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The purpose of this paper is to present a weighted kneading theory for one-dimensional
maps with a hole. We consider extensions of the kneading theory of Milnor and Thurston
to expanding discontinuous maps with a hole and introduce weights in the formal power
series. This method allows us to derive techniques to compute explicitly the topological
entropy, the Hausdorff dimension, and the escape rate.
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1. Introduction. Let I ⊂R be a compact interval and F a linear expanding map on I.
We study the dynamical system given by iterating points by F . Of particular interest

is the set defined by the points that remain in the domain of F under iteration. An

equivalent way of viewing this situation is as the inverse of an iterated function system

(IFS) (see [4]). Let f = {fi}ni=1 be an IFS, a collection of self-maps on I, defined by

fi(x) := ρix+�i, i= 1, . . . ,n, (1.1)

where for all i, 0< |ρi|< 1 and �i ∈R. Let E be the corresponding self-similar set, the

attractor. If fi is monotone, then it is usual to see E as the repeller of a linear expanding

map F :
⋃n
i=1fi(I)→ I, which will be denoted by F = (F1, . . . ,Fn), where

Fi(x) := f−1
i (x) if x ∈ fi(I). (1.2)

We consider the piecewise linear map F with a single hole, that is, there is an open

subinterval Ih ⊂ I with Ih ≠ ∅ such that I is the disjoint union of Ih and
⋃n
i=1 Im(fi)

(see [8, 10]). The points x ∈ Ih will be mapped out of I and the same will happen to all

the points x ∈ F−k(Ih) for k≥ 1. The set
⋃
k F−k(Ih) is open and dense in I and has full

Lebesgue measure (see [14]).

The hole and the set of n laps of F determines a partition �I := {I1, . . . , Ih, . . . , In}
of the interval I. Considering the orbits of the lateral limit points of the discontinuity

points and turning points, we define a Markov partition �′
I of I.

The outline of the paper is as follows. In Section 2, we develop a weighted kneading

theory to expanding discontinuous maps with a hole. In this section, we give a brief

presentation of the kneading theory associated to F . For more details, see [6], and for

maps of the interval with holes, see [9]. The new kneading approach using weights is

inspired on [8], where we compute explicitly the escape rate that is characterized by

a conditional invariant measure. The weights introduced in the kneading theory are
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defined by the inverses of the derivatives of the iterates of the discontinuity points

and turning points of F , associated to a real parameter β. We consider the transfer or

Perron-Frobenius operator Lφ associated to the map F and to the Markov partition �′
I .

The transfer operator has a matrix representation, which we will denote by Qβ. This

matrix can be viewed as the matrix of Lφ acting on a finite-dimensional vector space of

functions.

It is known that the spectrum of the transfer operator determines the ergodicity of

the dynamical system. In Section 3, we will give an algorithm to compute this spectrum

and to relate the transfer operator with the weighted kneading determinant D(t,β)
(see Theorem 3.6). To establish this relation, we introduce a weighted matrix Vβ and

we use complexes and homology with weights (see Theorem 3.5). These results allow

us to prove the main result.

Theorem 1.1. Suppose that the kneading data associated to an expanding discon-

tinuous map with a hole F correspond to periodic, eventually periodic orbits or to orbits

that lie in the hole. Let D(t,β) be the weighted kneading determinant.

(i) If β is the unique solution of D(1,β)= 0, then β is the Hausdorff dimension of the

attractor E.

(ii) If t1 is the least real positive solution of D(t,1)= 0, then log(t1) is the escape rate

of the pair (E,F).
(iii) If t0 is the least real positive solution ofD(t,0)= 0, then log(t−1

0 ) is the topological

entropy of the map F .

We remark that we can obtain the same results for a finite union of disjoint holes

Ihj ⊂ I.

2. Weighted kneading theory and subshifts of finite type. Letai, with i=1, . . . ,n+1,

be the endpoints of the intervals in the partition �I . These points correspond to the

discontinuity points and the turning points of the map F . We denote the hole by Ih =
(ah,ah+1). Set

{
a+1 ,a

−
2 ,a

+
2 , . . . ,a

−
h,a

+
h,a

−
h+1,a

+
h+1, . . . ,a

−
n+1

}
= {x(1),x(2),x(3), . . . ,x(2h−2),x(2h−1),x(2(h+1)−2),x(2(h+1)−1), . . . ,x(2n)

}
.

(2.1)

The orbit of each point x(j), with j = 1,2, . . . ,2h−2,2(h+1)−1, . . . ,2n, is defined by

o
(
x(j)

)
:=
{
x(j)k : x(j)k = Fk(x(j)), k∈N0

}
. (2.2)

Concerning the itinerary of each point x(j), we will have

Fk
(
x(j)

)= x(j)k or Fk
(
x(j)

)∈ int
(
Ih
)
. (2.3)

In the first case, we have periodic, eventually periodic, or aperiodic orbits. While in the

second, after a finite number of iterates, the itinerary of the points lies in the hole.

To simplify the presentation, we consider the points x(1) and x(2n) as fixed points.

To the orbit of each point x(j), with j = 2, . . . ,2h−2,2(h+1)−1, . . . ,2n−1, we associate
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a sequence of symbols S(j) given by

S(j) := S(j)0 S(j)1 ···S(j)k ··· , (2.4)

where

S(j)k :=




L if Fk
(
x(j)

)∈ I1,
Ms1 if Fk

(
x(j)

)∈ Is1+1, s1 ∈ {1, . . . ,h−2},
H if Fk

(
x(j)

)∈ Ih,
Ms2 if Fk

(
x(j)

)∈ Is2+1, s2 ∈ {h−1, . . . ,n−2},
R if Fk

(
x(j)

)∈ In.

(2.5)

We denote by � the ordered set of n+1 symbols, corresponding to the laps and the

hole of F , that is,

�= {L,M1, . . . ,Mh−2,H,Mh−1, . . . ,Mn−2,R
}

(2.6)

and according to the real-line order,

L≺M1 ≺ ··· ≺Mh−2 ≺H ≺Mh−1 ≺ ··· ≺Mn−2 ≺ R. (2.7)

We designate by �N the space of all sequences of symbols on the alphabet �.

Definition 2.1. The kneading data for the map F is the (2n−4)-tuple of symbolic

sequences

(
S(2), . . . ,S(2h−2),S(2(h+1)−1), . . . ,S(2n−1))∈�N×�N×···×�N. (2.8)

The kneading increments introduced in [6] are defined by formal power series with

coefficients in Z[[t]], the subring of the ringQ[[t]]. For maps of the interval with a hole

and more than one discontinuity point and turning points, we have several kneading

increments, whose number depends on the number of discontinuity points and turning

points of the map F (see [9]). The kneading increments are defined by

νai(t) := θa+i (t)−θa−i (t). (2.9)

In the case where ai is an endpoint of the hole Ih, the increments are defined by

νah(t) := θa−h (t), νah+1(t) := θa+h+1
(t), (2.10)

where θai(t) is the invariant coordinate of each symbolic sequence associated to the

itinerary of each point ai, with 1 < i < n + 1. Each lateral invariant coordinate is

defined by

θa±i (t) := lim
x→a±i

θx(t)=
∞∑
k=0

τktkS
(j)
k , (2.11)
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where τ0 := 1, τk :=∏k−1
l=0 ε(S

(j)
l ), k > 0, with

ε
(
S(j)l

)
:=




1 if F ′
(
Fl
(
a±i
))
> 0,

0 if F ′
(
Fl
(
a±i
))∈ Ih,

−1 if F ′
(
Fl
(
a±i
))
< 0,

(2.12)

and S(j)k is the sequence of symbols corresponding to the orbits of a±i .

The increments νai(t), with 1< i < n+1, can also be written in the following way:

νai(t)=Ni1(t)L+Ni2(t)M1+···+Ni(n−1)(t)Mn−2+Nin(t)R, (2.13)

where the coefficients Nij(t) ∈ Z[[t]] are the entries of an n×n matrix N = [Nij(t)].
This matrix is called the kneading matrix associated to the map F . The kneading deter-

minant is denoted by D(t).
Now we are going to present the main definition of this paper, that is, the character-

ization of the weighted invariant coordinates. This definition allows us to construct a

weighted kneading theory similar to the previous one.

Definition 2.2. For the kneading data of the map F , the weighted invariant coor-

dinate of each point ai, with 1< i < n+1 and β∈R, is defined by

θa±i (t,β) := lim
x→a±i

θx(t,β)=
∞∑
k=0

τk
(
a±i
)
tkS(j)k , (2.14)

where τ0(a±i ) := 1 and for k > 0,

τk
(
a±i
)

:=
k−1∏
l=0

ε
(
S(j)l

)∣∣F ′(Fl(a±i ))∣∣−β. (2.15)

Note that the derivative of the map F satisfies the condition inf |F ′i (x)|> 1 on each in-

terval fi(I). For each point ai, with i= 1, . . . ,h−1,h+2, . . . ,n+1, the weighted kneading

increment is defined by

νai(t,β) := θa+i (t,β)−θa−i (t,β). (2.16)

For the endpoints of the hole Ih, the weighted increments are defined by

νah(t,β) := θa−h (t,β), νah+1(t,β) := θa+h+1
(t,β). (2.17)

Separating the terms associated to the symbols on the alphabet �, the weighted incre-

ments νai(t,β) are written in the following way:

νai(t,β)=Ni1(t,β)L+Ni2(t,β)M1+···+Ni(n−1)(t,β)Mn−2+Nin(t,β)R. (2.18)

The coefficients Nij(t,β)∈R[[t,β]] are the entries of an n×n matrix

N(t,β) := [Nij(t,β)], (2.19)
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which we will call the weighted kneading matrix associated to F . The determinant of

this matrix will be called the weighted kneading determinant and will be denoted by

D(t,β).

Remark 2.3. To an eventually periodic orbit of a point x(j) represented by

S(j)0 ···S(j)p−1

(
S(j)p ···S(j)p+q−1

)∞
(2.20)

corresponds the weighted cyclotomic polynomial

1−
q−1∏
l=0

ε
(
S(j)p+l

)∣∣F ′(Fp+l(x(j)))∣∣−βtq, (2.21)

where q is the period of the orbit. If the orbit is periodic, then the weighted cyclotomic

polynomial is

1−τq
(
x(j)

)
tq. (2.22)

Now, let

{
b1, . . . ,bm+1

}
:= {o(x(j)) : j = 1, . . . ,2h−2,2(h+1)−1, . . . ,2n

}
(2.23)

be the set of the points correspondent to the orbits of the lateral limit points of the

discontinuity points and turning points ordered on the interval I. This set allows us to

define a subpartition �′
I of �I = {I1, . . . , Ih, . . . , In}. The subpartition

�′
I := {J1, . . . ,Jm

}
, (2.24)

with m ≥ n, determines a Markov partition of the interval I. Note that the hole is

an element of the Markov partition. Note also that F determines �′
I uniquely, but the

converse is not true.

The IFS f induces a subshift of finite type whose m×m transition matrix A= [aij]
is defined by

aij :=

1 if F

(
intJj

)⊇ intJi,

0 otherwise.
(2.25)

We remark that if there exist k points bi such that bi ∈ intIh, with 1 < i <m+1, then

the matrix A has k+1 columns with all elements equal to zero, correspondent to the

hole.

We denote this subshift by (ΣA,σ), where σ is the shift map on ΣNm defined by

σ(x1x2 ···) := x2x3 ··· , with Σm := {1, . . . ,m} correspondent to the m states of the

subshift. Concerning this subshift (ΣA,σ) and the associated Markov partition �′
I , we

consider a Lipschitz function φ : I →R defined by

φ := {φi : Ji �→R, 1≤ i≤m}
, (2.26)
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where

φi(x) :=−βϕi(x), ϕi(x) := log
∣∣F ′i (x)∣∣, with β∈R. (2.27)

This function is a weight for the dynamical system associated to the subshift, depending

on the real parameter β (compare with [11]).

Let �1(I) be the set of all Lebesgue integrable functions on I. The transfer operator

Lφ : �1(I)→�1(I), associated with F and �I , is defined by

(
Lφg

)
(x) :=

n∑
j=1

expφ
(
F−1
j (x)

)
g
(
F−1
j (x)

)
χF(intIj)

=
∑

y :Fy=x
expφ(y)g(y),

(2.28)

where χIj is the characteristic function of Ij . Note that by definition of F , F−1
j (x) =

fj(x), with x ∈ F(Ij). Note also that, for any Borel subset J ⊂ I, we have

F−1(J)=
n⋃
j=1

fj
(
F
(
Ij
)∩J), (2.29)

where the sets {fj(F(Ij) ∩ J)}nj=1 are mutually disjoint. Depending on J, the set

fj(F(Ij)∩J) can be empty.

Now, we will restrict our attention to the transfer operator associated with F and to

the Markov partition �′
I . Given Ji ∈ �′

I , let Y1i, . . . ,Yki be the preimages of Ji under F ,

that is,

Fj
(
intYji

)= intJi, with 1≤ j ≤ k, k≤m. (2.30)

Then, we can define continuous maps fj|Ji := Ψji : Ji → Yji that correspond to the IFS

f restricted to the interval Ji such that yj = Ψji(x) are the preimages of x ∈ Ji. Thus,

for each x ∈ Ji, we have

(
Lφjg

)
(x)=

k∑
j=1

expφj
(
Ψji(x)

)
g
(
Ψji(x)

)
δ
(
Ψji(x)

)
, (2.31)

where

δ
(
Ψji(x)

)
:=

1 if Ψji(x)=yj,

0 otherwise.
(2.32)

Nevertheless, for each interval Jj ∈�′
I , we consider

fj(x) := F−1|Jj (x) for x ∈ F( intJj
)= ⋃

aij≠0

intJi, (2.33)
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where aij are the entries of the transition matrix A, with 1≤ i, j ≤m. By formula (2.31),

we can write

(
Lφjg

)
(x)=

m∑
j=1

expφj
(
fj(x)

)
g
(
fj(x)

)
χF(intJj). (2.34)

In this paper, we consider a class of one-dimensional transformations that are piece-

wise linear Markov transformations. Consequently, the transfer operator has the fol-

lowing matrix representation. Let � be the class of all functions that are piecewise

constant on the partition �′
I . Thus,

g ∈� iff g =
m∑
j=1

πjχJj (2.35)

for some constants π1, . . . ,πm. We remark that g will also be represented by the column

vector πg = (π1, . . . ,πm)T . Using formula (2.34) and considering g ∈� with g = χJk for

some 1≤ k≤m, the transfer operator Lφ has the following matrix characterization:

Lφg =Qβπg (2.36)

for the weighted dynamical system associated to (ΣA,σ). If Dβ is the diagonal matrix

defined by

Dβ :=
(

expϕ−β
1 , . . . ,expϕ−β

m

)
(2.37)

and A is the transition matrix, then the matrix Qβ is the m×m weighted transition

matrix defined by

Qβ :=ADβ =
[
qij
]
. (2.38)

The entries of this matrix are

qij := aij∣∣F ′j∣∣β , (2.39)

where the derivative F ′j is evaluated on the interval Jj of the partition �′
I . We refer to

[3, 13] and the references therein to other important spectral properties of the transfer

operator, and [4] for this operator with respect to the cookie-cutter system. In [8], we

use the matrix Qβ with β= 1 to compute the escape rate and the conditional invariant

measure which generates the unique invariant probability measure.

There is an isomorphism between (ΣA,σ) and (�′
I ,F) (see [15]). If w = (i0i1 ···) and

w′ = (i′0i′1 ···) are two points of ΣA, then we consider the Markov partition defined by

�′
I := ΣA/ ∼, where w ∼w′ if and only if i0 = i′0. Using this isomorphism, we consider

the trace of the transfer operator defined by

TrLφ :=
∑

x∈Fix(F)
expφ(x), (2.40)
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where Fix(F) denotes the set of fixed points of F . We consider the pressure function of

φ(x)= log |F ′(x)|−β as β varies, P(β), defined by

P(β) := lim
k→∞

1
k

log
∑

x∈Fix(Fk)

∣∣(Fk)′(x)∣∣−β

= lim
k→∞

1
k

log
(

TrQk
β

)
= log

(
λβ
)
,

(2.41)

where Fix(Fk) denotes the set of fixed points of Fk (see [4, 12, 15]). Thus, expP(β) is

the largest eigenvalue λβ of the transfer operator Lφ, which is equal to the spectral

radius of the matrix Qβ (see [13]). Nevertheless, it is known that the pressure can be

characterized by the variational principle

P(β)= hµβ(F)−βχµβ(F) (2.42)

as the supremum over all invariant probability measures on E. In this case, the supre-

mum is attained by the weighted Markov measure µβ, that is, the measure µβ is the

unique measure that maximizes this expression. See [8] for the definition of µβ, the

weighted metric entropy hµβ(F), and the weighted Lyapunov exponent χµβ(F) with re-

spect to this measure.

We remark that the weighted zeta function for a weighted subshift of finite type is

given by

ζ(t,β)= 1
det

(
I−tQβ

) . (2.43)

For more discussions about the zeta function for a subshift of finite type without

weights, see [2], and for another approach with weights, see [1, 7].

3. Complexes and homology with weights. As above described, on the set {b1, . . . ,
bm+1}, there exist 2n−2 points

{
x(1), . . . ,x(2h−2),x(2h+1), . . . ,x(2n)

}
. (3.1)

Concerning the set of points {a1, . . . ,an+1}, we consider the respective 2n−2 lateral

points as in Section 2. Let p be the number of points bi outside of (3.1). We denote this

set by �. Set 2n+p−2= q and

{
a+1 ,a

−
2 ,a

+
2 , . . . ,a

−
h,a

+
h,a

−
h+1,a

+
h+1, . . . ,a

−
n+1

}∪�

= {o(x(j)) : j = 1, . . . ,2h−2,2(h+1)−1, . . . ,2n
}∪{x(2h−1),x(2(h+1)−2)}

=
{
x(1),x(1)1 , . . . ,x(1)k1

, . . . ,x(2n),x(2n)1 , . . . ,x(2n)k2n

}
∪{x(2h−1),x(2(h+1)−2)}

= {z(1),z(2), . . . ,z(q−2),x(2h−1),x(2(h+1)−2)}
= {z(1),z(2), . . . ,z(q)}.

(3.2)
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We denote by {y(1),y(2), . . . ,y(q)} the above set of points now ordered on the interval I.
On the set {y(1),y(2), . . . ,y(q)}, there exist pairs of consecutive points y(k), y(k+1), with

2 ≤ k ≤ q − 2, correspondent to some a±i with i = 2, . . . ,n. According to the above

conditions, we define a permutation ρ by

(
z(1),z(2), . . . ,z(q)

)
�→ (

zρ(1),zρ(2), . . . ,zρ(q)
)= (y(1),y(2), . . . ,y(q)). (3.3)

Let C0 be the vector space of 0-chains spanned by the points y(1), . . . ,y(q) and C1 the

vector space of 1-chains spanned by the intervals of the partition �′
I . The border map

∂ : C1 → C0 is defined by

∂
(
Jj
)

:=y(i+1)−y(i), (3.4)

with 1≤ j ≤m and 1≤ i≤ q−1. We designate by B = [bij] the q×m incidence matrix

of the graph defined by (C0,C1,∂), that is, if y(i) is the lower endpoint and y(i+1) is

the upper endpoint of the interval Jj , then bij :=−1 and bi+1,j := 1, and the remaining

entries are zero.

Let η : C0 → C0 be the map that describes the transition between the points y(1),
y(2), . . . ,y(q) and checks the existence of turning points and discontinuity points be-

tween y(j) and F(y(j)), with 1 ≤ j ≤ q. This map is represented by the following

weighted matrix Vβ.

Definition 3.1. The (q×q)-weighted matrix Vβ = [vij], associated to the map F , is

defined by

vij := ε(y(j))∣∣F ′(y(j))∣∣−β if F
(
y(j)

)=y(i), where ε
(
y(j)

)= sign
(
F ′
(
y(j)

))
,

vkj := vij, vk+1,j :=−vij if y(i) > y(j), j ≤ k < i,
vk−1,j :=−vij, vk,j := vij if y(i) < y(j), i < k≤ j,

(3.5)

where the pairs of consecutive points y(k), y(k+1), with j ≤ k < i (resp., y(k−1), y(k),
with i < k≤ j), are associated to the turning points and discontinuity points of F with

y(j) ≤ y(k), y(k+1) ≤ y(i) (resp., y(i) ≤ y(k−1), y(k) ≤ y(j)). All the remaining entries in

Vβ are zero.

We consider that the points y(i), with 1≤ i≤ q, are represented by y(i) = (0, . . . ,0,1,
0, . . . ,0)T , where 1 is in the ith-position. The above weighted matrices are related by the

next result.

Lemma 3.2. The next diagram is commutative

C1

Qβ

B C0

Vβ

C1 B
C0

(3.6)
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Proof. Let the intervals Jj , with 1 ≤ j ≤m, be represented by the column vector

Jj = (0, . . . ,0,χJj ,0, . . . ,0)T , where χJj is in the jth-position, that is, as a function in �.

Then, one has (
BQβ

)(
Jj
)= (BADβ)(Jj)
= (BA)

(
eϕ

−β
j Jj

)

= B

 ∑
akj≠0

∣∣F ′(Jj)∣∣−βJk



=
∑
akj≠0

∣∣F ′(Jj)∣∣−βB(Jk)

=
∑
ulj≠0

∣∣F ′(Jj)∣∣−β(y(l+1)−y(l)),

(3.7)

where ulj are the nonzero elements of the jth column of the matrix BA. The above

equalities make a description of the transition of the interval Jj by the border of the

intervals Jk such that F(intJj)⊇ intJk, weighted by |F ′(Jj)|−β.

On the other hand, we have

VβB
(
Jj
)= Vβ(y(i+1)−y(i))= Vβ(y(i+1))−Vβ(y(i)). (3.8)

Consider that y(i) is a point associated to a turning point or to a discontinuity point of

F and F(y(i))=y(s), with s < i. Consequently,

vsi = ε
(
y(i)

)∣∣F ′(y(i))∣∣−β, vi−1,i =−vsi, vii = vsi. (3.9)

If there exist z1 turning points or discontinuity points between y(s) and y(i−1), then we

have pairs of consecutive points y(kl−1), y(kl), with s < kl−1, kl < i−1 and 1 ≤ l ≤ z1

such that

vkl−1,i =−vsi, vkli = vsi. (3.10)

Suppose that y(i+1) ∈ intIp , with 1 ≤ p ≤ n, that is, y(i+1) ∈ � and F(y(i+1)) = y(r),
with r > i+1. In this case, we have

vi+1,i+1 = 0, vr,i+1 = ε
(
y(i+1))∣∣F ′(y(i+1))∣∣−β. (3.11)

Similarly, if there exist z2 turning points or discontinuity points between y(i+1) and

y(r), then we have pairs of points y(kw), y(kw+1), with i+ 1 < kw , kw + 1 < r and

1≤w ≤ z2 such that

vkwi = vr,i+1, vkw+1,i =−vr,i+1. (3.12)

As the weight is constant on each interval Jj , we get

Vβ
(
y(i+1))−Vβ(y(i))= ∣∣F ′(Jj)∣∣−β

r−1∑
l=s

(
y(l+1)−y(l)), (3.13)
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where the pairs of points y(l), y(l+1) lie in the set

{
y(s),y(s+1), . . . ,y(kl),y(kl+1), . . . ,y(i−1),y(i), . . . ,y(kw),y(kw+1), . . . ,y(r−1),y(r)

}
(3.14)

and describe the border of the intervals Jk such that F(intJj) ⊇ intJk. From this, it

follows that

∣∣F ′(Jj)∣∣−β
r−1∑
l=s

(
y(l+1)−y(l))= ∑

akj≠0

∣∣F ′(Jj)∣∣−βB(Jk). (3.15)

The proof of the remaining cases is similar according to the behavior of F and the above

definition.

LetH0 := C0/B0, where B0 = ∂(C1) is a subspace of C0. Note that two consecutive laps

without a discontinuity point between them are considered as two connected compo-

nents. The map ζ : C0 →H0 associates to each point y(i), with 1≤ i≤ q, the respective

interval Ij , with 1≤ j ≤n. This map is represented by the q×nmatrix U = [uij], where

uij := 1 if the point y(i) lies in Ij and all the remaining entries of the matrix are zero.

Lemma 3.3. If y(i1) and y(i2) are two points on the interval Ij with 1≤ j ≤n, then

UVβ
(
y(i1)

)T =UVβ(y(i2))T . (3.16)

Proof. Let y(i1) and y(i2) be two points on Ij . Consider that

B
(
Jk
)=y(i2)−y(i1), intJk ⊆ intIj, F

(
y(i1)

)∈ Ij′ , F
(
y(i2)

)∈ Ij′′ , (3.17)

with 1 ≤ k ≤m and j′ < j < j′′. If the points y(i1) and y(i2) have the same behavior

under F as y(i) and y(i+1) in the proof of the above proposition, respectively, then

UVβ
(
y(i1)

)T =U(0, . . . ,0,vsi1 , . . . ,vkl−1,i1 ,vkli1 , . . . ,vi1−1,i1 ,vi1i1 ,0, . . . ,0
)T

=Uε(y(i1))∣∣F ′(y(i1))∣∣−β(0, . . . ,0,1, . . . ,−1,1, . . . ,−1,1,0, . . . ,0)T .
(3.18)

Note that there exist z1 pairs of consecutive points y(kl−1), y(kl) between y(s) and

y(i1−1), with 1 ≤ l ≤ z1. These points define the border of the p intervals Ijt , with

j′ < jt < j and 1≤ t ≤ p. This implies that

B
(
Ij′
)=y(k1−1)−y(s),

B
(
Ij1
)=y(k2−1)−y(k1),

...

B
(
Ij
)=y(i1)−y(i1−1).

(3.19)
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Thus, by definition of U , we get

UVβ
(
y(i1)

)T = (0, . . . ,0,ε
(
y(i1)

)∣∣F ′(y(i1))∣∣−β,0, . . . ,0)T , (3.20)

where ε(y(i1))|F ′(y(i1))|−β is in the jth-position.

On the other hand, considering the point y(i2), we can write

UVβ
(
y(i2)

)T =U(0, . . . ,0,vkwi2 ,vkw+1,i2 , . . . ,vri2 ,0, . . . ,0
)T

=Uε(y(i2))∣∣F ′(y(i2))∣∣−β(0, . . . ,0,1,−1, . . . ,1,0, . . . ,0)T .
(3.21)

Note that there exist z2 pairs of consecutive points y(kw), y(kw+1) between y(i2) and

y(r), with 1≤w ≤ z2. Similarly and by definition of U , we verify that

UVβ
(
y(i2)

)T = (0, . . . ,0,ε
(
y(i2)

)∣∣F ′(y(i2))∣∣−β,0, . . . ,0)T , (3.22)

where ε(y(i2))|F ′(y(i2))|−β is in the jth-position. As the weight is constant on each

interval Ij , the desired result follows. Nevertheless, according to the behavior of F ,

several different cases may occur. The proof of the remaining cases is very similar to

the previous one.

The above lemma suggests the next definition and result. Associated to each matrix

Vβ, we have only one map ξ :H0 →H0 which reflects the monotonicity of F . The map ξ
is represented by the (n×n)-weighted diagonal matrix Kβ = [kij], where

kii := ε(Ii)∣∣F ′(Ii)∣∣−β, (3.23)

with ε(Ii)= sign(F ′(x)), x ∈ Ii.
Lemma 3.4. The next diagram is commutative

C0

Vβ

U H0

Kβ

C0 U
H0

(3.24)

The main results can now be stated. The next theorems establish the relation between

the weighted transition matrix, the weighted matrix Vβ, and the weighted kneading

determinant.

Theorem 3.5. Under the conditions of the previous lemmas, the following relation

holds between the characteristic polynomials of the matrices Qβ, Vβ, and Kβ:

PVβ(t)= det
(
I−tVβ

)= PQβ(t)PKβ(t). (3.25)

Proof. The statement is a consequence of the above lemmas and according to some

homological algebra results (see [5]).
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We define a permutation matrixΠ associated to the permutation ρ above defined that

maps the system of vectors (z(1),z(2), . . . ,z(q)) into the system of vectors (y(1),y(2), . . . ,
y(q)). Using the weighted matrix Vβ and the permutation matrix Π, we define a new

weighted matrix Θβ through the next equality:

Θβ :=ΠVβΠT . (3.26)

The matrix Π is invertible; consequently, we have PΘβ(t)= PVβ(t).
Theorem 3.6. If the kneading data associated to an expanding discontinuous map

with a hole F corresponds to periodic, eventually periodic orbits, or to orbits that lie in

the hole, then the weighted kneading determinant is given by

D(t,β)= PQβ(t)
R(t)

, (3.27)

where R(t) is a product of weighted cyclotomic polynomials correspondent to those pe-

riodic or eventually periodic orbits.

It is obvious that this statement strongly depends on the number of laps and the

kneading data associated to F . For this reason, the analysis of the general situation is

difficult. We will prove the statement for a map F = (F1,F2). The general case follows

in a similar way.

Proof. Consider F = (F1,F2), �I = {I1, I2, I3}, where I2 is the hole, F1(a2) = 1,

F2(a3) = 0, and � = {L,H,R}. The orbits of the points a+1 and a−4 can be periodic,

eventually periodic, or lie in the hole. We consider that the kneading data associated to

this map is given by

(
o
(
x(2)

)
,o
(
x(5)

))= ((LS(2)1 ···S(2)p−1

)∞
,
(
MS(5)1 ···S(5)q−1

)∞)
, (3.28)

where p and q are the periods of the orbits. The weighted kneading increments are

νa2(t,β)= θa−2 (t,β), νa3(t,β)= θa+3 (t,β), (3.29)

where

θa−2 (t,β)=
L+∑p−1

i=1 τi
(
x(2)

)
tiS(2)i

1−τp
(
x(2)

)
tp

,

θa+3 (t,β)=
R+∑q−1

i=1 τi
(
x(5)

)
tiS(5)i

1−τq
(
x(5)

)
tq

.

(3.30)

If we write

Lp =
p−1∑
i=1

S(2)i =L

τi
(
x(2)

)
ti, Rp =

p−1∑
i=1

S(2)i =R

τi
(
x(2)

)
ti (3.31)
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and analogously for Lq and Rq, then we have

νa2(t,β)=
1+Lp

1−τp
(
x(2)

)
tp
L+ Rp

1−τp
(
x(2)

)
tp
R,

νa3(t,β)=
Lq

1−τq
(
x(5)

)
tq
L+ 1+Rq

1−τq
(
x(5)

)
tq
R.

(3.32)

The weighted kneading determinant D(t,β) for these kneading data is

D(t,β)= 1(
1−τp

(
x(2)

)
tp
)(

1−τq
(
x(5)

)
tq
)
∣∣∣∣∣1+Lp Rp
Lq 1+Rq

∣∣∣∣∣ . (3.33)

Let detΘβ = det(I−tΘβ) be the characteristic polynomial of the matrix Θβ, where I
is the identity matrix. Thus, we have

Θβ =




1−µ2,0t −µ2,1t ··· −µ2,p−2t −µ2,p−1t−θ2,p−1t −µ5,0t −µ5,1t ··· −µ5,q−2t −µ5,q−1t

−θ2,0t 1 ··· 0 0 0 0 ··· 0 0

...
...

...
...

...
...

...
...

...
...

0 0 ··· 1 0 0 0 ··· 0 0

0 0 ··· −θ2,p−2t 1 0 0 ··· 0 0

−δ2,0t −δ2,1t ··· −δ2,p−2t −δ2,p−1t 1−δ5,0t −δ5,1t ··· −δ5,q−2t −δ5,q−1t−θ5,q−1t

0 0 ··· 0 0 −θ5,0t 1 ··· 0 0

...
...

...
...

...
...

...
...

...
...

0 0 ··· 0 0 0 0 ··· 1 0

0 0 ··· 0 0 0 0 ··· −θ5,q−2t 1




,

(3.34)

where

θ2,k1 = ε
(
x(2)k1

)∣∣∣F ′(x(2)k1

)∣∣∣−β,
µ2,k1 ∈

{
0,±ε

(
x(2)k1

)∣∣∣F ′(x(2)k1

)∣∣∣−β}, with 0≤ k1 ≤ p−1,

θ5,k2 = ε
(
x(5)k2

)∣∣∣F ′(x(5)k2

)∣∣∣−β,
µ5,k2 ∈

{
0,±ε

(
x(5)k2

)∣∣∣F ′(x(5)k2

)∣∣∣−β}, with 0≤ k2 ≤ q−1,

(3.35)

and similarly for δ2,k1 and δ5,k2 . Using matrix elementary operations for the matrix

I−tΘβ, we have the following equivalent matrix:




1−
p−1∑
k=0

µ2,kτk
(
x(2)0

)
tk+1−τp

(
x(2)0

)
tp −

q−1∑
k=0

µ5,kτk
(
x(5)0

)
tk+1

−
p−1∑
k=0

δ2,kτk
(
x(2)0

)
tk+1 1−

q−1∑
k=0

δ5,kτk
(
x(5)0

)
tk+1−τq

(
x(5)0

)
tq


 .

(3.36)
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Now we will compare the elements of the above matrix to the elements of the weighted

kneading matrix N(t,β). Note that

1−
p−1∑
k=0

µ2,kτk
(
x(2)0

)
tk+1−τp

(
x(2)0

)
tp

= (1−µ2,0t
)+p−1∑

k=1

τk
(
x(2)0

)
tk
(−µ2,kt

)

+τp−1

(
x(2)0

)
tp−1

(
−ε

(
x(2)p−1

)∣∣∣F ′(x(2)p−1

)∣∣∣−βt).

(3.37)

On the other hand,

(
1−ε(I1)∣∣F ′(I1)∣∣−βt)(1+Lp)

=
(
1−ε(I1)∣∣F ′(I1)∣∣−βt)+

p−1∑
k=1
S(2)k =L

τk
(
x(2)0

)
tk

+
p−1∑
k=1
S(2)k =L

τk
(
x(2)0

)
tk
(
−ε(I1)∣∣F ′(I1)∣∣−βt).

(3.38)

If µ2,k ≠ 0, with 1≤ k≤ p−1, then τk+1(x
(2)
0 )≠ 0 on Lp , that is,

τk
(
x(2)0

)
tk
(
±ε

(
x(2)k

)∣∣∣F ′(x(2)k
)∣∣∣−βt)=±τk+1

(
x(2)0

)
tk+1. (3.39)

In particular, if µ2,p−1 ≠ 0, then x(2)p−1 is associated to the symbol R, that is,

µ2,p−1 =−ε
(
x(2)p−1

)∣∣∣F ′(x(2)p−1

)∣∣∣−β. (3.40)

Consequently, in (3.37), we have

τp−1

(
x(2)0

)
tp−1ε

(
x(2)p−1

)∣∣∣F ′(x(2)p−1

)∣∣∣−βt = τp(x(2)0

)
tp. (3.41)

Hence, in (3.38), the fact that the orbit is periodic implies that we return to the symbol L.

Thus, we have

1−µ2,0t = 1−ε(I1)∣∣F ′(I1)∣∣−βt. (3.42)

Let R(t) be the product of cyclotomic polynomials and PKβ(t) the characteristic poly-

nomial of the matrix Kβ associated to F . Set

D∗(t,β)=
∣∣∣∣∣∣∣
(
1−ε(I1)∣∣F ′(I1)∣∣−βt)(1+Lp) (

1−ε(I2)∣∣F ′(I2)∣∣−βt)Rp(
1−ε(I1)∣∣F ′(I1)∣∣−βt)Lq (

1−ε(I2)∣∣F ′(I2)∣∣−βt)(1+Rq)
∣∣∣∣∣∣∣ .

(3.43)
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Using the above comparison between the elements of the equivalent matrix to I−tΘβ
and the elements of the weighted kneading matrix, we have

D(t,β)= D∗(t,β)
R(t)PKβ(t)

=
det

(
I−tΘTβ

)
R(t)PKβ(t)

= PVβ(t)
R(t)PKβ(t)

. (3.44)

By Theorem 3.5, the desired result follows.

The main result, Theorem 1.1, will allows us to compute explicitly the Hausdorff

dimension, the escape rate, and the topological entropy.

Proof of Theorem 1.1. Considering the transfer operator given in (2.34), we have

(
Lφjg

)
(x)=

m∑
j=1

∣∣F ′j(x)∣∣−βg(fj(x))χF(intJj). (3.45)

Let aij be the entries of the transition matrix A. For each Ji ∈ �′
I , with 1 ≤ i ≤m and

β∈R, the eigenvalue equation corresponding to an eigenvalue λβ is

m∑
j=1

aij∣∣F ′j(x)∣∣β vj = λβvi (3.46)

for the operator Lφ characterized by the matrix Qβ. According to [11] and using (2.41),

the largest eigenvalue of the transfer operator is expP(β). Hence, expP(β) is the spec-

tral radius λβ of the matrix Qβ.

If β is the unique solution of D(1,β) = 0, then by Theorem 3.6 and (2.41), we get

P(β)= 0. By [4, 10], we can conclude that β= dimH(E).
On the other hand, considering the parameter β = 1, we have that λ1 = expP(1) is

the largest eigenvalue of the matrixQ1. The second statement follows from [14], where

the escape rate γ is given by γ = −P(1). Thus, the escape rate is γ = log(λ−1
1 ), where

λ−1
1 = t1 is the least real positive solution of PQ1(t)= 0.

If β = 0, then the determinant D(t,0) corresponds to the kneading determinant de-

scribed in [9], where t−1
0 = λ0 is the growth number of F , that is, the spectral radius of

the transition matrix A. Consequently, log(λ0) is the topological entropy of the map F .

Remark 3.7. The theory presented in this paper with respect to periodic, eventually

periodic orbits, or to the orbits that lie in the hole is also valid for aperiodic orbits. In this

case, the invariant coordinates associated to the turning points and to the discontinuity

points are formal power series. The computation of the topological invariants is done

by approximation using periodic, eventually periodic orbits, or the orbits that lie in the

hole.

The above results are illustrated in the next example, showing in detail the techniques

under discussion.
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Example 3.8. Let

F(x)=




x
a

if x ∈
[

0,
1
8

]
,

−x
a
+1 if x ∈

[
1
8
,
1
4

]
,

x
b
− 3

4
if x ∈

[
1
4
,

7
12

]
,

x
c
−1 if x ∈

[
4
6
,1
]
,

(3.47)

with a= 1/4, b = 1/3, and c = 1/2. Considering the orbits of the points a±2 , a±3 , a−4 , and

a+5 , the kneading data to the map F are

(
L
(
M2R

)∞,M1
(
M2R

)∞,M1L∞,M2L∞,M2R∞,RM2M2L∞
)
. (3.48)

The weighted invariant coordinates of each point are

θa−2 (t,β)= L+
aβt

1−(bc)βt2
M2+ (ab)βt2

1−(bc)βt2
R,

θa+2 (t,β)=M1− aβt
1−(bc)βt2

M2− (ab)βt2

1−(bc)βt2
R,

θa−3 (t,β)=−
aβt

1−aβt L+M1, θa+3 (t,β)=
bβt

1−aβt L+M2,

θa−4 (t,β)=M2+ bβt
1−cβt R, θa+5 (t,β)=

(
b2c

)βt3

1−aβt L+
(
cβt+(bc)βt2)M2+R.

(3.49)

Consequently, the weighted kneading determinant is

D(t,β)=




−1 1
−2aβt

1−(bc)βt2

−2(ab)βt2

1−(bc)βt2

aβt+bβt
1−aβt −1 1 0

0 0 1
bβt

1−cβt(
b2c

)βt3

1−aβt 0 cβt+(bc)βt2 1




= 1(
1−aβt)(1−cβt)(1−(bc)βt2

)
×
(
1−(2aβ+bβ+cβ)t+(2(ac)β−(bc)β)t2

+
(
4(abc)β+(b2c

)β+(bc2)β)t3

+
(
2
(
ab2c

)β−2
(
abc2)β)t4−2

(
ab2c2)βt5

)
.

(3.50)
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The orbits of the points a±2 , a±3 , a−4 , and a+5 determine a Markov partition of [0,1],
�′
I = {I1, . . . , I8}, where I6 is the hole. The matrices correspondent to this map are

B =




−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1




,

Qβ =




aβ aβ bβ 0 0 0 0 0

aβ aβ bβ 0 0 0 0 0

aβ aβ 0 bβ 0 0 0 0

aβ aβ 0 bβ 0 0 cβ 0

0 0 0 bβ 0 0 0 cβ

0 0 0 bβ 0 0 0 cβ

0 0 0 bβ 0 0 0 cβ

0 0 0 0 bβ 0 0 cβ




,

Vβ =




aβ 0 0 −aβ bβ 0 0 0 0 0 0 0 0

0 aβ 0 aβ −bβ 0 0 0 0 0 0 0 0

0 −aβ 0 −aβ bβ 0 0 0 0 0 0 0 0

0 aβ −aβ 0 −bβ 0 0 0 0 0 0 0 0

0 −aβ aβ 0 bβ bβ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 cβ 0 0

0 aβ −aβ 0 0 0 0 0 0 0 0 cβ 0

0 0 0 0 0 0 bβ bβ 0 0 −cβ −cβ 0

0 0 0 0 0 0 −bβ −bβ 0 0 cβ cβ 0

0 0 0 0 0 0 bβ bβ 0 0 −cβ −cβ 0

0 0 0 0 0 0 −bβ −bβ 0 0 cβ cβ 0

0 0 0 0 0 0 bβ 0 0 0 0 0 0

0 0 0 0 0 0 0 bβ 0 0 0 0 cβ




,

U =




1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1


 , Kβ =



aβ 0 0 0

0 −aβ 0 0

0 0 bβ 0

0 0 0 cβ


 ,

Π=
[

1 2 3 4 5 6 7 8 9 10 11 12 13

6 1 4 5 7 11 2 8 12 13 10 3 9

]
,
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Θβ =




aβ 0 0 0 aβ 0 −bβ 0 0 0 0 0 0

aβ 0 cβ −aβ 0 0 0 0 0 0 0 0 0

0 bβ 0 0 0 0 0 0 0 0 0 0 0

−aβ 0 0 0 −aβ 0 bβ 0 0 0 0 0 0

aβ 0 0 −aβ 0 0 −bβ 0 0 0 0 0 0

0 0 0 0 −aβ aβ bβ 0 0 0 0 0 0

−aβ 0 0 aβ 0 0 bβ 0 0 0 bβ 0 0

0 bβ −cβ 0 0 0 0 bβ 0 −cβ 0 0 0

0 0 0 0 0 0 0 bβ cβ 0 0 0 0

0 −bβ cβ 0 0 0 0 −bβ 0 cβ 0 0 0

0 0 0 0 0 0 0 0 0 cβ 0 0 0

0 −bβ cβ 0 0 0 0 −bβ 0 cβ 0 0 0

0 bβ −cβ 0 0 0 0 bβ 0 −cβ 0 0 0




.

(3.51)

The relation between the characteristic polynomials of the matrices Vβ, Qβ, and Kβ is

PVβ(t)=
(
1−(2aβ+bβ+cβ)t+(2(ac)β−(bc)β

)
t2+

(
4(abc)β+(b2c

)β)t3

+(bc2)βt3+
(
2
(
ab2c

)β−2
(
abc2)β)t4−2

(
ab2c2)βt5

)
×(1−aβt)(1+aβt)(1−bβt)(1−cβt)

= PQβ(t)PKβ(t).

(3.52)

Then we can verify the statements of Theorems 3.5 and 3.6. By Theorem 1.1, we have

dimH(E)= 0.91994··· ; γ = 0.0877769··· ; htop = 1.11531··· . (3.53)
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