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Let R be a ring and S a nonempty subset of R. Suppose that θ and φ are endomorphisms of
R. An additive mapping δ : R→ R is called a left (θ,φ)-derivation (resp., Jordan left (θ,φ)-
derivation) on S if δ(xy) = θ(x)δ(y)+φ(y)δ(x) (resp., δ(x2) = θ(x)δ(x)+φ(x)δ(x))
holds for all x,y ∈ S. Suppose that J is a Jordan ideal and a subring of a 2-torsion-free
prime ring R. In the present paper, it is shown that if θ is an automorphism of R such
that δ(x2) = 2θ(x)δ(x) holds for all x ∈ J, then either J ⊆ Z(R) or δ(J) = (0). Further,
a study of left (θ,θ)-derivations of a prime ring R has been made which acts either as a
homomorphism or as an antihomomorphism of the ring R.
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1. Introduction. Throughout the present paper, R will denote an associative ring

with centre Z(R). We will write for all x,y ∈ R, [x,y]= xy−yx and x◦y = xy+yx
for the Lie product and Jordan product, respectively. A ring R is said to be prime

if aRb = (0) implies that a = 0 or b = 0. A ring R is said to be 2-torsion-free if

whenever 2a = 0, with a ∈ R, then a = 0. An additive subgroup J of R is said to

be a Jordan ideal of R if u ◦ r ∈ J, for all u ∈ J and r ∈ R. An additive mapping

d : R → R is called a derivation (resp., Jordan derivation) if d(xy) = d(x)y +xd(y)
(resp., d(x2) = d(x)x+xd(x)) holds for all x,y ∈ R. Let θ, φ be endomorphisms of

R. An additive mapping f : R → R is called a (θ,φ)-derivation (resp., Jordan (θ,φ)-
derivation) if f(xy) = f(x)θ(y)+φ(x)f(y) (resp., f(x2) = f(x)θ(x)+φ(x)f(x))
holds, for all x,y ∈ R. Of course a (1,1)-derivation (resp., a Jordan (1,1)-derivation)

is a derivation (resp., a Jordan derivation) on R, where 1 is the identity mapping on

R. We will make use of the following basic commutator identities without any specific

mention:

[xy,z]= x[y,z]+[x,z]y, [x,yz]=y[x,z]+[x,y]z. (1.1)

An additive mapping δ : R → R is called a left derivation (resp., Jordan left deriva-

tion) if δ(xy) = xδ(y)+yδ(x) (resp., δ(x2) = 2xδ(x)) holds for all x,y ∈ R. In

view of the definition of a (θ,φ)-derivation, the notion of left (θ,φ)-derivation can

be extended as follows: let θ, φ be endomorphisms of R and let S be a nonempty

subset of R. An additive mapping δ : R → R is called a left (θ,φ)-derivation (resp.,

Jordan left (θ,φ)-derivation) on S if δ(xy) = θ(x)δ(y)+φ(y)δ(x) (resp., δ(x2) =
θ(x)δ(x)+φ(x)δ(x)) holds for all x,y ∈ S. Clearly, a left (1,1)-derivation (resp., a

Jordan left (1,1)-derivation) is a left derivation (resp., a Jordan left derivation) on R,
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where 1 is the identity mapping on R. In [5], Brešar and Vukman have proved that the

existence of a nonzero Jordan left derivation on a prime ring R of charR ≠ 2,3 forces

R to be commutative. It should be mentioned that the result obtained in [5] concerning

Jordan left derivation has been improved by Deng [7]. Some more related results can be

seen in [1, 3, 5, 7, 9]. It is easy to see that every left derivation on a ring R is a Jordan left

derivation. However, in general, a Jordan left derivation need not be a left derivation.

The following example justifies this statement.

Example 1.1. Let R be a commutative ring and let a ∈ R such that xax = 0 for all

x ∈ R but xay ≠ 0, for some x and y , x ≠y . Define a map δ : R→ R as follows:

δ(x)= xa+ax. (1.2)

Then δ is a Jordan left derivation but not a left derivation.

In the present paper, first it is shown that every Jordan left (θ,θ)-derivation on a

Jordan ideal J of a 2-torsion-free prime ring is a left (θ,θ)-derivation on J. Finally, we

will study the behaviour of left (θ,θ)-derivation on a prime ring which also acts either

as a homomorphism or an antihomomorphism of the underlying ring.

2. Preliminary results. We begin with the following lemmas which are essential in

developing the proof of our main result.

Lemma 2.1 [6, Lemma 4]. Let G andH be additive groups and let R be a 2-torsion-free

ring. Let f :G×G→H and g :G×G→ R be biadditive mappings. Suppose that for each

pair a,b ∈G either f(a,b)= 0 or g(a,b)2 = 0. In this case, either f = 0 or g(a,b)2 = 0

for all a,b ∈G.

If J is assumed to be a Jordan ideal and a subring of a ring R, then using similar

techniques as used in the proofs of Lemmas 2.2 and 2.3 of [1], one can easily obtain

the following lemma.

Lemma 2.2. Let R be a 2-torsion-free ring, let J be a Jordan ideal and a subring

of R. If θ is an endomorphism of R and δ : R → R is an additive mapping satisfying

δ(u2)= 2θ(u)δ(u), for all u∈ J, then

(i) δ(uv+vu)= 2θ(u)δ(v)+2θ(v)δ(u), for all u,v ∈ J,

(ii) δ(uvu)= θ(u2)δ(v)+3θ(u)θ(v)δ(u)−θ(v)θ(u)δ(u), for all u,v ∈ J,

(iii) δ(uvw + wvu) = (θ(u)θ(w) + θ(w)θ(u))δ(v) + 3θ(u)θ(v)δ(w) +
3θ(w)θ(v)δ(u)−θ(v)θ(u)δ(w)−θ(v)θ(w)δ(u), for all u,v,w ∈ J,

(iv) [θ(u),θ(v)]θ(u)δ(u)= θ(u)[θ(u),θ(v)]δ(u), for all u,v ∈ J,

(v) [θ(u),θ(v)](δ(uv)−θ(u)δ(v)−θ(v)δ(u))= 0, for all u,v ∈ J.

Lemma 2.3. LetR be a 2-torsion-free ring, J a Jordan ideal and a subring ofR. If θ is an

endomorphism of R and δ : R→ R is an additive mapping satisfying δ(u2)= 2θ(u)δ(u)
for all u∈ J, then

(i) [θ(u),θ(v)]δ([u,v])= 0, for all u,v ∈ J;

(ii) (θ(u2)θ(v)−2θ(u)θ(v)θ(u)+θ(v)θ(u2))δ(v)= 0, for all u,v ∈ J.
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We begin with the following lemma.

Lemma 2.4. If R is a ring and J a nonzero Jordan ideal of R, then 2[R,R]J ⊆ J and

2J[R,R]⊆ J.

Proof. Let x,y ∈ R and u ∈ J. Then u◦ [x,y]− (u◦x)◦y + (u◦y)◦x ∈ J. This

implies that uxy −uyx+xyu−yxu−uxy −xuy −yux−yxu+uyx+yux+
xuy+xyu∈ J and hence 2[x,y]u∈ J, for all x,y ∈ R, andu∈ J, that is, 2[R,R]J ⊆ J.

Similarly, it is easy to see that 2u[x,y]= (u◦y)◦x−u◦[x,y]−(u◦x)◦y ∈ J, for

all x,y ∈ R and u∈ J, and hence 2J[R,R]⊆ J.

Lemma 2.5. Let R be a prime ring and J a nonzero Jordan ideal of R. If a ∈ R and

aJ = (0) (or Ja= (0)), then a= 0.

Proof. Since J is a Jordan ideal of R, u◦x ∈ J, for all x ∈ R and u∈ J. By hypothe-

ses, we have a(u◦x)= 0, for all x ∈ R, u∈ J, and hence we get axu= 0, for all x ∈ R,

u ∈ J, that is, aRJ = (0). Since J is a nonzero Jordan ideal and R is prime, the above

relation yields that a= 0.

If Ja = (0), then using similar arguments with necessary variations, we get the re-

quired result.

Lemma 2.6. Let R be a 2-torsion-free prime ring and J a nonzero Jordan ideal of R.

If aJb = (0), then a= 0 or b = 0.

Proof. By Lemma 2.4, we find that 2[R,R]J ⊆ J. Thus, for any x,y ∈ R and u ∈ J,

we have 2a[x,y]ub = 0. This implies that

a[x,y]ub = 0, ∀x,y ∈ R, u∈ J. (2.1)

Replacing y by ya in the above expression, we get a[x,ya]ub = 0, for all x,y ∈ R
and u ∈ J or ay[x,a]ub+a[x,y]aub = 0. Now, using the fact that aJb = (0), we

find that ay[x,a]ub = 0, for all x,y ∈ R and u ∈ J and hence aR[x,a]ub = (0).
Thus, primeness of R forces that either a = 0 or [x,a]ub = 0. If [x,a]ub = 0, for all

x ∈ R, u ∈ J, then by our hypotheses we have axub = 0, for all x ∈ R, u ∈ J, that is,

aRub = (0). Again, primeness of R gives that either a = 0 or ub = 0. If ub = 0, for all

u∈ J, then by Lemma 2.5, we get b = 0.

Lemma 2.7. Let R be a 2-torsion-free prime ring and J a nonzero Jordan ideal of R.

If J is a commutative Jordan ideal, then J ⊆ Z(R).
Proof. By Lemma 2.4, we have 2[R,R]J ⊆ J. Thus, for any x,y ∈ R and u,v ∈ J, we

find that [2[x,y]u,v]= 0 and hence 2[[x,y],v]u+2[x,y][u,v]= 0, for all x,y ∈ R
and u,v ∈ J. By hypotheses, we obtain [[x,y],v]u = 0, for all x,y ∈ R and u,v ∈ J.

Using Lemma 2.5, we get [[x,y],v] = 0, for all x,y ∈ R and v ∈ J. Now, replace y by

xy to get [x,v][x,y] = 0, for all x,y ∈ R and v ∈ J. Further replacing y by yv , we

have [x,v]y[x,v]= 0, for all x,y ∈ R and v ∈ J. This implies that [x,v]R[x,v]= (0),
for all x ∈ R, v ∈ J. Now, primeness of R forces that v ∈ Z(R), for all v ∈ J. Hence,

J ⊆ Z(R).
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The next lemma can be regarded as a generalization of a lemma due to Smiley [8] for

Jordan ideals of a prime ring.

Lemma 2.8. Let R be a 2-torsion-free prime ring and let J be a Jordan ideal and a

subring of R such that [u,v]2 = 0, for all u,v ∈ J. Then J is commutative and hence

central.

Proof. By hypothesis, we have [u,v]2 = 0, for all u,v ∈ J. On linearizing, we get

[u,v][u,w]+[u,w][u,v] = 0, for all u,v,w ∈ J. Replacing v by vu in the above ex-

pression and using it, we obtain [u,v][u,[u,w]]= 0, for all u,v,w ∈ J. Again, replac-

ingv byvv1 in latter relation, we find that [u,v]v1[u,[u,w]]= 0, that is, [u,v]J[u,[u,
w]] = (0), for all u,v,w ∈ J. Thus by Lemma 2.6, we have for each u ∈ J either

[u,v]= 0 or [u,[u,w]]= 0, for all u,v,w ∈ J. If [u,[u,w]]= 0, for all u,w ∈ J, then

on replacing w by wv , we get [u,w][u,v] = 0, for all u,v,w ∈ J. Again, replacing v
by vw, we have [u,w]v[u,w] = 0, for all u,v,w ∈ J and hence [u,w]J[u,w] = (0),
for all w ∈ J. Again, by Lemma 2.6, we obtain [u,w] = 0. Thus in both cases we find

that [u,w]= 0, for all u,w ∈ J. Thus, J is commutative, and by Lemma 2.7, J is central,

that is, J ⊆ Z(R).
Lemma 2.9. Let R be a 2-torsion-free ring, J a Jordan ideal and a subring of R. If

δ : R→ R is an additive mapping satisfying δ(u2)= 2θ(u)δ(u), for all u∈U , then

(i) δ(u2v) = θ(u2)δ(v) + (θ(u)θ(v) + θ(v)θ(u))δ(u) + θ(u)δ([u,v]), for all

u,v ∈ J,

(ii) δ(vu2) = θ(u2)δ(v)+ (3θ(v)θ(u)− θ(u)θ(v))δ(u)− θ(u)δ([u,v]), for all

u,v ∈ J.

Proof. (i) Replacing v by vu and uv in Lemma 2.2(i), we find that

δ
(
uvu+vu2)= 2

(
θ(u)δ(vu)+θ(v)θ(u)δ(u)), ∀u,v ∈ J, (2.2)

δ
(
u2v+uvu)= 2

(
θ(u)δ(uv)+θ(u)θ(v)δ(u)), ∀u,v ∈ J. (2.3)

Now, subtracting (2.2) from (2.3), we get

δ
(
u2v−vu2)= 2

(
θ(u)δ

(
[u,v]

)+[θ(u),θ(v)]δ(u)), ∀u,v ∈ J. (2.4)

Replacing u by u2 in Lemma 2.2(i), we have

δ
(
u2v+vu2)= 2θ

(
u2)δ(v)+2θ(v)uδ

(
u2)

= 2θ
(
u2)δ(v)+4θ(v)θ(u)δ(u), ∀u,v ∈ J. (2.5)

Hence adding (2.4), (2.5) and using the fact that charR ≠ 2, we obtain

δ
(
u2v

)= θ(u2)δ(v)+(θ(u)θ(v)+θ(v)θ(u))δ(u)
+θ(u)δ([u,v]), ∀u,v ∈ J. (2.6)
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(ii) As in the proof of the case (i), subtracting (2.4) from (2.5), we find that

δ
(
vu2)= θ(u2)δ(v)+(3θ(v)θ(u)−θ(u)θ(v))δ(u)

−θ(u)δ([u,v]), ∀u,v ∈ J. (2.7)

3. Left derivation on Jordan ideal of a prime ring. In [3], there is a more general

result which implies that in a 2-torsion-free prime ring R, the existence of a nonzero

Jordan left derivation on a Lie ideal U of R forces that either U ⊆ Z(R) or δ(U) = (0).
In the present section, we attempt to generalize the above-mentioned result for Jordan

left (θ,θ)-derivation which acts on a Jordan ideal of the ring.

Theorem 3.1. Let R be a 2-torsion-free prime ring and let J be a Jordan ideal and

a subring of R. If θ is an automorphism of R and δ : R → R is an additive mapping

satisfying δ(u2)= 2θ(u)δ(u), for all u∈ J, then either J ⊆ Z(R) or δ(J)= (0).
Proof. Suppose that J �⊆ Z(R). By Lemma 2.2(iv), we have

[
θ(u),θ(v)

]
θ(u)δ(u)= θ(u)[θ(u),θ(v)]δ(u), ∀u,v ∈ J. (3.1)

This implies that

(
θ
(
u2)θ(v)−2θ(u)θ(v)θ(u)+θ(v)θ(u2))δ(u)= 0, ∀u,v ∈ J. (3.2)

Replacing u by [u,w] in (3.2), we get

θ
(
[u,w]2

)
θ(v)δ

(
[u,w]

)−2θ
(
[u,w]

)
θ(v)θ

(
[u,w]

)
δ
(
[u,w]

)
+θ(v)θ([u,w]2)δ([u,w])= 0,

(3.3)

for allu,v,w ∈ J. Now, application of Lemma 2.3(i) yields thatθ([u,w]2)θ(v)δ([u,w])
= (0), for all u,v,w ∈ J. Since θ is an automorphism of R, the latter expression gives

[u,w]2Jθ−1(δ([u,w]))= (0). Hence, by Lemma 2.6, we find that for each pairu,w ∈ J,

either [u,w]2 = 0 or θ−1(δ([u,w])) = 0. Note that the mappings (u,w) � [u,w]
and (u,w) � θ−1(δ([u,w])) satisfy the requirements of Lemma 2.1. Hence, either

[u,w]2 = 0, for all u,w ∈ J, or θ−1(δ([u,w])) = 0, for all u,w ∈ J. If [u,w]2 = 0,

for all u,w ∈ J, then by application of Lemma 2.8, J is commutative and hence central,

that is, J ⊆ Z(R), a contradiction. Now, we consider the case θ−1(δ([u,w])) = 0, then

δ([u,w]) = 0, that is, δ(uw) = δ(wu), for all u,w ∈ J. In view of Lemma 2.2(i), we

have

2δ
(
(wu)u

)= δ((wu)u+u(wu))
= 2θ(w)θ(u)δ(u)+2θ(u)δ(wu+uw)
= 2

{
θ
(
u2)δ(w)+θ(u)θ(w)δ(u)+θ(w)θ(u)δ(u)}, ∀u,w ∈ J.

(3.4)

SinceR is 2-torsion-free, we getδ((wu)u)=θ(u2)δ(w)+θ(u)θ(w)δ(u)+θ(w)θ(u)δ(u),
for all u,w ∈ J. By Lemma 2.9(ii), we obtain [θ(u),θ(w)]δ(u) = 0, for all u,w ∈ J.

Replacing w by wv in the latter expression, we get [θ(u),θ(w)]θ(v)δ(u) = 0, that

is, [u,w]Jθ−1(δ(u)) = (0). Thus, by Lemma 2.6, we find that for each u ∈ J either
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[u,w] = 0 or θ−1(δ(u)) = 0. Since θ is an automorphism, we have either [u,w] = 0

or δ(u) = 0, for all w ∈ J. Now let J1 = {u ∈ J | [u,w] = 0, for all w ∈ J} and

J2 = {u ∈ J | δ(u) = 0}. Clearly, J1 and J2 are additive subgroups of J whose union

is J. Hence, by Brauer’s trick, either J = J1 or J = J2. If J = J1, then [u,w] = 0, for all

u,w ∈ J, that is, J is commutative, and hence by Lemma 2.7, J ⊆ Z(R), again a contra-

diction. Hence, we have the remaining possibility that δ(u) = 0, for all u ∈ J, that is,

δ(J)= (0). This completes the proof of the theorem.

Remark 3.2. In the hypotheses of the above theorem, if we assume only that J is a

subring of R, then neither J is central nor δ(J) = (0). This is shown by the following

example.

Example 3.3. Let S be a ring such that the square of each element in S is zero, but the

product of some elements in S is nonzero. Further, suppose that R = {(x y0 0

) | x,y ∈ S}.
Consider J = {(0 y

0 0

) | y ∈ S}, then J is a subring of R. Define mappings δ : R → R and

θ : R→ R as follows:

δ
(
x y
0 0

)
=
(

0 y
0 0

)
, θ

(
x y
0 0

)
=
(
x −y
0 0

)
. (3.5)

It is easy to verify that δ is a Jordan left (θ,θ)-derivation, but neither J ⊆ Z(R) nor

δ(J)= (0).
Corollary 3.4. Let R be a 2-torsion-free prime ring. If δ : R→ R is a nonzero additive

mapping satisfying δ(x2)= 2xδ(x), for all x ∈ R, then R is commutative.

The following example demonstrates that to have R prime is essential in the hypoth-

esis of the above result.

Example 3.5. Consider a ring R, as in Example 3.3, and define mappings δ : R → R
and θ : R→ R as follows:

δ
(
x y
0 0

)
=
(

0 −x
0 0

)
, θ

(
x y
0 0

)
=
(
x −y
0 0

)
. (3.6)

Then, with J = R, it can be easily seen that δ(x2) = 2θ(x)δ(x), for all x ∈ R, but R is

not commutative.

4. Left derivation as a homomorphism or as an antihomomorphism. Let S be a

nonempty subset of a ring R and d a derivation of R. If d(xy) = d(x)d(y) (resp.,

d(xy)= d(y)d(x)) holds for all x,y ∈ S, then we say that d acts as a homomorphism

(resp., antihomomorphism) on S.

In 1989, Bell and Kappe [4] proved that if d is a derivation of a prime ring R which

acts as a homomorphism or as an antihomomorphism on a nonzero right ideal I of R,

then d= 0 on R. Further, this result was extended for (θ,φ)-derivation in [2] as follows.
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Theorem 4.1. Let R be a prime ring, I a nonzero right ideal of R, and let θ, φ be

automorphisms of R. Suppose that δ : R→ R is a (θ,φ)-derivation of R.

(i) If δ acts as a homomorphism on I, then δ= 0 on R.

(ii) If δ acts as an antihomomorphism on I, then δ= 0 on R.

In the present section, our objective is to extend the above result for left (θ,θ)-deriva-

tion of a prime ring R which acts as a homomorphism or as an antihomomorphism on

a Jordan ideal J of R. In fact, we prove the following theorem.

Theorem 4.2. Let R be a 2-torsion-free prime ring and J a nonzero Jordan ideal

and a subring of R. Suppose that θ is an automorphism of R and δ : R → R is a left

(θ,θ)-derivation of R.

(i) If δ acts as a homomorphism on J, then δ= 0 on R.

(ii) If δ acts as an antihomomorphism on J, then δ= 0 on R.

Proof. (i) By our hypotheses, we have

δ(u)δ(v)= δ(uv)= θ(u)δ(v)+θ(v)δ(u), ∀u,v ∈ J. (4.1)

Replacing u by uv in (4.1), we find that

δ(uv)δ(v)= θ(uv)δ(v)+θ(v)δ(uv), ∀u,v ∈ J. (4.2)

Now, application of (4.1) yields that θ(u)δ(v)δ(v)= θ(uv)δ(v), for all u,v ∈ J. This

implies that

θ(u)
(
δ(v)−θ(v))δ(v)= 0, ∀u,v ∈ J. (4.3)

Thus, θ(J)(δ(v)−θ(v))δ(v)= (0), for all v ∈ J. Since θ is an automorphism and J is

a nonzero Jordan ideal of R, θ(J) is also a nonzero Jordan ideal of R. Application of

Lemma 2.6 yields that (δ(v)−θ(v))δ(v)= 0, for allv ∈ J and hence δ(v2)= θ(v)δ(v),
for all v ∈ J. Since δ is a left (θ,θ)-derivation, we have θ(v)δ(v)= 0, for all v ∈ J. On

linearizing the latter relation, we find that

θ(v)δ(u)+θ(u)δ(v)= 0, ∀u,v ∈ J. (4.4)

Again, replacing u by vu in (4.4), we get θ(v)θ(u)δ(v) = 0, for all u,v ∈ J, that is,

vJθ−1(δ(v)) = (0), for all v ∈ J. Application of Lemma 2.6 yields that either v = 0 or

θ−1(δ(v)) = 0. But v = 0 also gives that θ−1(δ(v)) = 0, that is, δ(v) = 0, for all v ∈ J.

Further, replace v by v ◦ r to get 2θ(v)δ(r) = 0, for all v ∈ J and r ∈ R. Since R is

2-torsion-free and θ(J) is a nonzero Jordan ideal of R, application of Lemma 2.6 yields

the required result.

(ii) If d acts as an antihomomorphism on J, then

δ(u)δ(v)= δ(vu)= θ(v)δ(u)+θ(u)δ(v)
= θ(u)δ(v)+θ(v)δ(u)= δ(uv)= δ(v)δ(u), (4.5)

and hence δ also acts as a homomorphism on J. Therefore, in view of (i) we get the

required result.
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Remark 4.3. We feel that Theorem 3.1 (resp., Theorem 4.2) could be proved for

Jordan left (θ,φ)-derivation (resp., left (θ,φ)-derivation) of a prime ring. However, we

did not succeed to settle it.
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