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Simplified regularization using finite-dimensional approximations in the setting of Hilbert
scales has been considered for obtaining stable approximate solutions to ill-posed oper-
ator equations. The derived error estimates using an a priori and a posteriori choice of
parameters in relation to the noise level are shown to be of optimal order with respect to
certain natural assumptions on the ill posedness of the equation. The results are shown to
be applicable to a wide class of spline approximations in the setting of Sobolev scales.
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1. Introduction. Many of the inverse problems that occur in science and engineering

are ill posed, in the sense that a unique solution that depends continuously on the data

does not exist. A typical example of an ill-posed equation that often occurs in practical

problems, such as in geological prospecting, computer tomography, steel industry, and

so forth, is the Fredholm integral equation of the first kind (cf. [2, 6, 8]). Many such

problems can be put in the form of an operator equation Ax =y , where A :X → Y is a

bounded linear operator between Hilbert spaces X and Y with its range R(A) not closed

in Y .

Regularization methods are to be employed for obtaining a stable approximate solu-

tion for an ill-posed problem. Tikhonov regularization is a simple and widely used pro-

cedure to obtain stable approximate solutions to an ill-posed operator equation (2.1).

In order to improve the error estimates available in Tikhonov regularization, Natterer

[17] carried out error analysis in the framework of Hilbert scales. Subsequently, many

authors extended, modified, and generalized Natterer’s work to obtain error bounds

under various contexts (cf. Neubauer [18], Hegland [7], Schröter and Tautenhahn [20],

Mair [10], Nair et al. [16], and Nair [13, 15]). Finite-dimensional realizations of the Hilbert

scales approach has been considered by Engl and Neubauer [3].

If Y =X and A itself is a positive selfadjoint operator, then the simplified regulariza-

tion introduced by Lavrentiev is better suited than Tikhonov regularization in terms of

speed of convergence and condition numbers of the resulting equations in the case of

finite-dimensional approximations (cf. Schock [19]).

In [4], the authors introduced the Hilbert scales variant of the simplified regular-

ization and obtained error estimates under a priori and a posteriori parameter choice

strategies which are optimal in the sense of the “best possible worst error” with re-

spect to certain source set. Recently (cf. [5]), the authors considered a new discrepancy
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principle yielding optimal rates which does not involve certain restrictive assumptions

as in [4]. The purpose of this paper is to obtain a finite-dimensional realization of the

results in [5].

2. Preliminaries. Let H be a Hilbert space and A : H → H a positive, bounded self-

adjoint operator on H. The inner product and the corresponding norm are denoted by

〈·,·〉 and ‖·‖, respectively. Recall that A is said to be a positive operator if 〈Ax,x〉 ≥ 0

for every x ∈H. For y ∈ R(A), the range of A, consider the operator equation

Ax =y. (2.1)

Let x̂ be the minimal norm solution of (2.1). It is well known that if R(A) is not closed

in H, then the problem of solving (2.1) for x̂ is ill posed in the sense that small per-

turbations in the data y can cause large deviations in the solution. A prototype of an

ill-posed equation (2.1) is an integral equation of the first kind,

∫ 1

0
k(ξ,t)x(t)dt =y(ξ), 0≤ ξ ≤ 1, (2.2)

where k(·,·) is a nondegenerate kernel which is square integrable, that is,

∫ 1

0

∫ 1

0

∣∣k(ξ,t)∣∣2dtdξ <∞, (2.3)

satisfying k(ξ,t) = k(t,ξ) for all ξ, t in [0,1], and such that the eigenvalues of the

corresponding integral operator A : L2[0,1]→ L2[0,1],

(Ax)(ξ)=
∫ 1

0
k(ξ,t)x(t)dt, 0≤ ξ ≤ 1, (2.4)

are all nonnegative (cf. [14]). For example, one of the important ill-posed problems

which arise in applications is the backward heat equation problem: the problem is to

determine the initial temperature ϕ0 := u(·,0) from the measurements of the final

temperature ϕT :=u(·,T ), where u(ξ,t) satisfies

ut−uξξ = 0, (ξ,t)∈ (0,1)×(0,T ),
u(0, t)=u(1, t)= 0, t ∈ [0,T ]. (2.5)

We recall from elementary theory of partial differential equations that the solution

u(ξ,t) of the above heat equation is given by (cf. Weinberger [23])

u(ξ,t)=
∞∑
n=1

ϕ̂0(n)e−n
2π2t sin(nπξ), (2.6)

where ϕ̂0(n) for n∈N are the Fourier coefficients of the initial temperature ϕ0(ξ) :=
u(ξ,0). Hence,

u(ξ,T)=
∞∑
n=1

ϕ̂0(n)e−n
2π2T sin(nπξ). (2.7)
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The above equation can be written as

ϕT(s)=
∞∑
n=1

e−n
2π2T 〈ϕ0,un

〉
un(ξ) with un(ξ)=

√
2sin(nπξ). (2.8)

Thus the problem is to solve the operator equation

Aϕ0 =ϕT , (2.9)

where A : L2[0,1]→ L2[0,1] is the operator defined by

(Aϕ)(ξ)=
∞∑
n=1

e−n
2π2T 〈ϕ,un〉un(ξ)=

∫ 1

0
k(ξ,t)ϕ(t)dt, 0≤ ξ ≤ 1, (2.10)

where

k(ξ,t) :=
∞∑
n=1

e−n
2π2Tun(ξ)un(t). (2.11)

Note that the above integral operator is compact, positive, and selfadjoint with positive

eigenvalues e−n2π2T and corresponding eigenvectors un(·) for n∈N.

For considering the regularization of (2.1) in the setting of Hilbert scales, we consider

a Hilbert scale {Ht}t∈R generated by a strictly positive operator L : D(L)→ H with its

domain D(L) dense in H satisfying

‖Lx‖ ≥ ‖x‖, x ∈D(L). (2.12)

By the operator L being strictly positive, we mean that 〈Lx,x〉> 0 for all nonzero x ∈H.

Recall (cf. [9]) that the space Ht is the completion of D := ⋂∞k=0D(Lk) with respect to

the norm ‖x‖t , induced by the inner product

〈u,v〉t =
〈
Ltu,Ltv

〉
, u,v ∈D. (2.13)

Moreover, if β≤ γ, then the embedding Hγ ↩Hβ is continuous, and therefore the norm

‖·‖β is also defined in Hγ and there is a constant cβ,γ such that

‖x‖β ≤ cβ,γ‖x‖γ ∀x ∈Hβ. (2.14)

An important inequality that we require in the analysis is the interpolation inequality

‖x‖λ ≤ ‖x‖θr‖x‖1−θ
t , x ∈Ht, (2.15)

where

r ≤ λ≤ t, θ = t−λ
t−r , (2.16)

and the moment inequality

∥∥Bux∥∥≤ ∥∥Bvx∥∥u/v‖x‖1−u/v , 0≤u≤ v, (2.17)

where B is a positive selfadjoint operator (cf. [2]).
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We assume that the ill-posed nature of the operator A is related to the Hilbert scale

{Ht}t∈
 according to the relation

c1‖x‖−a ≤ ‖Ax‖ ≤ c2‖x‖−a, x ∈H, (2.18)

for some positive reals a, c1, and c2.

For the example of the integral operator considered in (2.4), one may take L to be

defined by

Lx :=
∞∑
j=1

j2〈x,uj〉uj, (2.19)

where uj(t) :=√2sin(jπt), j ∈N with domain of L as

D(L) :=
{
x ∈ L2[0,1] :

∞∑
j=1

j4
∣∣〈x,uj〉∣∣2 <∞

}
. (2.20)

In this case, it can be seen that

Ht =
{
x ∈ L2[0,1] :

∞∑
j=1

j4t∣∣〈x,uj〉∣∣2 <∞
}

(2.21)

and the constants a, c1, and c2 in (2.18) are given by a= 1, c1 = c2 = 1/π2 (see Schröter

and Tautenhahn [20, Section 4]).

The regularized approximation of x̂, considered in [4] is the solution of the well-

posed equation

(
A+αLs)xα =y, α > 0, (2.22)

where s is a fixed nonnegative real number. Note that if D(L) = X and L = I, then the

above procedure is the simplified or Lavrentiev regularization.

Suppose the datay is known only approximately, say ỹ in place ofy with ‖y−ỹ‖ ≤ δ
for a known error level δ > 0. Then, in place of (2.22), we have

(
A+αLs)x̃α = ỹ. (2.23)

It can be seen that the solution x̃α of the above equation is the unique minimizer of

the function

x � �→ 〈Ax,x〉−2〈ỹ,x〉+α〈Lsx,x〉, x ∈D(L). (2.24)

One of the crucial results for proving the results in [4, 5] as well as the results in this

paper is the following proposition, where the functions f and g are defined by

f(t)=min
{
ct1,c

t
2

}
, g(t)=max

{
ct1,c

t
2

}
, t ∈R, |t| ≤ 1, (2.25)

respectively, with c1, c2 as in (2.18).
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Proposition 2.1 (cf. [4, Proposition 3.1]). For s > 0 and |ν| ≤ 1,

f
(
ν
2

)
‖x‖−ν(s+a)/2 ≤

∥∥Aν/2s x
∥∥≤ g(ν

2

)
‖x‖−ν(s+a)/2, x ∈H, (2.26)

where As = L−s/2AL−s/2.

Using the above proposition, the following result has been proved by George and

Nair [4].

Theorem 2.2 (cf. [4, Theorem 3.2]). Suppose x̂ ∈ Ht , 0 < t ≤ s+a, and α > 0, and

x̃α is as in (2.23). Then

∥∥x̂− x̃α∥∥≤φ(s,t)αt/(s+a)‖x̂‖t+ψ(s)α−a/(s+a)δ, (2.27)

where

φ(s,t)= g
(
(s−2t)/(2s+2a)

)
f
(
s/(2s+2a)

) , ψ(s)= g
(−s/(2s+2a)

)
f
(
s/(2s+2a)

) . (2.28)

In particular, if α= c0δ(s+a)/(t+a) for some constant c0 > 0, then

∥∥x̂− x̃α∥∥≤ η(s,t)δt/(t+a), (2.29)

where

η(s,t)=max
{
φ(s,t)‖x‖tct/(t+a)0 ,ψ(s)c−a/(s+a)0

}
. (2.30)

For proposing a finite-dimensional realization, we consider a family {Sh : h > 0} of

finite-dimensional subspaces of Hk for some k ≥ s, and consider the minimizer x̃α,h
of the map defined in (2.24) when x varies over Sh. Equivalently, x̃α,h is the unique

element in Sh satisfying the equation

〈(
A+αLs)x̃α,h,ϕ〉= 〈ỹ,ϕ〉 ∀ϕ ∈ Sh. (2.31)

As in Engl and Neubauer [3], we assume the following approximation properties for Sh.

There exists a constant κ > 0 such that for every u∈Hr with r > k≥ s,

inf
{‖u−ϕ‖k :ϕ ∈ Sh

}≤ κhr−k‖u‖r , h > 0. (2.32)

As already exemplified in [3], the above assumption is general enough to include a

wide variety of approximations spaces, such as spline spaces and finite element spaces.

We will also make use of the following result from Engl and Neubauer [3, Lemma 2.2].

Lemma 2.3. Under the assumption (2.32), there exists a constant c > 0 such that for

every u∈Hs and h> 0,

inf
ϕ∈Sh

{
h−a/2‖u−ϕ‖−a/2+hs/2‖u−ϕ‖s/2

}≤ chs‖u‖s . (2.33)
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3. General error estimates. For a fixed s > 0, let x̃α and x̃α,h be as in (2.23) and

(2.31), respectively. We will obtain estimate for ‖x̃α− x̃α,h‖ so that we get an estimate

for ‖x̂− x̃α,h‖ using Theorem 2.2 and the relation

∥∥x̂− x̃α,h∥∥≤ ∥∥x̂− x̃α∥∥+∥∥x̃α− x̃α,h∥∥. (3.1)

In view of the interpolation inequality (2.15), by taking ρ =−a/2, τ = s/2, and λ= 0 in

(2.15), we get

‖x‖ ≤ ‖x‖s/(s+a)−a/2 ‖x‖a/(s+a)s/2 , x ∈Hs/2. (3.2)

Thus, we can deduce an estimate for ‖x̃α − x̃α,h‖ once we have estimates for ‖x̃α −
x̃α,h‖−a/2 and ‖x̃α− x̃α,h‖s/2. For this purpose, we first prove the following.

Lemma 3.1. Let x̃α and x̃α,h be as in (2.23) and (2.31), respectively. Then

∥∥A1/2(x̃α− x̃α,h)∥∥2+α∥∥x̃α− x̃α,h∥∥2
s/2 = inf

ϕ∈Sh

{∥∥A1/2(x̃α−ϕ)∥∥2+α∥∥x̃α−ϕ∥∥2
s/2
}
.

(3.3)

Proof. It can be seen (cf. [16]) that

〈u,v〉∗ := 〈Au,v〉+α〈Lsu,v〉, u,v ∈D(L), (3.4)

defines a complete inner product onD(L). Let ‖·‖∗ be the norm induced by 〈·,·〉∗, that

is,

‖u‖∗ =
(〈Au,u〉+α〈Lsu,u〉)1/2 = (∥∥A1/2u

∥∥2+α‖u‖2
s/2
)1/2. (3.5)

Let X be the space D(L) with the inner product 〈·,·〉∗ and let Ph be the orthogonal

projection of X onto the space Sh. Then from (2.23) and (2.31) we have

〈(
A+αLs)(x̃α− x̃α,h),ϕ〉= 0 ∀ϕ ∈ Sh, (3.6)

that is,

〈
x̃α− x̃α,h,ϕ

〉
∗ = 0 ∀ϕ ∈ Sh. (3.7)

Hence

Ph
(
x̃α− x̃α,h

)= 0 (3.8)

so that

∥∥x̃α− x̃α,h∥∥∗ = inf
ϕ∈Sh

∥∥(x̃α− x̃α,h)−ϕ∥∥∗ = inf
ϕ∈Sh

∥∥x̃α−ϕ∥∥∗. (3.9)

Now the result follows using the definition of ‖·‖∗.
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Next we obtain estimate for ‖x̃α− x̃α,h‖ using the estimates for ‖x̃α− x̃α,h‖−a/2 and

‖x̃α− x̃α,h‖s/2. We will use the notation

As := L−s/2AL−s/2 (3.10)

and observe that for α> 0,

(
A+αLs)x = Ls/2(As+αI)Ls/2x ∀x ∈Hs. (3.11)

Theorem 3.2. Suppose x̂ ∈Ht and assumption (2.32) holds, and let x̃α and x̃α,h be

as in (2.23) and (2.31), respectively. Then

∥∥x̃α− x̃α,h∥∥
≤ f

(
1
2

)−s/(s+a)
max

{
�(s,a),�(s,t,a)

}
Φ(s,h,α)α−a/(2s+2a)

(
δ
α
+α(t−s)/(s+a)

)
hs,

(3.12)

where f and g are as in (2.25), and

�(s,a)= g
(−s/(2s+2a)

)
f
(−s/(2s+2a)

) , �(s,t,a)= g
(
(s−2t)/(2s+2a)

)
f
(−s/(2s+2a)

) ‖x̂‖t ,

Φ(s,h,α)= cmax
{
g
(

1
2

)
ha/2,α1/2h−s/2

}
.

(3.13)

Proof. First we prove

∥∥x̃α− x̃α,h∥∥−a/2 ≤ 1
f(1/2)

Φ(s,h,α)hs
∥∥x̃α∥∥s , (3.14)

∥∥x̃α− x̃α,h∥∥s/2 ≤ Φ(s,h,α)α−1/2hs
∥∥x̃α∥∥s , (3.15)∥∥x̃α∥∥s ≤�(s,a)α−1δ+�(s,t,a)α(t−s)/(s+a) (3.16)

with �(s,a), �(s,t,a), and Φ(s,h,α) as in the statement of the theorem.

By Lemma 3.1 and Proposition 2.1, it follows that

f
(

1
2

)2∥∥x̃α− x̃α,h∥∥2
−a/2+α

∥∥x̃α− x̃α,h∥∥2
s/2

≤ inf
ϕ∈Sh

{
g
(

1
2

)2∥∥x̃α−ϕ∥∥2
−a/2+α

∥∥x̃α−ϕ∥∥2
s/2

}
.

(3.17)

Note that

g
(

1
2

)2∥∥x̃α−ϕ∥∥2
−a/2+α

∥∥x̃α−ϕ∥∥2
s/2

≤
[
g
(

1
2

)∥∥x̃α−ϕ∥∥−a/2+α1/2∥∥x̃α−ϕ∥∥s/2
]2

.
(3.18)
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But

g
(

1
2

)∥∥x̃α−ϕ∥∥−a/2+α1/2∥∥x̃α−ϕ∥∥s/2
≤ωh,α,s

[
h−a/2

∥∥x̃α−ϕ∥∥−a/2+hs/2∥∥x̃α−ϕ∥∥s/2
]
,

(3.19)

where

ω(h,α,s) :=max
{
g
(

1
2

)
ha/2,α1/2h−s/2

}
. (3.20)

Hence, by Lemma 2.3, we have

f
(

1
2

)2∥∥x̃α− x̃α,h∥∥2
−a/2+α

∥∥x̃α− x̃α,h∥∥2
s/2 ≤

(
ω(h,α,s)chs

∥∥x̃α∥∥s)2. (3.21)

In particular,

f
(

1
2

)∥∥x̃α− x̃α,h∥∥−a/2 ≤ω(h,α,s)chs∥∥x̃α∥∥s ,
α1/2∥∥x̃α− x̃α,h∥∥s/2 ≤ω(h,α,s)chs∥∥x̃α∥∥s .

(3.22)

From these, we obtain (3.14) and (3.15).

Now, to prove (3.16), observe from (2.23) and (3.11) that

x̃α = L−s/2
(
As+αI

)−1L−s/2ỹ. (3.23)

By Proposition 2.1, taking ν =−s/(s+a), we have

∥∥Ls/2(As+αI)−1L−s/2(ỹ−y)∥∥
≤ 1
f
(−s/(2s+2a)

)∥∥A−s/(2s+2a)
s

(
As+αI

)−1L−s/2(ỹ−y)∥∥

≤
∥∥(As+αI)−1∥∥
f
(−s/(2s+2a)

)∥∥A−s/(2s+2a)
s L−s/2(ỹ−y)∥∥

≤ α
−1g

(−s/(2s+2a)
)

f
(−s/(2s+2a)

) ∥∥L−s/2(ỹ−y)∥∥s/2

(3.24)

so that

∥∥Ls/2(As+αI)−1L−s/2(ỹ−y)∥∥≤�(s,a)α−1δ. (3.25)

Since L−s/2y =AsLs/2x̂, we have

∥∥Ls/2(As+αI)−1L−s/2y
∥∥

≤ 1
f
(−s/(2s+2a)

)∥∥A−s/(2s+2a)
s

(
As+αI

)−1AsLs/2x̂
∥∥

≤ 1
f
(−s/(2s+2a)

)∥∥(As+αI)−1A(a+t)/(a+s)s
∥∥∥∥A(s−2t)/(2a+2s)

s Ls/2x̂
∥∥,

(3.26)
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where

∥∥A(s−2t)/(2a+2s)
s Ls/2x̂

∥∥≤ g( s−2t
2s+2a

)
‖x̂‖t . (3.27)

Since

∥∥(As+αI)−1Aτs
∥∥≤ατ−1, 0< τ ≤ 1, (3.28)

it follows from the above relations that

∥∥Ls/2(As+αI)−1L−s/2y
∥∥≤ g

(
(s−2t)/(2s+2a)

)‖x̂‖t
f
(−s/(2s+2a)

) α(t−s)/(s+a)

= �(s,t,a)α(t−s)/(s+a).
(3.29)

Thus, (3.25) and (3.29) give

∥∥x̃α∥∥s ≤ ∥∥Ls/2(As+αI)−1L−s/2ỹ
∥∥

≤ ∥∥Ls/2(As+αI)−1L−s/2(ỹ−y)∥∥+∥∥Ls/2(As+αI)−1L−s/2y
∥∥

≤�(s,a)α−1δ+�(s,t,a)α(t−s)/(s+a).

(3.30)

Now, the estimates (3.14) and (3.15) together with the interpolation inequality (3.2) give

∥∥x̃α− x̃α,h∥∥≤ ∥∥x̃α− x̃α,h∥∥s/(s+a)−a/2
∥∥x̃α− x̃α,h∥∥a/(s+a)s/2

≤ f
(

1
2

)−s/(s+a)
α−a/2(s+a)Φ(s,h,α)hs

∥∥x̃α∥∥s .
(3.31)

From this, the result follows by making use of the estimate (3.16) for x̃α.

4. A priori error estimates. Now we choose the regularization parameter α and

discretization parameter h a priori depending on the noise level δ such that optimal

order O(δt/(t+a)) yields whenever x̂ ∈Ht .
Theorem 4.1. Suppose x̂ ∈ Ht with 0 < t ≤ s+a and assumption (2.32) holds. Sup-

pose, in addition, that

α= c0δ(s+a)/(t+a), h= d0δ1/(t+a) (4.1)

for some constants c0,d0 > 0. Then, using the notations in Theorems 2.2 and 3.2,

∥∥x̂− x̃α,h∥∥≤ [η(s,t)+ξ(s,t)]δt/(t+a), (4.2)



1982 S. GEORGE AND M. T. NAIR

where

η(s,t)=max
{
φ(s,t)‖x‖tct/(t+a)0 ,ψ(s)c−a/(s+a)0

}
,

ξ(s,t)= c
[
f
(

1
2

)]−s/(s+a)
ds0
(
c−1

0 +c(t−s)/(t+a)0

)

×max
{
�(s,a),�(s,t,a)

}
max

{
g
(

1
2

)
da/20 ,c1/2

0 d−s/20

}
.

(4.3)

Proof. Using the choice (4.1), it is seen that

Φ(s,h,α)α−a/2(s+a) = cc−a/2(s+a)0 max
{
g
(

1
2

)
da/20 ,c1/2

0 d−s/20

}
,

δα−1hs = c−1
0 d

s
0δ
t/(t+a),

α(t−s)/(s+a)hs = c(t−s)/(t+a)0 ds0δ
t/(t+a).

(4.4)

Therefore, by Theorem 3.2, we have

∥∥x̃α− x̃α,h∥∥≤ ξ(s,t)δt/(t+a). (4.5)

Also, from Theorem 2.2, we have

∥∥x̂− x̃α∥∥≤ η(s,t)δt/(t+a). (4.6)

Thus the result follows from the inequality

∥∥x̂− x̃α∥∥≤ ∥∥x̂− x̃α∥∥+∥∥x̃α− x̃α,h∥∥. (4.7)

Remark 4.2. We observe that the error bound obtained is of the same order as of

Theorem 2.2, and this order is optimal with respect to the source set

Mρ,t =
{
x ∈Ht : ‖x‖t ≤ ρ

}
(4.8)

in the sense of the best possible worst error (cf. [4]).

5. Discrepancy principle. In this section, we consider a discrepancy principle to

choose the regularization parameter α depending on the noise level δ and the dis-

cretization parameter h. This is a finite-dimensional variant of the discrepancy princi-

ple considered in [5].
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We assume throughout that y �= 0. Suppose that ỹ ∈H is such that

‖y−ỹ‖ ≤ δ (5.1)

for a known error level δ > 0 and Phỹ �= 0, where Ph is the orthogonal projection of H
onto Sh. We assume, throughout this section, that

∥∥A(Ph−I)∥∥≤ c3h, h > 0, (5.2)

for some c3 > 0, independent of h. Let

Rα := (As+αI)−1. (5.3)

We will make use of the relation

∥∥RαAτs ∥∥≤ατ−1, α > 0, 0< τ ≤ 1, (5.4)

which follows from the spectral properties of the selfadjoint operator As , s > 0.

Let s, a be fixed positive real numbers. For α> 0 and x ∈H, consider the functions

F(α,x)= α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥ . (5.5)

Note that, by assumption (2.18), ‖R2
αA

−s/(2s+2a)
s L−s/2Phx‖ is nonzero for every x ∈ H

with Phx �= 0, so that the function F(α,x) is well defined for all such x. We observe

that the assumption Phx �= 0 is satisfied for x �= 0 and h small enough, if Phx → x as

h→ 0 for every x ∈H.

In the following, we assume that h is such that Phỹ �= 0.

In order to choose the regularization parameter α, we consider the discrepancy prin-

ciple

F(α,ỹ)= bδ+dh (5.6)

for some b,d > 0. In the due course, we will make use of the relation

f
( −s

2s+2a

)
‖x‖ ≤ ∥∥A−s/(2s+2a)

s L−s/2x
∥∥≤ g( −s

2s+2a

)
‖x‖ (5.7)

which can easily be derived from Proposition 2.1.

First we prove the monotonicity of the function F(α,x) defined in (5.5).
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Theorem 5.1. Let x ∈ H be such that the function α � F(α,x) for α > 0 in (5.5)

is well defined. Then, F(·,x) is increasing and it is continuously differentiable with

F ′(α,x)≥ 0 for all α> 0. In addition,

lim
α→0
F(α,x)= 0, lim

α→∞F(α,x)=
∥∥A−s/(2s+2a)

s L−s/2Phx
∥∥. (5.8)

Proof. Using the definition (5.5) of F(α,·), we have

∂
∂α
F(α,x)

= (∂/∂α)
(
F2(α,x)

)
2F(α,x)

= 2α
∥∥R2

αA
−s/(2s+2a)
s L−s/2Phx

∥∥2∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2

×
(∂/∂α)

[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

−
α2
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥4(∂/∂α)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2Phx

∥∥2
]

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

=
∥∥R2

αA
−s/(2s+2a)
s L−s/2Phx

∥∥2(∂/∂α)
[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

−
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2(∂/∂α)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2Phx

∥∥2
]

2
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥3 .

(5.9)

Let {Eλ : 0≤ λ≤ a} be the spectral family of As , where a≥ ‖As‖. Then

∂
∂α

(
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2
)

= ∂
∂α

∫ a
0

α
λs/(s+a)(λ+α)3d

〈
EλL−s/2Phx,L−s/2Phx

〉

=
∫ a

0

[
1

λs/(s+a)(λ+α)3 −
3α

λs/(s+a)(λ+α)4
]
d
〈
EλL−s/2Phx,L−s/2Phx

〉

= ∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2−3α

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥2.

(5.10)

Similarly, we obtain

∂
∂α

(∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥)=−4

∥∥R5/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2. (5.11)



OPTIMAL ORDER YIELDING DISCREPANCY PRINCIPLE . . . 1985

Therefore, from (5.9), by using (5.10) and (5.11), we get

∂
∂α
F(α,x)=

∥∥R2
αA

−s/(2s+2a)
s L−s/2Phx

∥∥2

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2−3α
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥2
]

+ 2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2∥∥R5/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥3 .

(5.12)

The above equation can be rewritten as

∂
∂α
F(α,x)=

∥∥R2
αA

−s/(2s+2a)
s L−s/2Phx

∥∥2

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2−α∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥2
]

+ 2α∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥3

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2∥∥R5/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2

−∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥4
]
.

(5.13)

Since

∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2Phx,A−s/(2s+2a)

s L−s/2Phx
〉
,

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2Phx,

(
As+αI

)−1A−s/(2s+2a)
s L−s/2Phx

〉
,

(5.14)

we see that

∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2

=α∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥2

+〈(As+αI)−3A−s/(2s+2a)
s L−s/2Phx,As

(
As+αI

)−1A−s/(2s+2a)
s L−s/2Phx

〉
=α∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥2+∥∥Aa/(2s+2a)
s R2

αL−s/2Phx
∥∥2.

(5.15)
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Also, we have

∥∥R2
αA−s/(2s+2a)

s L−s/2Phx
∥∥4

= [〈R2
αA−s/(2s+2a)

s L−s/2Phx,R2
αA−s/(2s+2a)

s L−s/2Phx
〉]2

= [〈R3/2
α A−s/(2s+2a)

s L−s/2Phx,R5/2
α A−s/(2s+2a)

s L−s/2Phx
〉]2

≤ ∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2∥∥R5/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2.

(5.16)

Hence,

∂
∂α

(
F(α,x)

)≥ 0. (5.17)

To prove the last part of the theorem, we observe that

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥−F(α,x)
= α

2
∥∥R2

αA
−s/(2s+2a)
s L−s/2Phx

∥∥2−α∥∥R3/2
α A−s/(2s+2a)

s L−s/2Phx
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥ .
(5.18)

We note that

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥2 =α〈R3
αA−s/(2s+2a)

s L−s/2Phx,αRαA−s/(2s+2a)
s L−s/2Phx

〉
,

α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2Phx

∥∥2 =α〈R3
αA−s/(2s+2a)

s L−s/2Phx,A−s/(2s+2a)
s L−s/2Phx

〉
.
(5.19)

Since

αRα−I =AsRα = RαAs, (5.20)

it follows that

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥−F(α,x)
= −α

〈
R3
αA

−s/(2s+2a)
s L−s/2Phx,AsRαA

−s/(2s+2a)
s L−s/2Phx

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥
= −α

∥∥Aa/(2s+2a)
s R2

αL−s/2Phx
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥
≤ 0

(5.21)

so that

F(α,x)≥α2
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥≥α2

∥∥A−s/(2s+2a)
s L−s/2Phx

∥∥(∥∥As∥∥+α)2 . (5.22)
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Also, we have

F(α,x)= α
〈
RαA

−s/(2s+2a)
s L−s/2Phx,R2

αA
−s/(2s+2a)
s L−s/2Phx

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2Phx

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2Phx
∥∥.

(5.23)

Hence

(
α∥∥As∥∥+α

)2∥∥A−s/(2s+2a)
s L−s/2Phx

∥∥≤ F(α,x)≤α∥∥RαA−s/(2s+2a)
s L−s/2Phx

∥∥. (5.24)

From this we can conclude that

lim
α→0
F(α,x)= 0, lim

α→∞F(α,x)=
∥∥A−s/(2s+2a)

s L−s/2Phx
∥∥. (5.25)

This completes the proof.

For the next theorem, in addition to (5.1), we assume that the inexact data ỹ satisfies

the relation

∥∥A−s/(2s+2a)
s L−s/2Phỹ

∥∥≥ bδ+dh. (5.26)

This assumption is satisfied for small enough h and δ, if, for example,

(
b+ f̃ (s))δ+(d+c3f̃ (s)‖x̂‖

)
h≤ f̃ (s)‖y‖, (5.27)

where f̃ (s)= f(−s/(2s+2a)), because

∥∥Phỹ∥∥≥ ‖y‖−∥∥(I−Ph)Ax̂∥∥−δ, (5.28)

and by (5.7),

∥∥A−s/(2s+2a)
s L−s/2Phỹ

∥∥≥ f̃ (s)∥∥Phỹ∥∥. (5.29)

Now the following theorem is a consequence of Theorem 5.1.

Theorem 5.2. Assume that (5.1) and (5.26) are satisfied. Then there exists a unique

α :=α(δ,h) satisfying

F(α,ỹ)= bδ+dh. (5.30)

In order to obtain an estimate for the error ‖x̂− x̃α,h‖ with the parameter choice

strategy (5.30), we will make use of (3.31). The next lemma gives an error estimate for

‖x̃α‖s in terms of α=α(δ,h), δ, and h.

Lemma 5.3. Let α :=α(δ,h) be the unique solution of (5.30). Then for any fixed τ > 0,

∥∥x̃α∥∥s ≤ c4(δ+h)τ/(τ+1)α−1, (5.31)
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where

c4 ≥max
{
b+ g̃(s),c+c3‖x̂‖g̃(s)

}
g̃(s)‖ỹ‖ (5.32)

with g̃(s) := g(−s/(2s+2a)).

Proof. By (3.30), we have

∥∥x̃α∥∥s ≤ ∥∥Ls/2RαL−s/2ỹ∥∥≤ f̃−1(s)α−1
∥∥αRαA−s/(2s+2a)

s L−s/2ỹ
∥∥. (5.33)

To obtain an estimate for ‖αRαA−s/(2s+2a)
s L−s/2ỹ‖, we will make use of the moment

inequality (2.17). Precisely, we use (2.17) with

u= τ, v = 1+τ, B =αRα, x =α1−τR1−τ
α A−s/(2s+2a)

s L−s/2ỹ. (5.34)

Then, since

‖x‖ ≤ ∥∥A−s/(2s+2a)
s L−s/2ỹ

∥∥≤ g( −s
2s+2a

)
‖ỹ‖, (5.35)

we have
∥∥αRαA−s/(2s+2a)

s L−s/2ỹ
∥∥

= ∥∥Bτx∥∥≤ ∥∥Bτ+1x
∥∥τ/(τ+1)‖x‖1/(τ+1)

= ∥∥α2R2
αA−s/(2s+2a)

s L−s/2ỹ
∥∥τ/(τ+1)

[
g
( −s

2s+2a

)
‖ỹ‖

]1/(τ+1)
.

(5.36)

Further, by (5.21),

∥∥α2R2
αA−s/(2s+2a)

s L−s/2ỹ
∥∥

≤ ∥∥α2R2
αA−s/(2s+2a)

s L−s/2
(
I−Ph

)
ỹ
∥∥+∥∥α2R2

αA−s/(2s+2a)
s L−s/2Phỹ

∥∥
≤ g̃(s)∥∥(I−Ph)ỹ∥∥+F(α,ỹ)
≤ g̃(s)[∥∥(I−Ph)(ỹ−y)∥∥+∥∥(I−Ph)Ax̂∥∥]+F(α,ỹ)
≤ g̃(s)[δ+c3‖x̂‖h

]+F(α,ỹ).

(5.37)

Therefore, if α :=α(δ,h) is the unique solution of (5.30), then we have

∥∥α2R2
αA−s/(2s+2a)

s L−s/2ỹ
∥∥≤ (b+ g̃(s))δ+(d+ g̃(s)c3‖x̂‖

)
h. (5.38)

Now the result follows from (5.33), (5.36), (5.37), and (5.38).

Lemma 5.4. Suppose that x̂ belongs to Ht for some t ≤ s, and α := α(δ,h) > 0 is the

unique solution of (5.30), whereb>g̃(s) andd>c3‖x̂‖g̃(s)with g̃(s) :=g(−s/(2s+2a)).
Then

α≥ c0δ(s+a)/(t+a), c0 = min
{
b− g̃(s),d−c3‖x̂‖g̃(s)

}
g
(
(s−2t)/(2s+2a)

)
ρ

. (5.39)
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Proof. Note that by (5.23), Proposition 2.1, and (2.18), we have

F(α,ỹ)≤α∥∥RαA−s/(2s+2a)
s L−s/2Phỹ

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2Ph(ỹ−y)
∥∥

+α∥∥RαA−s/(2s+2a)
s L−s/2

(
Ph−I

)
y
∥∥+α∥∥RαA−s/(2s+2a)

s AsLs/2x̂
∥∥

≤α∥∥RαA−s/(2s+2a)
s L−s/2Ph(ỹ−y)

∥∥
+α∥∥RαA−s/(2s+2a)

s L−s/2
(
Ph−I

)
y
∥∥+α∥∥RαA(s+2a)/(2s+2a)

s Ls/2x̂
∥∥

≤α∥∥RαA−s/(2s+2a)
s L−s/2Ph(ỹ−y)

∥∥
+α∥∥RαA−s/(2s+2a)

s L−s/2
(
Ph−I

)
y
∥∥+α∥∥RαA(t+a)/(s+a)s A(s−2t)/(2s+2a)

s Ls/2x̂
∥∥

≤ g̃(s)[δ+c3‖x̂‖h
]+∥∥αRαA(t+a)/(s+a)s

∥∥∥∥A(s−2t)/(2s+2a)
s Ls/2x̂

∥∥
≤ g̃(s)[δ+c3‖x̂‖h

]+g( s−2t
2s+2a

)
ρα(t+a)/(s+a).

(5.40)

Thus

min
{
b− g̃(s),d−c3‖x̂‖g̃(s)

}
(δ+h)≤ g

(
s−2t

2s+2a

)
ρα(t+a)/(s+a), (5.41)

which implies

α≥ c0(δ+h)(s+a)/(t+a), c0 = min
{
b− g̃(s),d−c3‖x̂‖g̃(s)

}
g
(
(s−2t)/(2s+2a)

)
ρ

. (5.42)

This completes the proof.

Theorem 5.5. Under the assumptions in Lemma 5.4, for any fixed τ > 0,

∥∥x̃α− x̃α,h∥∥≤ c5(δ+h)ζ, (5.43)

where

ζ := τ
τ+1

+ s
2
− s+2a

2t+2a
+γ, c5 ≥ cc4f

(
1
2

)−s/(s+a)
max

{
g
(

1
2

)
,1
}

(5.44)

with

γ :=



0, if t ≥ 1−a,
s+a

2

(
1− 1
t+a

)
, if t < 1−a. (5.45)
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Proof. Note that by (3.31) and Lemmas 5.3 and 5.4,

∥∥x̃α− x̃α,h∥∥
≤ f

(
1
2

)−s/(s+a)
Φ(s,h,α)α−a/(2s+2a)hs

∥∥x̃α∥∥s
≤ cf

(
1
2

)−s/(s+a)
max

{
g
(

1
2

)
ha/2,α1/2h−s/2

}
c4α−a/(2s+2a)hsα−1(δ+h)τ/(τ+1)

≤ cf
(

1
2

)−s/(s+a)
max

{
g
(

1
2

)
h(s+a)/2α−1/2,1

}
c4α−a/(2s+2a)−1/2hs/2(δ+h)τ/(τ+1)

≤ cf
(

1
2

)−s/(s+a)
max

{
g
(

1
2

)
(δ+h)(s+a)/2−(s+a)/(2t+2a),1

}

×c4(δ+h)τ/(τ+1)+s/2−a/(2t+2a)−(s+a)/(2t+2a)

≤ cf
(

1
2

)−s/(s+a)
max

{
g
(

1
2

)
,1
}
c4(δ+h)τ/(τ+1)+s/2−a/(2t+2a)−(s+a)/(2t+2a)+γ.

(5.46)

This completes the proof.

Theorem 5.6. Under the assumptions in Lemma 5.4,

∥∥x̂−xα∥∥=O((δ+h)t/(t+a)). (5.47)

Proof. Since xα is the solution of (2.22), we have

x̂−xα = x̂−
(
A+αLs)−1y

=αL−s/2(As+αI)−1Ls/2x̂

=αL−s/2RαLs/2x̂.
(5.48)

Therefore, by (5.7), we have

f
(

s
2s+2a

)∥∥x̂−xα∥∥≤ ∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥. (5.49)

To obtain an estimate for ‖αAs/(2s+2a)
s RαLs/2x̂‖, first we will make use the moment

inequality (2.17) with

u= t
a
, v = 1+ t

a
, B =αRαAa/(s+a)s , x =α1−t/aR1−t/a

α A(s−2t)/(2s+2a)
s Ls/2x̂.

(5.50)
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Then, since

‖x‖ ≤ ∥∥A(s−2t)/(2s+2a)
s Ls/2x̂

∥∥≤ g( s−2t
2s+2a

)∥∥Ls/2x̂∥∥t−s/2 ≤ g
(
s−2t

2s+2a

)
ρ, (5.51)

we have

∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥
= ∥∥Bt/ax∥∥
≤ ∥∥B1+t/ax

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA(2a+s)/(2s+2a)
s Ls/2x̂

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA−s/(2s+2a)
s L−s/2y

∥∥t/(t+a)‖x‖a/(t+a)
≤ g

(
s−2t

2s+2a

)a/(t+a)
ρa/(t+a)

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥t/(t+a).

(5.52)

Further, by (5.2), (5.7), and (5.21),

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥

≤ ∥∥α2R2
αA−s/(2s+2a)

s L−s/2(y−ỹ)∥∥+∥∥α2R2
αA−s/(2s+2a)

s L−s/2
(
I−Ph

)
ỹ
∥∥

+∥∥α2R2
αA−s/(2s+2a)

s L−s/2Phỹ
∥∥

≤ g
(
− s

2s+2a

)(
δ+c3‖x̂‖h

)+F(α,ỹ).
(5.53)

Therefore, if α :=α(δ,h) is the unique solution of (5.30), then we have

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥≤ [g̃(s)+b]δ+[g̃(s)c3‖x̂‖+d

]
h. (5.54)

Now the result follows from (5.49), (5.52), (5.53), and (5.54).

Theorem 5.7. Under the assumptions in Lemma 5.4, for any fixed τ > 0,

∥∥x̂− x̃α,h∥∥≤ c6(δ+h)µ, µ :=min
{
t
t+a,ζ

}
(5.55)

for some c6 > 0, and ζ as in Theorem 5.5.
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Proof. Let xα and x̃α be the solutions of (2.22) and (2.23), respectively. Then by

triangle inequality, (5.4), and Proposition 2.1,∥∥x̂− x̃α,h∥∥
≤ ∥∥x̂−xα∥∥+∥∥xα− x̃α∥∥+∥∥x̃α− x̃α,h∥∥
= ∥∥x̂−xα∥∥+∥∥L−s/2RαL−s/2(y−ỹ)∥∥+∥∥x̃α− x̃α,h∥∥
≤ ∥∥x̂−xα∥∥+ 1

f
(
s/(2s+2a)

)∥∥As/(2s+2a)
s RαL−s/2(y−ỹ)

∥∥+∥∥x̃α− x̃α,h∥∥

≤ ∥∥x̂−xα∥∥+ 1
f
(
s/(2s+2a)

)∥∥As/(s+a)s RαA−s/(2s+2a)
s L−s/2(y−ỹ)∥∥+∥∥x̃α− x̃α,h∥∥

≤ ∥∥x̂−xα∥∥+ 1
f
(
s/(2s+2a)

)∥∥As/(s+a)s Rα
∥∥∥∥A−s/(2s+2a)

s L−s/2(y−ỹ)∥∥+∥∥x̃α− x̃α,h∥∥

≤ ∥∥x̂−xα∥∥+ g
(−s/(2s+2a)

)
f
(
s/(2s+2a)

) δα−a/(s+a)+∥∥x̃α− x̃α,h∥∥

≤ ∥∥x̂−xα∥∥+ g
(−s/(2s+2a)

)
f
(
s/(2s+2a)

) (δ+h)α−a/(s+a)+∥∥x̃α− x̃α,h∥∥.
(5.56)

The proof now follows from Lemma 5.4 and Theorems 5.5 and 5.6.

Corollary 5.8. If t, s, a satisfy max{0,1−a} < t ≤ s and τ is large enough such

that

γ+ s
2

[
1− 1
t+a

]
≥ 1
τ+1

, (5.57)

then

∥∥x̂− x̃α,h∥∥≤ c6(δ+h)t/(t+a) (5.58)

with c6 as in Theorem 5.7.

Proof. Let ζ, µ be as in Theorems 5.5 and 5.7, respectively. Then we observe that

µ = t
t+a if γ+ s

2

[
1− 1
t+a

]
≥ 1
τ+1

. (5.59)

Hence the result follows from Theorem 5.7.

6. Order optimality of the error estimates. In order to measure the quality of an

algorithm to solve an equation of the form (2.1), Micchelli and Rivlin [12] considered

the quantity

e(M,δ) := sup
{‖x‖ : x ∈M, ‖Ax‖ ≤ δ} (6.1)

and showed that

e(M,δ)≤ E(M,δ)≤ 2e(M,δ), (6.2)
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where

E(M,δ)= inf
R

sup
{‖x−Rv‖ : x ∈M, v ∈H, ‖Ax−v‖ ≤ δ} (6.3)

is the best possible worst error. Here the stabilizing set M is assumed to be convex

such that M =−M with 0∈M (see also, Văınikko and Veretennikov [22]), and infimum

is taken over all algorithms R : Y → X. Since H is a Hilbert space and A is assumed to

be selfadjoint and positive, we, in fact, have (cf. Melkman and Micchelli [11])

e(M,δ)= E(M,δ). (6.4)

Now using the assumption (2.18), and taking r = −a, λ = 0 in the interpolation

inequality (2.15), we obtain

‖x‖ ≤ ‖x‖t/(t+a)−a ‖x‖a/(t+a)t ≤
(‖Ax‖
c1

)t/(t+a)
‖x‖a/(t+a)t , x ∈Ht. (6.5)

Therefore, for the set

Mt,ρ =
{
x : ‖x‖t ≤ ρ

}
(6.6)

with a fixed t > 0, ρ > 0,

e
(
Mt,ρ,δ

)≤ ( δ
c1

)t/(t+a)
ρa/(t+a). (6.7)

It is known that the above estimate for e(Mt,ρ,δ) is sharp (cf. Vainikko [21]). In view of

the above observations, an algorithm is called an optimal order yielding algorithm with

respect toMt,ρ and the assumption (2.18), if it yields an approximation x̃ corresponding

to the data ỹ with ‖y−ỹ‖ ≤ δ satisfying

‖x̂− x̃‖ =O(δt/(t+a)), x ∈Ht. (6.8)

Clearly, Corollary 5.8 shows that if h = O(δ) and if max{0,1−a} < t ≤ s and τ is

large enough such that

γ+ s
2

[
1− 1
t+a

]
≥ 1
τ+1

, (6.9)

then we obtain the optimal order.

7. Applications. For r ≥ 2, denote by Sh the space of r th-order splines on the uni-

form mesh of width h = 1/n, that is, Sh consists of functions in Cr−1[0,1] which are

piecewise polynomials of degree r−2. For positive integers s, letHs denote the Sobolev

space of functions u∈ Cs−1[0,1] with us−1 absolutely continuous and the norm ‖u‖Hs
defined by

‖u‖Hs =
( s∑
i=1

∥∥u(i)∥∥
)1/2

, u∈Hs. (7.1)
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Then Sh is a finite-dimensional subspace of Hr−1 which has the following well-known

approximation property (cf. [1]): for u ∈Hs , s ∈N, there is a constant κ (independent

of h) such that

inf
ϕ∈Sh

‖u−ϕ‖Hj ≤ κhmin{s,r}−j‖u‖Hs , u∈Hs, j ∈ {0,1}, (7.2)

so that assumption (2.32) is satisfied. We take L as in (2.19), that is,

Lx :=
∞∑
j=1

j2〈x,uj〉uj, (7.3)

where uj(t) :=√2sin(jπt), j ∈N, with domain of L as

D(L) :=
{
x ∈ L2[0,1] :

∞∑
j=1

j4
∣∣〈x,uj〉∣∣2 <∞

}
. (7.4)

In this case, (Ht)t∈R is given as in (2.21). It can be seen that

Ht =
{
x ∈ L2[0,1] :

∞∑
j=1

j4t∣∣〈x,uj〉∣∣2 <∞
}

=
{
x ∈H2t(0,1) : x(2l)(0)= x(2l)(1)= 0, l= 0,1, . . . ,

⌈
t− 1

4

⌉}
,

(7.5)

where �p� denotes the greatest integer less than or equal to p. We observe that H0 =
L2[0,1], and for s ∈N, Hs ⊂Hs .

Now, let A : L2[0,1]→ L2[0,1] be a positive selfadjoint operator. Then we have

∥∥A(I−Ph)∥∥= ∥∥(I−P)A∥∥= sup
‖u‖≤1

inf
ϕ∈Sh

‖Au−ϕ‖. (7.6)

Hence, by (7.2),

∥∥A(I−Ph)∥∥≤ κhmin(s,r) sup
‖u‖≤1

‖Au‖Hs . (7.7)

From the above inequality it is clear that if Au ∈ Hs for every u ∈ L2[0,1], and if

A : L2[0,1]→Hs is a bounded operator, then there exists a constant ĉ such that

∥∥A(I−Ph)∥∥≤ κĉhmin(s,r) (7.8)

so that (5.2) is satisfied.

Now, we consider the case of an integral operator, namely (2.4), having all its eigen-

values nonnegative, and k(ξ,t) = k(t,ξ) for all (ξ,t) ∈ [0,1]× [0,1] is such that it

is differentiable s times with respect to the variable ξ with its sth derivative lying in

L2[0,1]. For example, the integral operator may be the one associated with the back-

ward heat equation problem considered in Section 2.

Now,

di

dξi
(Au)(ξ)=

∫ 1

0

∂ik(ξ,t)
∂ξi

u(t)dt (7.9)
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so that

‖Au‖Hs ≤ ‖k‖0,s‖u‖ with ‖k‖0,s =
s∑
i=0

∫ 1

0

∫ 1

0

∣∣∣∣∂ik(t,ξ)∂ξi

∣∣∣∣
2

dtdξ. (7.10)

Thus we get (7.8) with ĉ = ‖k‖0,s .
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