pings. Recall that a mapping T : C → C is asymptotically nonexpansive if there is a se-

quence {kn} ⊂ [1,∞) with limn→∞kn = 1 and ‖Tnx−Tny‖ ≤ kn‖x−y‖ for all x,y ∈ C
and for all n∈N, where N denotes the set of positive integers.

Moreover, in 2001, Khan and Takahashi [3] approximated the fixed points of two

asymptotically nonexpansive mappings S,T : C → C through the sequence {xn} given by

x1 = x ∈ C,
xn+1 =

(
1−an

)
xn+anSnyn,

yn =
(
1−bn

)
xn+bnTnxn,

(1.3)

where {an}, {bn} are sequences in [0,1] satisfying certain conditions.
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Inspired and motivated by the study of the above schemes, we suggest a new iterative

scheme {xn} in C constructed through a pair of asymtotically nonexpansive mappings

S,T : C → C given by

x1 = x ∈ C,
xn+1 =

(
1−an

)
xn+anSnyn+un,

yn =
(
1−bn

)
xn+bnTnxn+vn, n≥ 1,

(1.4)

where {an}, {bn} are sequences in [0,1] with appropriate conditions and {un}, {vn}
are sequences in E with

∑∞
n=1‖un‖<∞,

∑∞
n=1‖vn‖<∞.

It is to be noted here that each of the above schemes follows as a special case of our

scheme.

2. Preliminaries. Let E be a Banach space with C as its nonempty convex subset.

Throughout this paper, N denotes the set of positive integers and F(T) the set of fixed

points of the mapping T . Now we list the following definitions and results used to prove

the results in the next section.

Definition 2.1. A mapping T : C → C is uniformly k-Lipschitzian if for some k > 0,

‖Tnx−Tny‖ ≤ k‖x−y‖ for all x,y ∈ C and for all n∈N.

Definition 2.2. A mapping T : C → C is completely continuous if and only if {Txn}
has a convergent subsequence for every bounded sequence {xn} in C .

Definition 2.3. E is said to satisfy Opial’s condition [5] if for any sequence {xn}
in E, xn ⇀x implies that limsupn→∞‖xn−x‖< limsupn→∞‖xn−y‖ for all y ∈ E with

y ≠ x.

Definition 2.4. A mapping T : C → E is called demiclosed with respect to y ∈ E if

for each sequence {xn} in C and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C
and Tx =y .

Lemma 2.5 [6]. Suppose that E is a uniformly convex Banach space and 0<p ≤ tn ≤
q < 1 for all n∈N. Also, suppose that {xn} and {yn} are two sequences of E such that

limsupn→∞‖xn‖ ≤ r , limsupn→∞‖yn‖ ≤ r , and limn→∞‖tnxn+(1−tn)yn‖ = r hold for

some r ≥ 0. Then limn→∞‖xn−yn‖ = 0.

Lemma 2.6 [7]. Let {rn}, {sn}, {tn} be three nonnegative sequences satisfying

rn+1 ≤
(
1+sn

)
rn+tn ∀n≥ 1. (2.1)

If
∑∞
n=1 sn <∞ and

∑∞
n=1 tn <∞, then limn→∞ rn exists.

Lemma 2.7 [1]. Let E be a uniformly convex Banach space satisfying Opial’s condition

and let C be a nonempty closed convex subset of E. Let T be an asymptotically nonex-

pansive mapping of C into itself. Then I−T is demiclosed with respect to zero.
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3. Approximating common fixed points. We start with the following lemma.

Lemma 3.1. Let E be a normed space and C a nonempty bounded closed convex subset

of E. Let, for k > 0, S and T be uniformly k-Lipschitzian mappings of C into itself. Let

{xn} be a sequence as defined in (1.4), where {un}, {vn} are sequences in E such that

limn→∞‖un‖ = 0= limn→∞‖vn‖ and

lim
n→∞

∥
∥xn−Snxn

∥
∥= 0= lim

n→∞
∥
∥xn−Tnxn

∥
∥. (3.1)

Then

lim
n→∞

∥
∥xn−Sxn

∥
∥= 0= lim

n→∞
∥
∥xn−Txn

∥
∥. (3.2)

Proof. Take cn = ‖xn−Tnxn‖ and dn = ‖xn−Snxn‖. Consider

∥
∥xn+1−xn

∥
∥= ∥∥an

(
Snyn−xn

)+un
∥
∥

≤ an
∥
∥(Snyn−Snxn

)+(Snxn−xn
)∥∥+∥∥un

∥
∥

≤ ank
∥
∥(1−bn

)
xn+bnTnxn+vn−xn

∥
∥+andn+

∥
∥un

∥
∥

= ank
∥
∥bn

(
Tnxn−xn

)+vn
∥
∥+andn+

∥
∥un

∥
∥

≤ anbncnk+ank
∥
∥vn

∥
∥+andn+

∥
∥un

∥
∥

≤ cnk+dn+k
∥
∥vn

∥
∥+∥∥un

∥
∥.

(3.3)

That is,

∥
∥xn+1−xn

∥
∥≤ cnk+dn+k

∥
∥vn

∥
∥+∥∥un

∥
∥. (3.4)

Next, consider

∥
∥xn+1−Sxn+1

∥
∥= ∥∥(xn+1−Sn+1xn+1

)+(Sn+1xn+1−Sxn+1
)∥∥

≤ dn+1+k
∥
∥(xn+1−xn

)+(xn−Snxn
)+(Snxn−Snxn+1

)∥∥

≤ dn+1+kdn+k(k+1)
∥
∥xn+1−xn

∥
∥

≤ dn+1+kdn+k(k+1)
[
cnk+dn+k

∥
∥vn

∥
∥+∥∥un

∥
∥]

(3.5)

by (3.4). Taking limsup on both sides in the above inequality, we obtain

limsup
n→∞

∥
∥xn+1−Sxn+1

∥
∥≤ 0. (3.6)

That is,

lim
n→∞

∥
∥xn−Sxn

∥
∥= 0. (3.7)

Similarly, we can prove that

lim
n→∞

∥
∥xn−Txn

∥
∥= 0. (3.8)

This completes the proof of the lemma.
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Lemma 3.2. Let E be a uniformly convex Banach space and C its nonempty bounded

closed convex subset. Let S and T be self-mappings of C satisfying

∥
∥Snx−Sny∥∥≤ kn‖x−y‖,
∥
∥Tnx−Tny∥∥≤ kn‖x−y‖,

(3.9)

for all n ∈ N, where {kn} ⊂ [1,∞) such that
∑∞
n=1(kn−1) <∞. Let {xn} be as in (1.4)

with {an}, {bn} in [δ,1−δ] for some δ∈ (0,1) and {un}, {vn} in E with
∑∞
n=1‖un‖<∞,

∑∞
n=1‖vn‖<∞. If F(S)∩F(T)≠φ, then lim

n→∞‖xn−Sxn‖ = 0= lim
n→∞‖xn−Txn‖.

Proof. Let p ∈ F(S)∩F(T). Then

∥
∥xn+1−p

∥
∥

= ∥∥an
(
Snyn−p

)+(1−an
)(
xn−p

)+un
∥
∥

≤ ankn
∥
∥yn−p

∥
∥+(1−an

)∥∥xn−p
∥
∥+∥∥un

∥
∥

= ankn
∥
∥(1−bn

)
xn+bnTnxn+vn−p

∥
∥+(1−an

)∥∥xn−p
∥
∥+∥∥un

∥
∥

= ankn
∥
∥bn

(
Tnxn−p

)+(1−bn
)(
xn−p

)+vn
∥
∥+(1−an

)∥∥xn−p
∥
∥+∥∥un

∥
∥

≤ anbnk2
n
∥
∥xn−p

∥
∥+ankn

∥
∥vn

∥
∥+an

(
1−bn

)
kn
∥
∥xn−p

∥
∥+(1−an

)∥∥xn−p
∥
∥+∥∥un

∥
∥

= (1+anbnk2
n+an

(
1−bn

)
kn−an

)∥∥xn−p
∥
∥+ankn

∥
∥vn

∥
∥+∥∥un

∥
∥.

(3.10)

Since {kn} is a bounded sequence, therefore there exists h> 0 such that kn ≤ h for all

n≥ 1 so that

∥
∥xn+1−p

∥
∥≤ [1+anbnh

(
kn−1

)+an
(
kn−1

)]∥∥xn−p
∥
∥+anh

∥
∥vn

∥
∥+∥∥un

∥
∥. (3.11)

Take sn = anbnh(kn−1)+an
(
kn−1), tn = anh‖vn‖+‖un‖, and rn = ‖xn−p‖. As

∑∞
n=1 sn <∞ and

∑∞
n=1 tn <∞, so limn→∞‖xn−p‖ exists by Lemma 2.6. Let limn→∞‖xn−

p‖ = c, where c ≥ 0 is a real number. Assume that c > 0, as the result for the case c = 0

is obviously true. Now ‖Tnxn−p‖ ≤ kn‖xn−p‖ for all n∈N gives limsupn→∞‖Tnxn−
p‖ ≤ c. Also,

∥
∥yn−p

∥
∥= ∥∥bn

(
Tnxn−p

)+(1−bn
)(
xn−p

)+vn
∥
∥

≤ ∥∥xn−p
∥
∥+(kn−1

)
bn
∥
∥xn−p

∥
∥+∥∥vn

∥
∥ (3.12)

gives

limsup
n→∞

∥
∥yn−p

∥
∥≤ c. (3.13)

Next, consider

∥
∥Snyn−p+a−1

n un
∥
∥≤ kn

∥
∥yn−p

∥
∥+a−1

n
∥
∥un

∥
∥≤ kn

∥
∥yn−p

∥
∥+ 1

δ
∥
∥un

∥
∥. (3.14)
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By the above inequality and by virtue of ‖un‖→ 0 and kn→ 1 as n→∞, we get

limsup
n→∞

∥
∥Snyn−p+a−1

n un
∥
∥≤ c. (3.15)

Moreover, c = limn→∞‖xn+1−p‖ means that

lim
n→∞

∥
∥an

(
Snyn−p+a−1

n un
)+(1−an

)(
xn−p

)∥∥= c. (3.16)

Applying Lemma 2.5,

lim
n→∞

∥
∥Snyn−xn+a−1

n un
∥
∥= 0. (3.17)

Thus

∥
∥Snyn−xn

∥
∥≤ ∥∥Snyn−xn+a−1

n un
∥
∥+ 1

δ
∥
∥un

∥
∥ (3.18)

yields that

lim
n→∞

∥
∥Snyn−xn

∥
∥= 0. (3.19)

Also, then

∥
∥xn−p

∥
∥≤ ∥∥xn−Snyn

∥
∥+∥∥Snyn−p

∥
∥≤ ∥∥xn−Snyn

∥
∥+kn

∥
∥yn−p

∥
∥ (3.20)

implies that

c ≤ liminf
n→∞

∥
∥yn−p

∥
∥. (3.21)

By (3.13) and (3.21), we obtain

lim
n→∞

∥
∥yn−p

∥
∥= c. (3.22)

That is,

lim
n→∞

∥
∥bn

(
Tnxn−p+b−1

n vn
)+(1−bn

)(
xn−p

)∥∥= c. (3.23)

Again by Lemma 2.5, we get

lim
n→∞

∥
∥Tnxn−xn+b−1

n vn
∥
∥= 0, (3.24)

which finally gives that

lim
n→∞

∥
∥Tnxn−xn

∥
∥= 0. (3.25)

Now
∥
∥Snxn−xn

∥
∥≤ ∥∥Snxn−Snyn

∥
∥+∥∥Snyn−xn

∥
∥

≤ knbn
∥
∥Tnxn−xn

∥
∥+∥∥vn

∥
∥+∥∥Snyn−xn

∥
∥ (3.26)
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implies, together with (3.19) and (3.25), that

lim
n→∞

∥
∥Snxn−xn

∥
∥= 0= lim

n→∞
∥
∥Tnxn−xn

∥
∥. (3.27)

Lemma 3.1 now reveals that

lim
n→∞

∥
∥Sxn−xn

∥
∥= 0= lim

n→∞
∥
∥Txn−xn

∥
∥, (3.28)

which is as desired.

Theorem 3.3. Let E be a uniformly convex Banach space satisfying Opial’s condition

and let C , S, T , and {xn} be as taken in Lemma 3.2. If F(S)∩ F(T) ≠ φ, then {xn}
converges weakly to a common fixed point of S and T .

Proof. Let p ∈ F(S)∩F(T). Then, as proved in Lemma 3.2, limn→∞‖xn−p‖ exists.

Now we prove that {xn} has a unique weak subsequential limit in F(S)∩ F(T). To

prove this, let w1 and w2 be weak limits of the subsequences {xni} and {xnj} of {xn},
respectively. By Lemma 3.2, limn→∞‖xn−Sxn‖ = 0 and I−S is demiclosed with respect

to zero by Lemma 2.7; therefore, we obtain Sw1 = w1. Similarly, Tw1 = w1. Again, in

the same way, we can prove that w2 ∈ F(S)∩F(T). Next, we prove the uniqueness. For

this, suppose that w1 ≠ w2; then by Opial’s condition,

lim
n→∞

∥
∥xn−w1

∥
∥= lim

ni→∞
∥
∥xni−w1

∥
∥< lim

ni→∞
∥
∥xni−w2

∥
∥

= lim
n→∞

∥
∥xn−w2

∥
∥= lim

nj→∞
∥
∥xnj −w2

∥
∥

< lim
nj→∞

∥
∥xnj −w1

∥
∥= lim

n→∞
∥
∥xn−w1

∥
∥,

(3.29)

a contradiction. Hence the proof is over.

Remark 3.4. If we take un = vn = 0 for all n ∈ N, the above theorem reduces to

[3, Theorem 1] of Khan and Takahashi. Moreover, [6, Theorem 2.1] of Schu becomes

a special case of the above theorem when un = vn = 0 as well as T = I, the identity

mapping.

Finally, we approximate common fixed points by the following strong convergence

theorem.

Theorem 3.5. Let E be a uniformly convex Banach space and C its bounded closed

convex subset. Let S, T , and {xn} be as taken in Lemma 3.2. If F(S)∩ F(T) ≠ φ and

either S or T is completely continuous, then {xn} converges strongly to a common fixed

point of S and T .

Proof. Assume that T : C → C is completely continuous. Since {xn} is a bounded

sequence and T is completely continuous, therefore {Txn} must have a convergent

subsequence {Txni}. Hence by (3.28), {xn} must have a subsequence {xni} such that

xni → q (say) in C as ni → ∞. Now continuity of S and T gives that Sxni → Sq and

Txni → Tq as ni →∞. Then, again by (3.28), ‖Sq−q‖ = 0 = ‖Tq−q‖. This yields that

q ∈ F(S)∩ F(T) so that {xni} converges strongly to q in F(S)∩ F(T). As proved in
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Lemma 3.2, limn→∞‖xn−p‖ exists for all p ∈ F(S)∩F(T); therefore, {xn} must itself

converge to q ∈ F(S)∩F(T). Hence the proof.

Remark 3.6. If we put T = I, vn = 0 in the above theorem, then [2, Theorem 1] of

Huang is obtained. When we take S = T in the above theorem, then [2, Theorem 2]

of Huang follows except when bn = 0. Since a self-mapping with compact domain is

completely continuous, therefore [3, Theorem 2] of Khan and Takahashi can also be

obtained by putting un = vn = 0. It is also worth mentioning that the results presented

in this paper are for two mappings while the results in Huang [2] are for one mapping

only. Meanwhile, calculations in this paper are made much simpler as compared to

Huang [2].
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