ON JORDAN IDEALS AND LEFT (θ, θ) -DERIVATIONS IN PRIME RINGS

S. M. A. ZAIDI, MOHAMMAD ASHRAF, and SHAKIR ALI

Received 8 September 2003

Let *R* be a ring and *S* a nonempty subset of *R*. Suppose that θ and ϕ are endomorphisms of *R*. An additive mapping $\delta : R \to R$ is called a left (θ, ϕ) -derivation (resp., Jordan left (θ, ϕ) -derivation) on *S* if $\delta(xy) = \theta(x)\delta(y) + \phi(y)\delta(x)$ (resp., $\delta(x^2) = \theta(x)\delta(x) + \phi(x)\delta(x)$) holds for all $x, y \in S$. Suppose that *J* is a Jordan ideal and a subring of a 2-torsion-free prime ring *R*. In the present paper, it is shown that if θ is an automorphism of *R* such that $\delta(x^2) = 2\theta(x)\delta(x)$ holds for all $x \in J$, then either $J \subseteq Z(R)$ or $\delta(J) = (0)$. Further, a study of left (θ, θ) -derivations of a prime ring *R* has been made which acts either as a homomorphism or as an antihomomorphism of the ring *R*.

2000 Mathematics Subject Classification: 16W25, 16N60, 16U80.

1. Introduction. Throughout the present paper, *R* will denote an associative ring with centre *Z*(*R*). We will write for all $x, y \in R$, [x, y] = xy - yx and $x \circ y = xy + yx$ for the Lie product and Jordan product, respectively. A ring *R* is said to be prime if aRb = (0) implies that a = 0 or b = 0. A ring *R* is said to be 2-torsion-free if whenever 2a = 0, with $a \in R$, then a = 0. An additive subgroup *J* of *R* is said to be a Jordan ideal of *R* if $u \circ r \in J$, for all $u \in J$ and $r \in R$. An additive mapping $d: R \to R$ is called a derivation (resp., Jordan derivation) if d(xy) = d(x)y + xd(y) (resp., $d(x^2) = d(x)x + xd(x)$) holds for all $x, y \in R$. Let θ , ϕ be endomorphisms of *R*. An additive mapping $f: R \to R$ is called a (θ, ϕ) -derivation (resp., Jordan (θ, ϕ) -derivation) if $f(xy) = f(x)\theta(y) + \phi(x)f(y)$ (resp., $f(x^2) = f(x)\theta(x) + \phi(x)f(x)$) holds, for all $x, y \in R$. Of course a (1,1)-derivation (resp., a Jordan (1,1)-derivation) is a derivation (resp., a Jordan derivation) on *R*, where 1 is the identity mapping on *R*. We will make use of the following basic commutator identities without any specific mention:

$$[xy,z] = x[y,z] + [x,z]y, \qquad [x,yz] = y[x,z] + [x,y]z.$$
(1.1)

An additive mapping $\delta : R \to R$ is called a left derivation (resp., Jordan left derivation) if $\delta(xy) = x\delta(y) + y\delta(x)$ (resp., $\delta(x^2) = 2x\delta(x)$) holds for all $x, y \in R$. In view of the definition of a (θ, ϕ) -derivation, the notion of left (θ, ϕ) -derivation can be extended as follows: let θ , ϕ be endomorphisms of R and let S be a nonempty subset of R. An additive mapping $\delta : R \to R$ is called a left (θ, ϕ) -derivation (resp., Jordan left (θ, ϕ) -derivation) on S if $\delta(xy) = \theta(x)\delta(y) + \phi(y)\delta(x)$ (resp., $\delta(x^2) = \theta(x)\delta(x) + \phi(x)\delta(x)$) holds for all $x, y \in S$. Clearly, a left (1,1)-derivation) on R, a left derivation (resp., a Jordan left (1,1)-derivation) on R.

where 1 is the identity mapping on *R*. In [5], Brešar and Vukman have proved that the existence of a nonzero Jordan left derivation on a prime ring *R* of char $R \neq 2,3$ forces *R* to be commutative. It should be mentioned that the result obtained in [5] concerning Jordan left derivation has been improved by Deng [7]. Some more related results can be seen in [1, 3, 5, 7, 9]. It is easy to see that every left derivation on a ring *R* is a Jordan left derivation. However, in general, a Jordan left derivation need not be a left derivation. The following example justifies this statement.

EXAMPLE 1.1. Let *R* be a commutative ring and let $a \in R$ such that xax = 0 for all $x \in R$ but $xay \neq 0$, for some *x* and *y*, $x \neq y$. Define a map $\delta : R \to R$ as follows:

$$\delta(x) = xa + ax. \tag{1.2}$$

Then δ is a Jordan left derivation but not a left derivation.

In the present paper, first it is shown that every Jordan left (θ, θ) -derivation on a Jordan ideal *J* of a 2-torsion-free prime ring is a left (θ, θ) -derivation on *J*. Finally, we will study the behaviour of left (θ, θ) -derivation on a prime ring which also acts either as a homomorphism or an antihomomorphism of the underlying ring.

2. Preliminary results. We begin with the following lemmas which are essential in developing the proof of our main result.

LEMMA 2.1 [6, Lemma 4]. Let *G* and *H* be additive groups and let *R* be a 2-torsion-free ring. Let $f : G \times G \to H$ and $g : G \times G \to R$ be biadditive mappings. Suppose that for each pair $a, b \in G$ either f(a, b) = 0 or $g(a, b)^2 = 0$. In this case, either f = 0 or $g(a, b)^2 = 0$ for all $a, b \in G$.

If *J* is assumed to be a Jordan ideal and a subring of a ring *R*, then using similar techniques as used in the proofs of Lemmas 2.2 and 2.3 of [1], one can easily obtain the following lemma.

LEMMA 2.2. Let *R* be a 2-torsion-free ring, let *J* be a Jordan ideal and a subring of *R*. If θ is an endomorphism of *R* and $\delta : R \to R$ is an additive mapping satisfying $\delta(u^2) = 2\theta(u)\delta(u)$, for all $u \in J$, then

- (i) $\delta(uv + vu) = 2\theta(u)\delta(v) + 2\theta(v)\delta(u)$, for all $u, v \in J$,
- (ii) $\delta(uvu) = \theta(u^2)\delta(v) + 3\theta(u)\theta(v)\delta(u) \theta(v)\theta(u)\delta(u)$, for all $u, v \in J$,
- (iii) $\delta(uvw + wvu) = (\theta(u)\theta(w) + \theta(w)\theta(u))\delta(v) + 3\theta(u)\theta(v)\delta(w) + 3\theta(w)\theta(v)\delta(u) \theta(v)\theta(u)\delta(w) \theta(v)\theta(w)\delta(u)$, for all $u, v, w \in J$,
- (iv) $[\theta(u), \theta(v)]\theta(u)\delta(u) = \theta(u)[\theta(u), \theta(v)]\delta(u)$, for all $u, v \in J$,
- (v) $[\theta(u), \theta(v)](\delta(uv) \theta(u)\delta(v) \theta(v)\delta(u)) = 0$, for all $u, v \in J$.

LEMMA 2.3. Let *R* be a 2-torsion-free ring, *J* a Jordan ideal and a subring of *R*. If θ is an endomorphism of *R* and $\delta : R \to R$ is an additive mapping satisfying $\delta(u^2) = 2\theta(u)\delta(u)$ for all $u \in J$, then

- (i) $[\theta(u), \theta(v)]\delta([u, v]) = 0$, for all $u, v \in J$;
- (ii) $(\theta(u^2)\theta(v) 2\theta(u)\theta(v)\theta(u) + \theta(v)\theta(u^2))\delta(v) = 0$, for all $u, v \in J$.

We begin with the following lemma.

LEMMA 2.4. If *R* is a ring and *J* a nonzero Jordan ideal of *R*, then $2[R,R]J \subseteq J$ and $2J[R,R] \subseteq J$.

PROOF. Let $x, y \in R$ and $u \in J$. Then $u \circ [x, y] - (u \circ x) \circ y + (u \circ y) \circ x \in J$. This implies that $uxy - uyx + xyu - yxu - uxy - xuy - yux - yxu + uyx + yux + xuy + xyu \in J$ and hence $2[x, y]u \in J$, for all $x, y \in R$, and $u \in J$, that is, $2[R, R]J \subseteq J$.

Similarly, it is easy to see that $2u[x, y] = (u \circ y) \circ x - u \circ [x, y] - (u \circ x) \circ y \in J$, for all $x, y \in R$ and $u \in J$, and hence $2J[R, R] \subseteq J$.

LEMMA 2.5. Let *R* be a prime ring and *J* a nonzero Jordan ideal of *R*. If $a \in R$ and aJ = (0) (or Ja = (0)), then a = 0.

PROOF. Since *J* is a Jordan ideal of *R*, $u \circ x \in J$, for all $x \in R$ and $u \in J$. By hypotheses, we have $a(u \circ x) = 0$, for all $x \in R$, $u \in J$, and hence we get axu = 0, for all $x \in R$, $u \in J$, that is, aRJ = (0). Since *J* is a nonzero Jordan ideal and *R* is prime, the above relation yields that a = 0.

If Ja = (0), then using similar arguments with necessary variations, we get the required result.

LEMMA 2.6. Let *R* be a 2-torsion-free prime ring and *J* a nonzero Jordan ideal of *R*. If aJb = (0), then a = 0 or b = 0.

PROOF. By Lemma 2.4, we find that $2[R,R]J \subseteq J$. Thus, for any $x, y \in R$ and $u \in J$, we have 2a[x, y]ub = 0. This implies that

$$a[x, y]ub = 0, \quad \forall x, y \in R, \ u \in J.$$

$$(2.1)$$

Replacing *y* by *ya* in the above expression, we get a[x, ya]ub = 0, for all $x, y \in R$ and $u \in J$ or ay[x, a]ub + a[x, y]aub = 0. Now, using the fact that aJb = (0), we find that ay[x, a]ub = 0, for all $x, y \in R$ and $u \in J$ and hence aR[x, a]ub = (0). Thus, primeness of *R* forces that either a = 0 or [x, a]ub = 0. If [x, a]ub = 0, for all $x \in R$, $u \in J$, then by our hypotheses we have axub = 0, for all $x \in R$, $u \in J$, that is, aRub = (0). Again, primeness of *R* gives that either a = 0 or ub = 0. If ub = 0, for all $u \in J$, then by Lemma 2.5, we get b = 0.

LEMMA 2.7. Let *R* be a 2-torsion-free prime ring and *J* a nonzero Jordan ideal of *R*. If *J* is a commutative Jordan ideal, then $J \subseteq Z(R)$.

PROOF. By Lemma 2.4, we have $2[R, R]J \subseteq J$. Thus, for any $x, y \in R$ and $u, v \in J$, we find that [2[x, y]u, v] = 0 and hence 2[[x, y], v]u + 2[x, y][u, v] = 0, for all $x, y \in R$ and $u, v \in J$. By hypotheses, we obtain [[x, y], v]u = 0, for all $x, y \in R$ and $u, v \in J$. Using Lemma 2.5, we get [[x, y], v] = 0, for all $x, y \in R$ and $v \in J$. Now, replace y by xy to get [x, v][x, y] = 0, for all $x, y \in R$ and $v \in J$. Further replacing y by yv, we have [x, v]y[x, v] = 0, for all $x, y \in R$ and $v \in J$. This implies that [x, v]R[x, v] = (0), for all $x \in R$, $v \in J$. Now, primeness of R forces that $v \in Z(R)$, for all $v \in J$. Hence, $J \subseteq Z(R)$.

1959

The next lemma can be regarded as a generalization of a lemma due to Smiley [8] for Jordan ideals of a prime ring.

LEMMA 2.8. Let *R* be a 2-torsion-free prime ring and let *J* be a Jordan ideal and a subring of *R* such that $[u, v]^2 = 0$, for all $u, v \in J$. Then *J* is commutative and hence central.

PROOF. By hypothesis, we have $[u, v]^2 = 0$, for all $u, v \in J$. On linearizing, we get [u, v][u, w] + [u, w][u, v] = 0, for all $u, v, w \in J$. Replacing v by vu in the above expression and using it, we obtain [u, v][u, [u, w]] = 0, for all $u, v, w \in J$. Again, replacing v by vv_1 in latter relation, we find that $[u, v]v_1[u, [u, w]] = 0$, that is, [u, v]J[u, [u, w]] = (0), for all $u, v, w \in J$. Thus by Lemma 2.6, we have for each $u \in J$ either [u, v] = 0 or [u, [u, w]] = 0, for all $u, v, w \in J$. If [u, [u, w]] = 0, for all $u, w \in J$, then on replacing w by wv, we get [u, w][u, v] = 0, for all $u, v, w \in J$. Again, replacing v by vw, we have [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v by vw, we fave [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v by vw, we fave [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v have [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v by vw, we fave [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v have [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, replacing v have [u, w]v[u, w] = 0, for all $u, v, w \in J$. Again, by Lemma 2.6, we obtain [u, w] = 0. Thus in both cases we find that [u, w] = 0, for all $u, w \in J$. Thus, J is commutative, and by Lemma 2.7, J is central, that is, $J \subseteq Z(R)$.

LEMMA 2.9. Let R be a 2-torsion-free ring, J a Jordan ideal and a subring of R. If $\delta: R \to R$ is an additive mapping satisfying $\delta(u^2) = 2\theta(u)\delta(u)$, for all $u \in U$, then

- (i) $\delta(u^2v) = \theta(u^2)\delta(v) + (\theta(u)\theta(v) + \theta(v)\theta(u))\delta(u) + \theta(u)\delta([u,v])$, for all $u, v \in J$,
- (ii) $\delta(vu^2) = \theta(u^2)\delta(v) + (3\theta(v)\theta(u) \theta(u)\theta(v))\delta(u) \theta(u)\delta([u,v])$, for all $u, v \in J$.

PROOF. (i) Replacing v by vu and uv in Lemma 2.2(i), we find that

$$\delta(uvu + vu^2) = 2(\theta(u)\delta(vu) + \theta(v)\theta(u)\delta(u)), \quad \forall u, v \in J,$$
(2.2)

$$\delta(u^2v + uvu) = 2(\theta(u)\delta(uv) + \theta(u)\theta(v)\delta(u)), \quad \forall u, v \in J.$$
(2.3)

Now, subtracting (2.2) from (2.3), we get

$$\delta(u^2v - vu^2) = 2(\theta(u)\delta([u,v]) + [\theta(u), \theta(v)]\delta(u)), \quad \forall u, v \in J.$$
(2.4)

Replacing *u* by u^2 in Lemma 2.2(i), we have

$$\delta(u^{2}v + vu^{2}) = 2\theta(u^{2})\delta(v) + 2\theta(v)u\delta(u^{2})$$

= $2\theta(u^{2})\delta(v) + 4\theta(v)\theta(u)\delta(u), \quad \forall u, v \in J.$ (2.5)

Hence adding (2.4), (2.5) and using the fact that char $R \neq 2$, we obtain

$$\delta(u^{2}v) = \theta(u^{2})\delta(v) + (\theta(u)\theta(v) + \theta(v)\theta(u))\delta(u) + \theta(u)\delta([u,v]), \quad \forall u, v \in J.$$
(2.6)

(ii) As in the proof of the case (i), subtracting (2.4) from (2.5), we find that

$$\delta(vu^{2}) = \theta(u^{2})\delta(v) + (3\theta(v)\theta(u) - \theta(u)\theta(v))\delta(u) - \theta(u)\delta([u,v]), \quad \forall u, v \in J.$$

$$(2.7)$$

3. Left derivation on Jordan ideal of a prime ring. In [3], there is a more general result which implies that in a 2-torsion-free prime ring *R*, the existence of a nonzero Jordan left derivation on a Lie ideal *U* of *R* forces that either $U \subseteq Z(R)$ or $\delta(U) = (0)$. In the present section, we attempt to generalize the above-mentioned result for Jordan left (θ, θ) -derivation which acts on a Jordan ideal of the ring.

THEOREM 3.1. Let *R* be a 2-torsion-free prime ring and let *J* be a Jordan ideal and a subring of *R*. If θ is an automorphism of *R* and $\delta : R \to R$ is an additive mapping satisfying $\delta(u^2) = 2\theta(u)\delta(u)$, for all $u \in J$, then either $J \subseteq Z(R)$ or $\delta(J) = (0)$.

PROOF. Suppose that $J \notin Z(R)$. By Lemma 2.2(iv), we have

$$[\theta(u), \theta(v)]\theta(u)\delta(u) = \theta(u)[\theta(u), \theta(v)]\delta(u), \quad \forall u, v \in J.$$
(3.1)

This implies that

$$\left(\theta(u^2)\theta(v) - 2\theta(u)\theta(v)\theta(u) + \theta(v)\theta(u^2)\right)\delta(u) = 0, \quad \forall u, v \in J.$$
(3.2)

Replacing u by [u, w] in (3.2), we get

$$\theta([u,w]^2)\theta(v)\delta([u,w]) - 2\theta([u,w])\theta(v)\theta([u,w])\delta([u,w]) + \theta(v)\theta([u,w]^2)\delta([u,w]) = 0,$$
(3.3)

for all $u, v, w \in J$. Now, application of Lemma 2.3(i) yields that $\theta([u, w]^2)\theta(v)\delta([u, w]) = (0)$, for all $u, v, w \in J$. Since θ is an automorphism of R, the latter expression gives $[u, w]^2 J \theta^{-1}(\delta([u, w])) = (0)$. Hence, by Lemma 2.6, we find that for each pair $u, w \in J$, either $[u, w]^2 = 0$ or $\theta^{-1}(\delta([u, w])) = 0$. Note that the mappings $(u, w) \mapsto [u, w]$ and $(u, w) \mapsto \theta^{-1}(\delta([u, w]))$ satisfy the requirements of Lemma 2.1. Hence, either $[u, w]^2 = 0$, for all $u, w \in J$, or $\theta^{-1}(\delta([u, w])) = 0$, for all $u, w \in J$. If $[u, w]^2 = 0$, for all $u, w \in J$, a contradiction. Now, we consider the case $\theta^{-1}(\delta([u, w])) = 0$, then $\delta([u, w]) = 0$, that is, $\delta(uw) = \delta(wu)$, for all $u, w \in J$. In view of Lemma 2.2(i), we have

$$2\delta((wu)u) = \delta((wu)u + u(wu))$$

= $2\theta(w)\theta(u)\delta(u) + 2\theta(u)\delta(wu + uw)$
= $2\{\theta(u^2)\delta(w) + \theta(u)\theta(w)\delta(u) + \theta(w)\theta(u)\delta(u)\}, \quad \forall u, w \in J.$
(3.4)

Since *R* is 2-torsion-free, we get $\delta((wu)u) = \theta(u^2)\delta(w) + \theta(u)\theta(w)\delta(u) + \theta(w)\theta(u)\delta(u)$, for all $u, w \in J$. By Lemma 2.9(ii), we obtain $[\theta(u), \theta(w)]\delta(u) = 0$, for all $u, w \in J$. Replacing *w* by wv in the latter expression, we get $[\theta(u), \theta(w)]\theta(v)\delta(u) = 0$, that is, $[u,w]J\theta^{-1}(\delta(u)) = (0)$. Thus, by Lemma 2.6, we find that for each $u \in J$ either

[u, w] = 0 or $\theta^{-1}(\delta(u)) = 0$. Since θ is an automorphism, we have either [u, w] = 0or $\delta(u) = 0$, for all $w \in J$. Now let $J_1 = \{u \in J \mid [u, w] = 0$, for all $w \in J\}$ and $J_2 = \{u \in J \mid \delta(u) = 0\}$. Clearly, J_1 and J_2 are additive subgroups of J whose union is J. Hence, by Brauer's trick, either $J = J_1$ or $J = J_2$. If $J = J_1$, then [u, w] = 0, for all $u, w \in J$, that is, J is commutative, and hence by Lemma 2.7, $J \subseteq Z(R)$, again a contradiction. Hence, we have the remaining possibility that $\delta(u) = 0$, for all $u \in J$, that is, $\delta(J) = (0)$. This completes the proof of the theorem.

REMARK 3.2. In the hypotheses of the above theorem, if we assume only that *J* is a subring of *R*, then neither *J* is central nor $\delta(J) = (0)$. This is shown by the following example.

EXAMPLE 3.3. Let *S* be a ring such that the square of each element in *S* is zero, but the product of some elements in *S* is nonzero. Further, suppose that $R = \{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in S \}$. Consider $J = \{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \mid y \in S \}$, then *J* is a subring of *R*. Define mappings $\delta : R \to R$ and $\theta : R \to R$ as follows:

$$\delta\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}, \qquad \theta\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & -y \\ 0 & 0 \end{pmatrix}.$$
 (3.5)

It is easy to verify that δ is a Jordan left (θ, θ) -derivation, but neither $J \subseteq Z(R)$ nor $\delta(J) = (0)$.

COROLLARY 3.4. Let *R* be a 2-torsion-free prime ring. If $\delta : R \to R$ is a nonzero additive mapping satisfying $\delta(x^2) = 2x\delta(x)$, for all $x \in R$, then *R* is commutative.

The following example demonstrates that to have R prime is essential in the hypothesis of the above result.

EXAMPLE 3.5. Consider a ring *R*, as in Example 3.3, and define mappings $\delta : R \to R$ and $\theta : R \to R$ as follows:

$$\delta\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -x \\ 0 & 0 \end{pmatrix}, \qquad \theta\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & -y \\ 0 & 0 \end{pmatrix}.$$
 (3.6)

Then, with J = R, it can be easily seen that $\delta(x^2) = 2\theta(x)\delta(x)$, for all $x \in R$, but R is not commutative.

4. Left derivation as a homomorphism or as an antihomomorphism. Let *S* be a nonempty subset of a ring *R* and *d* a derivation of *R*. If d(xy) = d(x)d(y) (resp., d(xy) = d(y)d(x)) holds for all $x, y \in S$, then we say that *d* acts as a homomorphism (resp., antihomomorphism) on *S*.

In 1989, Bell and Kappe [4] proved that if *d* is a derivation of a prime ring *R* which acts as a homomorphism or as an antihomomorphism on a nonzero right ideal *I* of *R*, then d = 0 on *R*. Further, this result was extended for (θ, ϕ) -derivation in [2] as follows.

THEOREM 4.1. Let R be a prime ring, I a nonzero right ideal of R, and let θ , ϕ be automorphisms of R. Suppose that $\delta : R \to R$ is a (θ, ϕ) -derivation of R.

- (i) If δ acts as a homomorphism on *I*, then $\delta = 0$ on *R*.
- (ii) If δ acts as an antihomomorphism on I, then $\delta = 0$ on R.

In the present section, our objective is to extend the above result for left (θ, θ) -derivation of a prime ring R which acts as a homomorphism or as an antihomomorphism on a Jordan ideal *J* of *R*. In fact, we prove the following theorem.

THEOREM 4.2. Let R be a 2-torsion-free prime ring and J a nonzero Jordan ideal and a subring of R. Suppose that θ is an automorphism of R and $\delta : R \to R$ is a left (θ, θ) -derivation of R.

- (i) If δ acts as a homomorphism on *J*, then $\delta = 0$ on *R*.
- (ii) If δ acts as an antihomomorphism on *J*, then $\delta = 0$ on *R*.

PROOF. (i) By our hypotheses, we have

$$\delta(u)\delta(v) = \delta(uv) = \theta(u)\delta(v) + \theta(v)\delta(u), \quad \forall u, v \in J.$$
(4.1)

Replacing u by uv in (4.1), we find that

$$\delta(uv)\delta(v) = \theta(uv)\delta(v) + \theta(v)\delta(uv), \quad \forall u, v \in J.$$
(4.2)

Now, application of (4.1) yields that $\theta(u)\delta(v)\delta(v) = \theta(uv)\delta(v)$, for all $u, v \in J$. This implies that

$$\theta(u)(\delta(v) - \theta(v))\delta(v) = 0, \quad \forall u, v \in J.$$
(4.3)

Thus, $\theta(J)(\delta(v) - \theta(v))\delta(v) = (0)$, for all $v \in J$. Since θ is an automorphism and J is a nonzero Jordan ideal of R, $\theta(J)$ is also a nonzero Jordan ideal of R. Application of Lemma 2.6 yields that $(\delta(v) - \theta(v))\delta(v) = 0$, for all $v \in J$ and hence $\delta(v^2) = \theta(v)\delta(v)$, for all $v \in J$. Since δ is a left (θ, θ) -derivation, we have $\theta(v)\delta(v) = 0$, for all $v \in J$. On linearizing the latter relation, we find that

$$\theta(v)\delta(u) + \theta(u)\delta(v) = 0, \quad \forall u, v \in J.$$
(4.4)

Again, replacing u by vu in (4.4), we get $\theta(v)\theta(u)\delta(v) = 0$, for all $u, v \in J$, that is, $\nu J \theta^{-1}(\delta(\nu)) = (0)$, for all $\nu \in J$. Application of Lemma 2.6 yields that either $\nu = 0$ or $\theta^{-1}(\delta(v)) = 0$. But v = 0 also gives that $\theta^{-1}(\delta(v)) = 0$, that is, $\delta(v) = 0$, for all $v \in J$. Further, replace v by $v \circ r$ to get $2\theta(v)\delta(r) = 0$, for all $v \in J$ and $r \in R$. Since R is 2-torsion-free and $\theta(J)$ is a nonzero Jordan ideal of *R*, application of Lemma 2.6 yields the required result.

(ii) If *d* acts as an antihomomorphism on *J*, then

$$\delta(u)\delta(v) = \delta(vu) = \theta(v)\delta(u) + \theta(u)\delta(v)$$

= $\theta(u)\delta(v) + \theta(v)\delta(u) = \delta(uv) = \delta(v)\delta(u),$ (4.5)

and hence δ also acts as a homomorphism on J. Therefore, in view of (i) we get the required result.

1963

REMARK 4.3. We feel that Theorem 3.1 (resp., Theorem 4.2) could be proved for Jordan left (θ, ϕ) -derivation (resp., left (θ, ϕ) -derivation) of a prime ring. However, we did not succeed to settle it.

ACKNOWLEDGMENTS. The authors are greatly indebted to the referees for their valuable suggestions. This research is supported by the University Grants Commission (UGC), India Grant F-510/3/DSA/98(SAP-I).

REFERENCES

- M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno) 36 (2000), no. 3, 201-206.
- [2] M. Ashraf, N. Rehman, and M. A. Quadri, On (σ, τ) -derivations in certain classes of rings, Rad. Mat. **9** (1999), no. 2, 187-192.
- [3] M. Ashraf, N. Rehman, and A. Shakir, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25 (2001), no. 3, 379-382.
- H. E. Bell and L.-C. Kappe, *Rings in which derivations satisfy certain algebraic conditions*, Acta Math. Hungar. 53 (1989), no. 3-4, 339–346.
- [5] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16.
- [6] _____, Jordan (θ, ϕ) -derivations, Glas. Mat. Ser. III **26(46)** (1991), no. 1-2, 13-17.
- [7] Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145-147.
- [8] M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426-429.
- [9] J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1–6.

S. M. A. Zaidi: Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India *E-mail address*: zaidimath@rediffmail.com

Mohammad Ashraf: Department of Mathematics, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: mashraf80@hotmail.com

Shakir Ali: Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India *E-mail address*: shakir50@bharatmail.com