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CONTINUITY FOR SOME MULTILINEAR OPERATORS
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The continuity for some multilinear operators related to certain fractional singular integral
operators on Triebel-Lizorkin spaces is obtained. The operators include Calderon-Zygmund
singular integral operator and fractional integral operator.
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1. Introduction. Let T be a Calderon-Zygmund singular integral operator; a well-
known result of Coifman et al. (see [6]) states that the commutator [b,T] =T(bf)-bTf
(where b € BMO)is bounded on L¥ (R™) for 1 < p < co; Chanillo (see [1]) proves a similar
result when T is replaced by the fractional integral operator; in [10, 11], these results
on the Triebel-Lizorkin spaces and the case b € Lip 8 (Where Lip 8 is the homogeneous
Lipschitz space) are obtained. The main purpose of this paper is to discuss the con-
tinuity for some multilinear operators related to certain fractional singular integral
operators on the Triebel-Lizorkin spaces. In fact, we will establish the continuity on
the Triebel-Lizorkin spaces for the multilinear operators only under certain conditions
on the size of the operators. As to the applications, the continuity for the multilinear
operators related to the Calderon-Zygmund singular integral operator and fractional
integral operator on the Triebel-Lizorkin spaces is obtained.

2. Notations and results. Throughout this paper, Q will denote a cube of R™ with
side parallel to the axes, and for a cube Q, let fo = IQI‘lfo(x)dx and f*(x) =
SuPyeq QI o If(¥) = foldy.For 1 <7 <o and 0 <6 <n, let

1/r
1 P .
M&,r(f)(x)=ilelg(ij|f(y)| dy) ; (2.1)
we denote Ms, (f) = M, (f) if 6 = 0, which is the Hardy-Littlewood maximal function
whenr» =1.For > 0and p > 1, let Fﬁ'w be the homogeneous Triebel-Lizorkin space;
the Lipschitz space Ag is the space of functions f such that

Fl A, = M (2.2)
f Ag = x,shlépR” B < 00, .
h#0

where A’;l denotes the kth difference operator (see [11]).
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We are going to consider the fractional singular integral operator as follows.

DEFINITION 2.1. Let T:S — S’ be a linear operator. T is called a fractional singular
integral operator if there exists a locally integrable function K(x,y) on R™ X R™ such
that

T(f)(x) = JK(x,y)f(y)dy 2.3)

for every bounded and compactly supported function f. Let m be a positive integer
and A a function on R". Denote that

Rover (A33,3) = A(x) = 3 —-D¥AG) (x = )% (2.4)

lx|<m
The multilinear operator related to fractional singular integral operator T is defined by

Rm1(A;x,y)
[x = [m

Ta(f)(x) = K(x,y)f(y)dy. (2.5)

Note that when m = 0, T4 is just the commutator of T and A while when m > 0,
it is nontrivial generalizations of the commutators. It is well known that multilinear
operators are of great interest in harmonic analysis and have been widely studied by
many authors (see [2, 3, 4, 5, 7, 8, 14]). The main purpose of this paper is to study the
continuity for the multilinear operator on Triebel-Lizorkin spaces. We will prove the
following theorem in Section 3.

THEOREM 2.2. Let0 < B <1 and D*A € Ag for |&| = m. Suppose T is the fractional
singular integral operator such that T is bounded from L? (R™) to L1(R™) for 0 <6 < mn,
l<p<n/éd,and1/p—-1/q=46/n.If T satisfies the size condition

| Ta(f) () = Ta(f) (x0) | <C 3. |ID*All; Q1P M5 (f) (x) (2.6)

|a|l=m

for any cube Q = Q(xo,l) with supp f C (2Q)¢, x € Q, and some 0 < 6 < n, then
(@) Ty maps L (R™) continuously into F;""(R™) for 0 < § <n, 1 < p <n/S, and
l/p-1/a=46/n;
(b) To maps LP (R™) continuously into L1(R"™) forO<d <n-B,1<p <n/(d+pB),
and1/p-1/q=(6+pB)/n.

From the theorem, we get the following corollary.
COROLLARY 2.3. Fix&> 0,0 < f <min(l,¢), 6 =0, and D*A € Ag for || = m. Let

K be a locally integrable function on R™ X R™ satisfying

|K(x,¥)| < Clx -y,
2.7
K(v,x)—K(z,x)| <Cly—-z|f|x —z| "¢+ @7
|K(y | y
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if 2|y —z| < |x —z|. Denote that (2.3) holds and denote the multilinear operator of T by
(2.5) for every bounded and compactly supported function f and x € (supp f)¢. Suppose
T is bounded from L? (R") to L4(R") forO<d<n,1<p<n/d,and1l/q=1/p-35/n.
Then
(@) Ta maps L? (R™) continuously into Fy"”(R™) for 0 <§ <n, 1 < p < n/§, and
1/p-1/q=45/n;
(b) To maps L¥ (R") continuously into L2(R") forO<d<n—-B,1<p <n/(6+pB),
and1l/p—-1/q=(5+PB)/n.

3. Proof of Theorem 2.2. To prove the theorem, we need the following lemmas.

LEMMA 3.1 [11]. ForO<B<landl<p < oo,

LF 1l g = HSEPWJ | f(x) —fqldxH

(3.1)
supmf |Q|1+B/nj lf(x)—cldxH
LEMMA 3.2 [11]. ForO<fB<landl <p < o,
1
1Fllag = SngJQ |f(x) = foldx
(3.2)

1 1 1y
— = X)— pdx) .
LEMMA 3.3[1]. Supposethatl<v <p <n/dandl/q=1/p-56/n.Then||Ms,(f)llLa <

Cllflle.

LEMMA 3.4 [5]. Let A be a function on R"™ and D*A € L1(R") for || = m and some
q > n. Then

1/q
1 a
Ry (A;x, <Clx—-y|™ —_ D®A d , 3.3
| R (A;x,¥) | < Clx - | ,x|z_m<|Q(x,y>l Q<x‘y)| ()] z) (3.3)

where Q(x,y) is the cube centered at x and having side length 5\/n|x —y|.

PROOF OF THEOREM 2.2. Fix a cube Q = Q(xo,l) and ¥ € Q. Let Q = 5./nQ and
A(x) = A(x) = 3| qjem (1/ ) (D¥A) 5 x*. Then Ry (A;x,¥) = Rm(A;x,y) and D¥A =
D*A—(D*A)g for || = m. We write, for f1 = fxs and f2 = fXgn\g,

Rm Al ’
Ta(f) ) = [ Rmarldi6y)
rRn | x—y|m
[ Rma(Ajx,y)
= e ey K(x,y)f2(y)dy
+J Rm(4;x,y)
Rn |X—3’|m

K(x,y)f(y)dy

(3.4)
K(x,y)fi(y)dy

K(x,y)(x-y)* _«
- > ol LG —D A fi(y)dy,

x|=m
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then
[ Ta(f)(x)—Ta(f2) (x0) |
R (A;x,-) 1 (x— )% o~
(- £ 2] oo
+ [ Ta(f2)(x) = Ta(f2)(x0) | :=1(x)+1I(x)+ 111 (x).
Thus,
\Ql“ﬁ/"J | Ta () ()~ Ta (o) (o) | dix
J I(x)dx+—J x)dx + ———— J mix)dx 6
< G QIT+6im G
= [+ 11 +111.

Now, we estimate I, I1, and I11, respectively. First, for x € Q and y € Q, using Lemmas
3.4 and 3.2, we get

Rm(A;x,y) = Clx-yI™ 3 sup|D*A(x) - (D%A);|

|x|=m Xx€Q

<Clx—-y|™Qf™ > [ID*All,, -

la|l=m

(3.7)

Thus, taking 7, s such that 1 <v <p and 1/s = 1/r—/n, by (L",L*) boundedness of
T and Holder’s inequality, we obtain

1=C 3 DAl g | 1T o dx

|a|l=m

<C > ID*All T ()]s 1l

|x|=m

<C 3 |Ipall;, Al 1@l (3.8)
laj=m 1/r

<C 3Dl | = |, SO0y
|x|=m g |Q|1_Y " Q

<C > HDO(AH;\ﬁM(S,r(f)(j&)-

[o|=m

Second, using the inequality (see [11])

I[(D*A—(D*A)s) fxgllr < CIQI1/S+3/”||D"‘A|{ABM5,V(f)(x), (3.9)
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we gain

C

1= g 2 [T((0"4-(D%4)0) Frea)

Lo

<ClQI™ s X |(D¥A— (D*A) ) fX2allr (3.10)

|a|l=m

<C X |ID*All; Mo (F)(%).

la|=m

For 111, using the size condition of T, we have

ar=c > ID*AJ|; , Ms.1 () (%). (3.11)

|x|=m

We now put these estimates together, and taking the supremum over all Q such that
X € Q, and using Lemmas 3.1 and 3.3, we obtain

ITa(P) g = C 2 IDAJ 11l (3.12)

lof=m

This completes the proof of (a).
For (b), by the same argument as in the proof of (a), we have

ﬁ JQ | Ta(F) () = Ta(f2) (x0) [dy < C 3 [[D¥Alls, (M, (f) + Mo ()

|x|=m

(3.13)
Thus, we get the sharp estimate of T4 as follows:
(Ta(f))* = C D ID¥Al[;, (Ms.pr (F) + M1 (). (3.14)
|ax|=m

Now, using Lemma 3.3, we gain

ITa(A) e = CITA) ] 1a
« (3.15)

<C > [ID*All;, (M50 (Hla +[[Ms1p1 (Plla) < ClLF llo.
|axl=m

This completes the proof of (b) and the theorem. |

PROOF OF COROLLARY 2.3. It suffices to verify that T satisfies the size condition in
Theorem 2.2.
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Suppose supp f € Q¢ and x € Q = Q(xo,1). We write

TA(f)(x) = Ta(f) (x0)
:J [K(x,w _ K(x0,2)
rRe [ Ix=yIm  |xo—y|™

K(xo,y)f(y)[
R™ |X0—)’|m

]Rm(A;x,y)f(y)dy

Rm(A;x,5) = Rm(A;x0,5) |dy (3.16)

v L[ (KX (x=»)* K(x0,¥)(x0->)"
Z ol JR" (

- D*A d
X —ym |x0—| ) D fy)dy

la|=m

=11+ +15.

By Lemma 3.4 and the following inequality, for b € Ag:

|b(x)—bq| < JQ Iblis,lx -y IPdy < Ilblls, (|x—xo| 1), (3.17)

1
Q|
we get

|Rm(Aix,0) | = 3 |ID¥A|[5, (Ix = v+ D)™, (3.18)

la|l=m

Note that by |[x —y| ~ |xo—y]| for x € Q and y € R"\ Q, we obtain, by the condition
of K,

X—X x—x0lf -
~Il| SCJRn\Q ( |x0|y|m37|l+15 + |X0|y|m0+|n+56 |Rm(A,X,_’)/)| |f(3’)|dy

0o &
<C DAl J x=xo] _, _ |x=xo f)|dy
‘alzz‘,mH ||/\[gk§) 2k+19\2k0) ( |X0 7y|n+lf§fﬁ |X0*y |11+€*5*ﬁ \ |

> _ _ 1
=C 3 %Al Qi Y (kA ki) Lo
lx|=m k=1 |2 Q\

<C X ID*All, 1QIF "My (f) (x).

lof=m

[ 1ronlay
2kQ

(3.19)

For I», by the formula (see [3])

R (A;x,¥) =R (A;x0,7) = > l'Rm_w(D”A;x,xo)(x—y)” (3.20)

[nl<m "
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and Lemma 3.4, we get

R (A x, R (A;x0,y
| R ( ) - wﬁnéo ||f )|dy

L] <C|
RMQ |x0—]

<C X [Ipa Z x=xol™0 )1
P mll [ JMQ\Z,(QWUJ/ |dy
(3.21)
N 1
B/ -k
<C 3 DAl il > 2t Q|1_5/nLkQ|f(y)|dy
<C > [IDA]l;,1QIF M5 (f) (x)

la|=m

For I3, similar to the estimates of I;, we obtain

X—x x—x0l|¢
nl<c| Xl Xl Dt - (00a), | £ |y
RMQ \ [x0 - | |x0-]

ol 1
k(B-1 k(B-
<C > |ID¥A[[;, 1QIFrm X7 (2KF1 4 2KF f’)WLk [f(y)|dy
|x|=m k=1 | Q|
<C 3 [ID*A[l;,1Q1F " M5, (f) (x).
|a|=m
(3.22)
Thus (2.6) holds. This completes the proof of the corollary. |

4. Applications. In this section, we will apply Theorem 2.2 and Corollary 2.3 to some
particular operators such as the Calderon-Zygmund singular integral operator and frac-
tional integral operator.

APPLICATION 1 (Calderon-Zygmund singular integral operator). Let T be the
Calderon-Zygmund operator defined by (2.3) (see [9, 12, 13]); the multilinear operator
related to T is defined by

Rin1(A;x,Y)

Taf (0 = | LK fdy. (4.1)

Then it is easy to see that T satisfies the conditions in Corollary 2.3 with 6 = 0; thus
Ta is bounded from L? (R™) to Fp'™ (R™) for D¥A € Ag, ol =m, 0<B <1, 1 <p <o

and from LP(R™) to L4(R™) for D*A € Ag, lal =m, 0 < B <1,1<p <n/B, and
1/p—1/q=B/n.

APPLICATION 2 (fractional integral operator with rough kernel). For 0 < < n, let
Ts be the fractional integral operator with rough kernel defined by (see [7, 8, 14])

Tsf(x) =j QX =X) )y, .2)

Rn |x =y "0
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the multilinear operator related to Ts is defined by

Rm1(A;x,y)

A —
T(sf(x) - R |x_y|m+n_6

Qx-y)f(y)dy, (4.3)
where Q is homogeneous of degree zero on R", [¢u-1Q(x")do(x’) = 0, and Q €
Lipy(Snfl) for 0 < y < 1, that is, there exists a constant M > 0 such that for any x,y €
S 1Q(x) —Q(y)| < M|x —y|”. Then T;s satisfies the conditions in Corollary 2.3. In
fact, for supp f € (2Q)¢ and x € Q = Q(xy,1), by the condition of O, we have (see [14])

| x — x| |x-xo|” ).
= C( ni-s n+y-o6 |’ (4.4)
[x0— ] | x0-]

Qx-y)  Q(x-v)
e =yIm0 gy |7

thus, similar to the proof of Corollary 2.3, we get

| T2 (f) () = T4 () (x0) |

ad X —Xo| |x—x0|”
<c S Ipeal. J | ; )| dy
‘ulzz‘.mH ||/\Ek§0 2k+1Q\2kQ ( |X0_y|n+1—5—5 |X()—y|n+y_5_B | |

00

<C > ||D0‘A||,~\ﬁ|Q|BmZ(2k<ﬁ71)+2k(37y));Lk' |f () |dy

~11-0
l|=m k=1 |2k |70 Jakg
<C X DAl 1Q1F "M, () ().
lx|=m

(4.5)

Therefore, T4 is bounded from L? (R") to F;'* (R™) for DA € Ag, || =m, 0 < B <y,
1 < p <n/p and from L?(R") to L9(R™) for D¥A € Ag, [l =m,0< B <1, 1<p<
n/(6+B),and 1/p-1/q=(6+p)/n.
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