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A NOTE ON A PAIR OF DERIVATIONS OF SEMIPRIME RINGS
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We study certain properties of derivations on semiprime rings. The main purpose is to
prove the following result: let R be a semiprime ring with center Z(R), and let f , g be
derivations of R such that f(x)x+xg(x) ∈ Z(R) for all x ∈ R, then f and g are central.
As an application, we show that noncommutative semisimple Banach algebras do not admit
nonzero linear derivations satisfying the above central property. We also show that every
skew-centralizing derivation f of a semiprime ring R is skew-commuting.
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1. Introduction and preliminaries. Throughout, R denotes a ring with center Z(R).
We write [x,y] for xy−yx. We will frequently use the identities [xy,z] = x[y,z]+
[x,z]y and [x,yz]=y[x,z]+[x,y]z for all x,y,z ∈ R. We recall that R is semiprime

if aRa= (0) implies a= 0 and it is prime if aRb = (0) implies a= 0 or b = 0. A prime

ring is semiprime but the converse is not true in general. An additive mapping d : R→ R
is called a derivation if d(xy) = d(x)y+xd(y) for all x,y ∈ R. A mapping f : R→ R
is called centralizing if [f (x),x] ∈ Z(R) for all x ∈ R; in particular, if [f (x),x] = 0

for all x ∈ R, then it is called commuting. A mapping f : R → R is called central if

f(x) ∈ Z(R) for all x ∈ R. Every central mapping is obviously commuting but not

conversely, in general. A lot of work has been done on centralizing mappings (see, e.g.,

[3, 4, 5] and the references therein). A mapping f : R → R is called skew-centralizing

if f(x)x + xf(x) ∈ Z(R) for all x ∈ R; in particular, if f(x)x + xf(x) = 0 for all

x ∈ R, then it is called skew-commuting. We denote the radical of a Banach algebra A
by rad(A).

We now recall some facts concerning semiprime rings and their extended centroids.

For any semiprime ring R, one can construct the ring of quotients Q of R [1]. As R
can be embedded isomorphically in Q, we consider R as a subring of Q. If the element

q ∈ Q commutes with every element in R, then q belongs to C , the center of Q. C
contains the centroid of R and is called the extended centroid of R. In general, C is a

von Neumann regular ring, and it is a field if and only if R is a prime [1, Theorem 5].

For more information on extended centroid of R, we refer to [2].

Brešar [6, Theorem 2] has proved that if R is a prime ring of characteristic not 2 and

f : R → R is an additive skew-commuting mapping (i.e., f satisfies f(x)x+xf(x) = 0

for all x ∈ R), then f = 0.

Moreover, Brešar [5, Theorem 4.1] has considered a pair of derivations on a prime

ring and has proved the following. Let R be a prime ring and U a nonzero left ideal of R.

Suppose that the derivations d and g of R are such that d(u)u−ug(u)∈ Z(R) for all

u∈U . If d≠ 0, then R is commutative.
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A mapping h : R → R defined by h(x) = ax+xb (x ∈ R) for some a,b ∈ R is called

a generalized inner derivation [8]. Generalized inner derivations are called elementary

operators and have been extensively studied in operator algebras. We note that the

condition that h is centralizing on R can be written in the form [a,x]x+x[b,x]∈ Z(R)
for all x ∈ R. Thus, introducing inner derivations f and g by f(x)= [a,x] and g(x)=
[b,x], we obtain the condition as in [5, Theorem 4.1], that is, f(x)x+xg(x) ∈ Z(R)
for all x ∈ R.

Recently, Thaheem [9] has proved the following result.

Theorem 1.1. If f , g is a pair of derivations on a semiprime ringR satisfying f(x)x+
xg(x) = 0 for all x ∈ R, then f(x),g(x) ∈ Z(R) and f(u)[x,y] = g(u)[x,y] = 0 for

all u,x,y ∈ R.

Inspired by the works of Brešar [5, 6] and Thaheem [9] and the above remarks re-

garding generalized inner derivations, we consider a general situation regarding a pair

of derivations of a semiprime ring and prove the following. Let f , g be a pair of deriva-

tions of a semiprime ring R satisfying f(x)x+xg(x)∈ Z(R) for all x ∈ R, then f and

g are central (Theorem 2.2). We also show that every skew-centralizing derivation f of

a semiprime ring R is skew-commuting (Corollary 2.3).

We will need the following result of Brešar [7, Theorem 3.1] in the sequel.

Theorem 1.2. Let S be a set and R a semiprime ring. If functions f and g of S
into R satisfy f(s)xg(t)= g(s)xf(t) for all s,t ∈ S, x ∈ R, then there exist idempotents

ε1,ε2,ε3 ∈ C and an invertible element λ∈ C such that εiεj = 0, for i≠ j, ε1+ε2+ε3 = 1,

and ε1f(s)= λε1g(s), ε2g(s)= 0, ε3f(s)= 0 hold for all s ∈ S.

2. The results. We now prove our results.

Lemma 2.1. Let f , g be a pair of derivations of a semiprime ring R satisfying f(x)x+
xg(x)∈ Z(R), then cf and cg are central for all c ∈ Z(R).

Proof. If c = 0, then obviously cf and cg are central. Let c be a nonzero element

of Z(R). Linearizing f(x)x+xg(x)∈ Z(R), we get

f(x)y+f(y)x+xg(y)+yg(x)∈ Z(R) ∀x,y ∈ R. (2.1)

Taking y = c in (2.1), we get

f(x)c+f(c)x+xg(c)+cg(x)∈ Z(R) ∀x ∈ R. (2.2)

Replacing y = c2 in (2.1), we obtain

f(x)c2+2cf(c)x+x(2cg(c))+c2g(x)∈ Z(R), (2.3)

that is,

c
[
f(x)c+cg(x)+f(c)x+xg(c)]+c[f(c)x+xg(c)]∈ Z(R). (2.4)
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Noting that the first summand is contained in Z(R) by (2.2), from (2.4), we obtain

c
[
f(c)x+xg(c)]∈ Z(R) ∀x ∈ R. (2.5)

Thus

[
c
(
f(c)x+xg(c)),y]= 0 ∀x,y ∈ R. (2.6)

This implies

c
[
f(c)x+xg(c),y]= 0 ∀x,y ∈ R. (2.7)

Further, (2.2) implies

[
f(x)c+cg(x),y]=−[f(c)x+xg(c),y] ∀x,y ∈ R. (2.8)

From (2.7) and (2.8), we obtain c[f(x)c+cg(x),y]= 0, which implies

c2[f(x)+g(x),y]= 0 ∀x,y ∈ R. (2.9)

Replacing y by zy in (2.9), we get c2z[f(x)+g(x),y]= 0, which implies

czc
[
f(x)+g(x),y]= 0 ∀x,y,z ∈ R. (2.10)

Replacing z by [f (x)+g(x),y]z in (2.10), we get c[f(x)+g(x),y]zc[f(x)+g(x),y]=
0, which, by semiprimeness of R, implies c[f(x)+ g(x),y] = 0; that is, [c(f (x)+
g(x)),y]= 0 for all x,y ∈ R. Thus,

c
[
f(x)+g(x)]∈ Z(R) ∀x ∈ R. (2.11)

Since c ∈ Z(R) and f , g are derivations, therefore cf , cg, and c(f +g) are derivations

of R. Further, (2.11) implies that c(f + g) is central and hence, by [3, Lemma 4], a

commuting derivation. Thus, by Thaheem and Samman [10, Proposition 2.3], we get

(c(f +g))(u)[x,y]= 0 for all u,x,y ∈ R. That is,

c
(
f(u)+g(u))[x,y]= 0 ∀u,x,y ∈ R. (2.12)

Using (2.12) and the fact that cf(u)+cg(u) ∈ Z(R), we get [(cf(u)+cg(u))u,y] =
(cf(u)+cg(u))[u,y]+[cf(u)+cg(u),y]u= 0; that is,

[
cf(u)u+cg(u)u,y]= 0 ∀u,y ∈ R. (2.13)
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Since c ∈ Z(R) and f(u)u+ug(u)∈ Z(R), therefore cf(u)u+cug(u)∈ Z(R). Thus

[
cf(u)u+cug(u),y]= 0 ∀u,y ∈ R. (2.14)

Subtracting (2.14) from (2.13), we get [cg(u)u− cug(u),y] = 0; that is, [c(g(u)u−
ug(u)),y] = [c[g(u),u],y] = [[cg(u),u],y] = 0 for all u,y ∈ R, which implies

[cg(u),u] ∈ Z(R). Thus, cg is a centralizing derivation. By [3, Lemma 4], we get that

cg is a commuting derivation. By Thaheem and Samman [10, Proposition 2.3], we get

cg(u)∈ Z(R). Thus cg is central.

Since cf(u)+ cg(u) ∈ Z(R) and cg(u) ∈ Z(R), therefore cf(u) ∈ Z(R). So cf is

central.

Theorem 2.2. Let R be a semiprime ring and f , g a pair of derivations of R such

that f(x)x+xg(x)∈ Z(R) for all x ∈ R. Then f and g are central.

Proof. Let x0 ∈ R and c = f(x0)x0 + x0g(x0). Then, by hypothesis, c ∈ Z(R).
By Lemma 2.1, cf and cg are central. Thus [cf(x),y] = 0 for all x,y ∈ R. That is,

cf(x)y−ycf(x)= 0, which implies

f(x)yc = cyf(x) ∀x,y ∈ R. (2.15)

Taking S = R, g(x) = c and applying Theorem 1.2 to (2.15), we get that there exist

idempotents ε1,ε2,ε3 ∈ C and an invertible element λ ∈ C such that εiεj = 0 for i ≠ j,
ε1+ε2+ε3 = 1, and

ε1f(x)= λε1c, ε2c = 0, ε3f(x)= 0, ∀x ∈ R. (2.16)

Replacing x by xy in the first identity of (2.16) and using it again, we get λε1c =
ε1f(xy)= ε1(f (x)y+xf(y))= ε1f(x)y+xε1f(y)= λε1cy+xλε1c; that is,

λε1c = λε1cy+xλε1c ∀x,y ∈ R. (2.17)

Replacing y by −x in (2.17), we get λε1c = λε1c(−x)+xλε1c = −xλε1c+xλε1c = 0.

Thus ε1f(x) = λε1c = 0 for all x ∈ R. Hence, using (2.16), we get f(x) = (ε1 + ε2 +
ε3)f (x) = ε2f(x), which implies cf(x) = cε2f(x) = ε2cf(x) = 0. Thus cf(x) = 0 for

all x ∈ R. Since cg is central, therefore, analogously, it follows that cg(x) = 0 for all

x ∈ R. Hence cf(x)x = 0 and cxg(x)= 0 for all x ∈ R. Thus c(f(x)x+xg(x))= 0. In

particular, 0= c(f(x0)x0+x0g(x0))= c2. Since a semiprime ring has no nonzero cen-

tral nilpotents, therefore c = 0; that is, f(x0)x0+x0g(x0)= 0. Since x0 is an arbitrary

element of R, therefore

f(x)x+xg(x)= 0 ∀x ∈ R. (2.18)

Using Theorem 1.1, from (2.18), we get that f and g are central.

Taking g(x) = f(x) in Theorem 2.2 and considering (2.18), we get the following

corollary.

Corollary 2.3. Let f be a skew-centralizing derivation of a semiprime ring R, then

f is skew-commuting.
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Corollary 2.4. Let R be a noncommutative prime ring and f , g a pair of derivations

of R such that f(x)+xg(x)∈ Z(R) for all x ∈ R, then f = g = 0.

Proof. Since R, being prime, is semiprime, therefore, by (2.18), we get f(x)x +
xg(x)= 0 for all x ∈ R. Then Theorem 1.1 gives

f(u)[x,y]= 0= g(u)[x,y] ∀u,x,y ∈ R. (2.19)

Replacing y by zy in (2.19) and using (2.19) again, we get f(u)z[x,y]= 0= g(u)z[x,
y]. Since R is prime and noncommutative, therefore f(u) = 0 = g(u) for all u ∈ R.

Thus f = g = 0.

It is well known that there are no nonzero linear derivations on a commutative

semisimple Banach algebra. Thus, it is natural to identify situations under which non-

commutative semisimple Banach algebras do not admit nontrivial derivations. The

following corollary, which follows as an application of our results, identifies such a

situation.

Corollary 2.5. Let A be a noncommutative semisimple Banach algebra with center

Z(A) and let f , g be a pair of linear derivations of A such that f(x)x+xg(x) ∈ Z(A)
for all x ∈A. Then f = g = 0.

Proof. Since A is semisimple, therefore it is semiprime. Thus, by Theorem 2.2, f
and g are central and trivially commuting as well as centralizing. Hence, by [4, Corollary

3.7], f and g map A into Z(A)∩rad(A). Since A is semisimple, therefore rad(A)= (0).
Thus f(x)= 0= g(x) for all x ∈A. Hence f = 0 and g = 0.

Remark 2.6. (i) Taking g(x) = f(x) in Corollary 2.5, we get that noncommutative

semisimple Banach algebras do not admit nontrivial linear skew-centralizing deriva-

tions.

(ii) Taking g(x) = f(x) in Theorem 2.2, we get that every skew-centralizing deriva-

tion f of a semiprime ring R is central.
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