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The nonlinear inverse problem of determining the hydrogen permeability parameters of
stratified materials is considered. The model includes diffusion, invertible capture and sorp-
tion/desorption processes on surface, which leads to dynamical boundary conditions. For
the concentration impulses method, the equation of stationary oscillations of concentra-
tion is obtained. Parametric identification scheme of the model is proposed. Techniques of
Fourier series and conjugate equations are used.
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1. Mathematical model. There are many levels of interest in the interaction of hy-

drogen and its isotopes with various materials. It is sufficient to mention problems

in power production, protection of construction materials from hydrogen corrosion,

chemical reactor design, and vacuum technology. For those technological processes

when metals contact with hydrogen medium it is necessary to design protecting coat-

ings, which prevent hydrogen corrosion. Hydrogen is considered as a fuel, thus arise

keeping and transporting problems. More about the question can be found in [1].

Classical diffusion models are often not sufficient, for it is necessary to consider

physical and chemical processes on the surface. Sorption-desorption processes are

modeled with dynamical boundary conditions [2]. A typical feature here is consider-

ing the most important integral characteristics of hydrogen transport in solids. They

depend on technological peculiarities of material, on how the surface was processed.

Thus it is not reasonable to head for tabulated data, but an algorithm for process-

ing experimental curves is necessary. Coefficients estimation allows not only detailing

physical conceptions (which, in the considered processes, are limitative for a given ma-

terial) but also predicting the operating characteristics. The protecting, storage, and

transport systems are multilayer. This makes the modeling and identification problem

more difficult for direct measurements on the joint of layers are hardly possible. Layer

structure can appear in the experiment, for instance, when it is necessary to study

a material from which it is impossible to make a thin membrane. Then a plate from

well-studied material is covered by an unknown one.

This paper is devoted to the proposition of a numerical algorithm for the parametric

identification based on a well-studied [4, 2] method of concentration impulses (MCI).

The considered model is rather general and the results may be applied to similar per-

meability problems. Specificity of hydrogen is only reflected in the fact that the desorp-

tion is square. A simplified scheme for rather homogeneous materials is briefly given
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at the end of the paper. Great difficulties of solving nonlinear inverse problems are well

known. Usually the discrepancy of experimental and model curves is minimized in the

space of parameters. Various gradient algorithms are developed. But in the general case

for distributed models it is necessary to integrate numerically the partial differential

equations for current parameter approximations; it is difficult to study convergence.

Thus it is necessary to benefit from the specificity of the accepted mathematical model.

2. Gas transfer model and concentration impulses method. At one side of the two-

layer membrane (which divides a vacuum vessel into two parts), a rather high hydrogen

pressure p0 is made. At the outlet part of the vessel, penetrating gas is removed by a

vacuum system. For the first layer, the mathematical model, considering diffusion in

the volume of material (usually it is the metal) and physical/chemical processes on the

surface, is assumed [2]:

ct(t,x)=D(T)cxx(t,x), (t,x)∈Ω, (2.1)

Ω = (0, t+)×(0,L), c(0,x)=N1(x), (2.2)

c0(t)= c(t,0)= g(T)q(t), T = T(t), (2.3)

q̇(t)= µs(T)p0(t)−J0(t)+D(T)cx(t,0), (2.4)

J0(t)= b(T)q2(t), c0(0)= g
(
T(0)

)
q(0)=N1(0). (2.5)

Here c(t,x) is the concentration of diffusing (atomic for some metals) hydrogen, q(t)
is the surface concentration (number of atoms on cm2, x = 0 is for inlet side), q̇ =
dq/dt, D(T) is the diffusion coefficient, g(T) is the matching coefficient between the

concentrations on the surface and in the volume near the surface of the membrane,

µ is a kinetic constant, J0(t) is the density of the outlet desorption flux, b(T) is the

desorption coefficient, and T(t) is the temperature.

According to (2.3) dissolving is relatively fast, so the concentration near the surface

c0(t) changes together with surface concentration q(t). Equation (2.4) is the flux bal-

ance equation. The more the pressure p0(t) is, the faster a surface becomes saturated.

The material of the layer is characterized by a value s. Some atoms, forming molecules,

desorb back from the surface (J0(t)), not going in the membrane. The last term in the

right-hand side of (2.4) is for arriving from the volume of the diffusing atoms. Initial

and boundary conditions are adjusted in the sense of (2.5). Equations (2.1)–(2.5) are

rather general, parameters D, g, b, and s carry information about hydrogen transport.

Further, adding variables to the model (at least the second layer parameters and that of

processes on the joint are necessary) makes the identification problem hardly possible

to solve.

Limitations of using the model will not be discussed. For metals and hydrogen, usu-

ally the Arrhenius law is used as the dependence of D, g, b, and s on temperature T :

D(T) = D0 exp(−ED/RT), g(T) = g0 exp(−Eg/RT), …. Other temperature dependen-

cies are also possible. Mathematical basis of the boundary value problem with nonlinear

dynamical boundary conditions (2.4) (J0 = bq2) is given in [7].
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Similar equations are assumed for the second layer (two points of origin will be used

for the x-axis): Ω∗ = (0, t+)×(0,�),

ut =D∗(T)uxx−a1(T)u+a2(T)w, (2.6)

wt = a1(T)u−a2(T)w, (t,x)∈Ω∗, (2.7)

u(0,x)=N2(x), w(0,x)=N3(x), (2.8)

u�(t)=u(t,�)= g∗(T)v(t), T = T(t), (2.9)

v̇(t)= µs∗(T)p�(t)−J�(t)−D∗(T)ux(t,�), (2.10)

J�(t)= b∗(T)v2(t), u�(0)= g∗
(
T(0)

)
v(0)=N2(�). (2.11)

The value x = � is for the outlet surface of the second layer, v̇ = dv/dt. The total

width of the membrane is L+�. The difference from (2.1)–(2.5) is that trap interaction

is considered (traps are different defects of the structure, which can capture hydrogen).

In (2.6), (2.7), w(t,x) is the concentration of the captured hydrogen, ai > 0.

On the joint of the layers the following conditions are assumed:

D(T)cx(t,L)=D∗(T)ux(t,0), (2.12)

k(T)cL(t)−k∗(T)u0(t)=−D(T)cx(t,L), (2.13)

cL(t) = c(t,L), u0(t) = u(t,0). Condition (2.12) (continuity of diffusion flux) means

that hydrogen does not accumulate on the joint. Counter-current flows from one layer

to another are proportional to concentration and their difference is the diffusion flux;

thus (2.13) is obtained ((2.1), (2.6) are of the second order).

Now the measurements equations are defined:

p�(t)= θ1

∫ t
0

exp
{
τ−t
θ0

}
J(τ)dτ, (2.14)

J(t)= J�(t)= b∗
(
T(t)

)
v2(t). (2.15)

For concreteness, an experimental apparatus [3] will be taken as an example. A mem-

brane is a vacuum vessel barrier and in the initial moment there is no hydrogen there

(t = 0, Ni(x)= 0). At the outlet side a vacuum is provided. A mass spectrometer gives

the hydrogen pressurep�(t), which is defined by the outlet desorption flux. We will usu-

ally omit the word density assuming that the surface has unit area. Equation (2.14) is

defined by the experiment: hydrogen injection to the vessel (δ-impulse) implies a pres-

sure jump and then an exponential fading. The values θ0, θ1 are determined by the ex-

perimental apparatus. On p�(t) the flux J� is determined: J�(t)= (ṗ�(t)+p�(t)/θ0)/θ1.

On evacuation, we assume µs∗p� ≈ 0 in (2.10) since a high-capacity pump provides a

very low hydrogen pressure p�(t) and the return to the surface is negligibly small. The

density of the desorption flux J(t)= J�(t) is considered as experimental data. Obtain-

ing J from an integral equation (2.14) while measurements of p� are noisy is not an

easy problem [6].

Now the method of concentration impulses (MCI) is described [2, 4]. A membrane is

heated till a fixed temperature T(t) = T̄ , the pressure p0(t) = p̄ is also constant. At



198 YURY V. ZAIKA

the outlet side a vacuum is provided. In some time the outlet flux J̄ = const becomes

stationary. After that, at the inlet side, a cracker is periodically turned on and off. This

allows making rectangular impulses of hydrogen concentration near the surface. Time

period is chosen such that while the cracker is off, the flux J(t) has time to fall to

the level J̄, and while the cracker is on—to reach the horizontal asymptote (J ≈ J̄h =
const> J̄).

Periodical turning the cracker on and off implies stepped concentration:

c0(t)=Q0+(−1)jQ1,

t ∈
(
jπ
ω
,
(j+1)π
ω

)
, j = 0,1, . . . , Q0 > 0, Q1 > 0, Q0−Q1 > 0,

c0(t)=Q0−iQ1

∑
n=±1,±3,...

2(nπ)−1 exp(inωt)

=Q0+Q1

∑
n=1,3,...

4(nπ)−1 sin(nωt), i=
√
−1

(2.16)

(a time zero is moved). At times jπ/ω, fast transition processes hold, c0(t) changes

with jumps. Frequencyω is chosen small. When the cracker is on, (2.4) is removed from

the model for it is for the case when a surface contacts with molecular hydrogen. While

knowing how c0(t) changes, in (2.16), we consider Qi unknown.

To make the equations for parameters more observable, we consider the material of

the first layer already studied. The desorption flux density J = J�(t) and the parame-

ters D, g, b, and s are known. The identification problem is to determine D∗, g∗, b∗,

s∗, k, k∗, and ai. The information about their values at different T̄ allows determin-

ing dependencies D∗(T), . . . ,k∗(T),ai(T) (in the Arrhenius case D∗0,ED∗ , . . . ,b∗0,Eb∗ ,

etc.). Though s∗ as a multiplier in µs∗p� = 0 is not formally included in the model, it

is determined by other parameters (see (3.1)). Applied to an experimental method of

penetration the problem is studied in [8, 9].

Numerical experiments corroborate that the model is adequate with respect to phys-

ical conceptions and experimental data [2, 4]. From (2.16) it follows that a flux density

J(t) by some time becomes stationary oscillating, independently of initial gas distribu-

tion. A plot of J(t) on a period of oscillations has a special look, see Figures 2.1 and

2.2.

Here are the main values of the parameters (the “highest” graph): D = 10−5, D∗ =
10−9 cm2/s, g = 102, g∗ = 103 cm−1, b = 10−17, b∗ = 10−16 cm2/s, s = 10−4, s∗ = 10−3,

k = 10−6, k∗ = 10−7 cm/s, a1 = 10−4, a2 = 10−5 s−1, µ = 1.46 ·1021 mol/cm2sTorr, p̄ =
1Torr, L= 0.02, � = 2·10−4 cm, Q0+Q1 = 4(Q0−Q1), σ = 2π/ω= 400s.

While diffusion coefficients D, D∗ decrease, so does the outlet hydrogen desorption

flux and grows the time needed to reach the horizontal asymptotes. The oscillation

phase changes. The delay between the moments of falls of concentration on inlet and

outlet when the cracker turns off grows. Reversible capture implies the delay in sat-

uration and more fluent transition to stationary states. The second highest graph on

Figure 2.2 corresponds to a1 = 0.01, a2 = 0.03, and the lowest to a1 = 0.03, a2 = 0.01.

Varying of other parameters also corresponds to physics.
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Figure 2.1. Influence of diffusion coefficient on outlet flux.
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Figure 2.2. Influence of capturing and releasing the gas by traps.

3. Analysis of equilibrium and stationary states. The rate of joint crossing con-

stants k, k∗ is connected to g, b, s, g∗, b∗, and s∗, which define the dynamics of surface

processes. This connection will reduce the dimension of the estimation problem.

We, at the outlet side, make a pressure p� = p0 = p̄ at T = T̄ instead of vacuum.

In some time equilibrium concentrations will be reached in both layers: c̄, ū, w̄. From

(2.3), (2.4) (all derivatives are equal to zero), comes c̄ = γ√p̄, γ = g√µs/b. In the same

way, from (2.7), (2.9), (2.10), comes a1ū = a2w̄, ū = g∗
√
µs∗/b∗

√
p̄. Now from (2.13),

comes

kc̄ = k∗ū �⇒ k
k∗

= g∗
√
s∗b

g
√
sb∗

. (3.1)
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The total concentration in the second layer is also proportional to
√
p̄:

ū+w̄ = ū+ a1ū
a2

= γ∗
√
p̄, γ∗ ≡αg∗

√
µs∗
b∗
, α≡

(
1+ a1

a2

)
. (3.2)

The coefficients of equilibrium dissolubility γ, γ∗ are relatively easily obtained from

saturation–degassing for each material separately. Thus for the more complicated prob-

lem being considered, they will be assumed to be known. Then due to (3.1), the value

Γ ≡ γ∗
γ
=
(

1+ a1

a2

)
g∗
√
s∗b

g
√
sb∗

= αk
k∗

(3.3)

is known. Thus, a complex αk/k∗ = Γ can be obtained experimentally, and k/k∗ is

connected with g, g∗, b, b∗, s, and s∗, by (3.1). It is enough now to know how to get the

values D∗, g∗, b∗, k∗, and ai at given temperature T̄ .

Let us see what information can the stationary state provide. At the inlet side p0(t)=
p̄, at the outlet is the vacuum. By some time t∗ a flux will be J(t) = J�(t) = J̄ = const,

t ≥ t∗. In (2.1)–(2.10) all time derivatives will become zero. From (2.3), (2.4) it follows

that c0(t)= c̄0 = const for t ≥ t∗ and

c̄0 = g
{
µsp̄− J̄
b

}1/2
. (3.4)

Actually, (2.10) implies that v̇ = 0, µs∗p� = 0 ⇒ J̄ = −D∗ux , t ≥ t∗. Diffusion flux is

equal to desorption one. From ct =ut =wt = 0 linearity of concentrations with respect

to depth follows, that is, the gradients cx , ux are constant. From (2.12), Dcx = −J̄,

t ≥ t∗ is obtained. After substituting Dcx into (2.4) with q̇ = 0 and (2.3) taken into

consideration, (3.4) can be found. Note that c̄0 < c̄ because of subtracted J̄. Equation

(3.4) (J̄ = µsp̄−bq̄2
0) means the equilibrium of fluxes.

Remark 3.1. Enlarging L, �, and p̄, it is possible to make µsp̄ � J̄. The flux that

comes to the surface is much bigger than the carrying capacity of the membrane. Then

from (3.4) it follows that c̄0 ≈ g
√
µsp̄/b, that is, c̄0 ≈ c̄ = γ

√
p̄. If, together with γ, the

value s is also known, then c̄0 = γ[(µsp̄− J̄)/(µs)]1/2.

Now it is possible to obtain analytical expressions for the stationary state:

c̄L− c̄0

L
= cx =−D−1J̄ �⇒ c̄L = c̄0−LD−1J̄,

J̄ = b∗v̄2 = b∗
(
ū�
g∗

)2

�⇒ ū� = g∗
(
J̄
b∗

)1/2
,

ū�−ū0

�
=ux =−D−1

∗ J̄ �⇒ ū0 = ū�+�D−1
∗ J̄.

(3.5)

The following symbols will be used: R(t)= J1/2(t), R̄ = J̄1/2, and the new variables will

be defined:

z1 = �2

D∗
, z2 = 1√

b∗
, z3 = g∗�, z4 = �

k∗
. (3.6)



IDENTIFICATION OF A HYDROGEN TRANSFER MODEL … 201

When t ≥ t∗, (2.13) is written in the form kc̄L−k∗ū0 = J̄. After substituting the found

c̄L, ū0 and multiplying the equation by α�, we obtain

α
(
z1+z4

)
J̄+αz2z3R̄ = Γ�

(
c̄0−LD−1J̄

)
. (3.7)

This equation allows finding Σ = α(z1+z4), Π = αz2z3 by two pressures p̄1, p̄2 and

the appropriate stationary values of the flux J̄1, J̄2. Then, multiplying (3.1) by α =
(1+a1/a2) and from Γ =Π√bs∗/(�g√s) or from γ∗ =Π√µs∗/�, find s∗.

Remark 3.2. Stationary state can be analyzed also for the membrane when the layers

are changed. Then in (3.7) the set of values D, g, b, s, L is replaced by that of D∗, g∗,

b∗, s∗, � and vice versa:

Γ
(
R̄∗L
D

+ g√
b

)
R̄∗� =Π

(
µs∗p̄− J̄∗

)1/2−ΣJ̄∗. (3.8)

From known complexes Σ, Π, also s∗ may be determined.

There is no additional information about unknown parameters. To determine them

uniquely, it is necessary to study transition processes.

4. Stationary oscillations and conjugate equations. Due to (2.16), stationary oscil-

lations of the flux J(t), independent on Ni(x), are formed on the outlet in some time

t∗ (Figures 2.1 and 2.2). We obtain the equation for this (asymptotic) mode.

Integrating the linear equation (2.7) and substituting w(t,x) into (2.6), we obtain

∂u
∂t
=D∂

2u
∂x2 −a1u+a1a2

∫ t
0

exp
{
a2 ·(τ−t)

}
u(τ,x)dτ+χ(t,x). (4.1)

While time t grows, influence of the initial data u(0,x), w(0,x) declines exponen-

tially: in (4.1), χ(t,x) = a2 exp(−a2t)N3(x). Under an integral sign at τ = 0, there is

exp(−a2t)N2(x). Consider (4.1) while t formally grows till infinity. Firstly, consider

integral term. Represent an integral as a sum

exp
(−a2t

)∫ t
0

exp
(
a2τ

)
u(τ,x)dτ = exp

(−a2t
)∫ t0

0
···+exp

(−a2t
)∫ t
t0
. . . . (4.2)

At any fixed t0 the first term decreases exponentially. Choose t0 ≥ t∗ such that oscil-

lations can be considered stationary. At that, the difference t− t0 is also considered

big enough, so that a first term (t ≥ t1 � t0 ≥ t∗ � 1) becomes small. Represent as

t = t0+mσ + t̃. Here, t̃ ∈ (0,σ), σ = 2π/ω, is the period of oscillations and m is a
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rather large natural number. Then due to the fact that u(τ+σ,x)=u(τ,x) is period-

ical, we obtain

∫ t
t0
··· =

∫ t0+σ
t0

exp
(
a2τ

)
u(τ,x)dτ+

∫ t0+2σ

t0+σ
exp

(
a2τ

)
u(τ,x)dτ+···

=
∫ t0+σ
t0

exp
(
a2τ

)
u(τ,x)dτ+exp

(
a2σ

)∫ t0+σ
t0

exp
(
a2τ

)
u(τ,x)dτ+···

= FR+exp
(
a2mσ

)∫ t0+t̃
t0

exp
(
a2τ

)
u(τ,x)dτ,

F = {1+exp
(
a2σ

)+···+exp
(
a2(m−1)σ

)}= 1−exp
(
ma2σ

)
1−exp

(
a2σ

) ,
R =

∫ t0+σ
t0

exp
(
a2τ

)
u(τ,x)dτ.

(4.3)

Multiply the result by exp(−a2t) and let m tend to infinity:

exp
(−a2t

)∫ t
t0
··· �→−R exp

{−a2 ·
(
t0+ t̃

)}
1−exp

(
a2σ

)
+
∫ t0+t̃
t0

exp
{
a2 ·

(
τ−(t0+ t̃))}u(τ,x)dτ.

(4.4)

So, the integral term in (4.1) for the large t has the form

a1a2

∫ t
0
··· = a1a2

∫ t0+t̃
t0

exp
{
a2 ·

(
τ−(t0+ t̃))}u(τ,x)dτ

+A
∫ t0+σ
t0

exp
{
a2 ·

(
τ−(t0+ t̃))}u(τ,x)dτ, t̃ ∈ (0,σ).

(4.5)

Here A = a1a2[exp(a2σ)− 1]−1. Now it is convenient to move the time zero to the

point t0 +σ (for describing stationary oscillations that are not important). The new

time t̃ ∈ (0,σ) will be named t for simplicity. Then on the period (0,σ) the following

equation for stationary oscillations in the second layer holds:

∂u
∂t
=D∗ ∂

2u
∂x2 −a1u+A

∫ 0

−σ
exp

{
a2 ·(σ +τ−t)

}
u(τ,x)dτ

+a1a2

∫ −σ+t
−σ

exp
{
a2 ·(σ +τ−t)

}
u(τ,x)dτ, t ∈ (0,σ).

(4.6)

It is an equation with an aftereffect: the change in rate of concentration is influenced

by history of that from the previous period. So, the capture influences the transfer

not instantly, but integrally (some inertion corresponds to physical intuition). While

t ∈ (0,σ) grows, the further history influences less. Taking u(τ + σ,x) = u(τ,x),
Aexp(a2σ)=A+a1a2 into consideration, the equation is rewritten in the form
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∂u
∂t
=D∗ ∂

2u
∂x2 −a1u+

(
a1a2+A

)∫ t
0

exp
{
a2 ·(τ−t)

}
u(τ,x)dτ

+A
∫ σ
t

exp
{
a2 ·(τ−t)

}
u(τ,x)dτ, (t,x)∈ (0,σ)×(0,�).

(4.7)

But later a more compact form will be used:

∂u
∂t
=D∗ ∂

2u
∂x2 −a1u+

∫ σ
0
H(t,τ)u(τ,x)dτ, t ∈ (0,σ),

H(t,τ)= (a1a2+A
)
exp

{
a2 ·(τ−t)

}
, 0≤ τ ≤ t,

H(t,τ)=Aexp
{
a2 ·(τ−t)

}
, σ ≥ τ > t.

(4.8)

Remark 4.1. Formally one can find a contradiction in (4.8): the rate of changing of

u(t,x) with respect to t is influenced by future values of u(τ,x). But due to being

periodical, this future is the influence of the previous period. It must be noted that,

unlike (4.1), it is not possible in (4.8) to grow t without limitations: the equation has

been written for the interval of the length σ = 2π/ω with a new time zero t0 +σ
(t0 � 1, t̃ ∈ (0,σ)), that is, for the period of stationary oscillations. Later, for other t,
the solution u(t,x) is continued periodically (H(0,τ) = H(σ,τ)). This limit mode of

oscillations is reached asymptotically in the model.

Later it is convenient that a new time zero t0+σ coincides with turning a cracker on.

Then (0,σ/2) corresponds to turning on and (σ/2,σ)—to turning off. If by the initial

moment t = 0 J ≈ J̄, J ≈ J̄h holds when t = σ/2, and by the end of the period (t = σ ) J ≈
J̄ again, then the initial segment [0,σ] may be taken as a stationary oscillation period.

Exactly that period, at which J(t) has time to reach an asymptote, will be used below:

the levels J̄, J̄h are corresponded by linear concentrations, which can be calculated

explicitly.

We now construct a conjugate system. Methodology of conjugate equations in the

mathematical physics is given, for instance, in [5]. Consider a system (2.1), (4.8) with the

conditions (2.12), (2.13). Choose the functionsϕ(t,x),ψ(t,x)with necessary analytical

properties (below the integration by parts is used) and make the following transforms:

0=
∫ σ

0

∫ L
0
ϕ·(ct−Dcxx)dxdt

+η
∫ σ

0

∫ �
0
ψ·
{
ut−D∗uxx+a1u−

∫ σ
0
H(t,τ)u(τ,x)dτ

}
dxdt

=
∫ L

0

{
ϕ(t,x)c(t,x)

}∣∣σ
t=0dx−

∫ σ
0

{
ϕ(t,x)Dcx(t,x)

}∣∣L
x=0dt

+
∫ σ

0

{
Dϕx(t,x)c(t,x)

}∣∣L
x=0dt+η

∫ �
0

{
ψ(t,x)u(t,x)

}∣∣σ
t=0dx

−η
∫ σ

0

{
ψ(t,x)D∗ux(t,x)

}∣∣�
x=0dt+η

∫ σ
0

{
D∗ψx(t,x)u(t,x)

}∣∣�
x=0dt.

(4.9)
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Two double integrals are omitted here, for they vanish if we choose ϕ, ψ that satisfy

the following equations conjugate to (2.1) and (4.8)

∂ϕ
∂t

=−D∂
2ϕ
∂x2 , x ∈ (0,L), t ∈ (0,σ), (4.10)

∂ψ
∂t

=−D∗ ∂
2ψ
∂x2 +a1ψ−

∫ σ
0
H(τ,t)ψ(τ,x)dτ. (4.11)

In the integral, there is H(τ,t) instead of H(t,τ) in (4.8). In detail,

∫ σ
0
··· = (a1a2+A

)∫ σ
t

exp
{
a2 ·(t−τ)

}
ψ(τ,x)dτ

+A
∫ t

0
exp

{
a2 ·(t−τ)

}
ψ(τ,x)dτ, A= a1a2

exp
(
a2σ

)−1
.

(4.12)

The conjugate equations are constructed in the following way: the signs of the terms

in the right-hand side are changed, the integration segment [0, t] is replaced by [t,σ]
and vice versa, τ− t is replaced by t−τ and vice versa, that is, “everything is up side

down.”

Further transforms of (4.9) are made to eliminate terms, which cannot be explicitly

expressed via the model coefficients and the measurements. Having no experimental

information about the fluxes at the joint of layers (x = L for the first layer and x = 0

for the second), add the conjugate conditions, similar to (2.12), (2.13), to (4.10), (4.11):

Dϕx(t,L)=D∗ψx(t,0), η= k∗
k
= α
Γ
, (4.13)

kϕ(t,L)−k∗ψ(t,0)=−Dϕx(t,L). (4.14)

Finally, (4.9) is in the form

0=
∫ L

0

{
ϕ(t,x)c(t,x)

}∣∣σ
t=0dx+

∫ σ
0
ϕ(t,0)Dcx(t,0)dt

−
∫ σ

0
Dϕx(t,0)c(t,0)dt+αΓ−1

∫ �
0

{
ψ(t,x)u(t,x)

}∣∣σ
t=0dx

−αΓ−1
∫ σ

0
ψ(t,�)D∗ux(t,�)dt+αΓ−1

∫ σ
0
D∗ψx(t,�)u(t,�)dt.

(4.15)

Remark 4.2. For conjugate equations (4.10), (4.11) there are no boundary condi-

tions. As (4.10)–(4.14) are homogeneous, the solutions ϕ, ψ are defined up to the mul-

tiplier. There are infinitely many of those; it is convenient to use separation of variables:

ϕ = β(t)r(x), ψ= β∗(t)r∗(x).
Here are some most simple solutions to (4.11). The integral of H(τ,t) on τ ∈ [0,σ]

does not depend on t and is equal to a1. Thus the functionsψ= 1,ψ= x are solutions.

Other variants: ψ = β(t)cos(νx) (sin(νx)), β(t)exp(νx), where ν is a parameter. For

the case β(t)cos(νx), for instance, obtain

β̇=D∗ν2β+a1β−
∫ σ

0
H(τ,t)β(τ)dτ. (4.16)
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Divide by exp(a2t) and define a new variable ξ(t)= exp(−a2t)β(t):

ξ̇+a2ξ =
(
D∗ν2+a1

)
ξ−A

∫ t
0
ξ(τ)dτ−(a1a2+A

)∫ σ
t
ξ(τ)dτ. (4.17)

Differentiating on t, obtain a linear equation of the second order:

ξ(2)(t)+(a2−a1−D∗ν2)ξ̇(t)−a1a2ξ(t)= 0. (4.18)

Substituting ξ back to (4.17) one arbitrary constant disappears. For ψ = β(t)exp(νx)
it is only necessary to change the sign at D∗. A linear combination of solutions is

also a solution. The parameter ν is arbitrary and may be determined as a function of

estimated quantities ν = ν(D∗,ai). For instance, for ψ = β(t)cos(νx), it is better to

take ν2 =D−1∗ (a2−a1), if a2 > a1. Otherwise for ψ = β(t)exp(νx), ν2 =D−1∗ (a1−a2)
if a2 <a1. Then ξ(2) = a1a2ξ.

In (4.15) no information about a stationary mode c(σ/2,x) is used. Thus one more

method of constructing conjugate systems is reasonable.

Consider two semiperiods [τ1,τ2] = [0,σ/2] and [τ1,τ2] = [σ/2,σ], σ = 2π/ω.

Integrate (2.7) on a segment [τ1,τ2], taking a1c(τi,x) = a2w(τi,x) for the stationary

modes into consideration, and substitute w into (2.6). In the same way as in (4.9),

0=
∫ τ2

τ1

∫ L
0
ϕ·(ct−Dcxx)dxdt

+η
∫ τ2

τ1

∫ �
0
ψ·
{
ut−D∗uxx+a1u−a1a2

∫ t
τ1

exp
{
a2 ·(τ−t)

}
u(τ,x)dτ

−a1 exp
{
a2 ·

(
τ1−t

)}
u
(
τ1,x

)}
dxdt = ··· .

(4.19)

Finally instead of (4.15), the following equation is obtained (χ = Γ/α= k/k∗):

0=
∫ L

0

{
ϕ(t,x)c(t,x)

}∣∣τ2
t=τ1

dx+
∫ τ2

τ1

ϕ(t,0)Dcx(t,0)dt

−
∫ τ2

τ1

Dϕx(t,0)c(t,0)dt+χ−1
∫ �

0

{
ψ(t,x)u(t,x)

}∣∣τ2
t=τ1

dx

−χ−1
∫ τ2

τ1

ψ(t,�)D∗ux(t,�)dt+χ−1
∫ τ2

τ1

D∗ψx(t,�)u(t,�)dt

−a1χ−1
∫ τ2

τ1

∫ �
0
ψ(t,x)exp

{
a2 ·

(
τ1−t

)}
u
(
τ1,x

)
dxdt.

(4.20)

At that, the conditions on the joint (4.13), (4.14) are preserved, and instead of (4.11)

there will be

∂ψ
∂t

=−D∗ ∂
2ψ
∂x2 +a1ψ−a1a2

∫ τ2

t
exp

{
a2 ·(t−τ)

}
ψ(τ,x)dτ, (4.21)

x ∈ (0,�), t ∈ (τ1,τ2). The simplest solutions to these equationsψ1 = β(t),ψ2 = β(t)x,

ψ3 = β(t)sin(νx), and ψ4 = β(t)exp(νx) are also obtained by integration of (4.18)

(ψ1,2 ⇒ ν = 0). The only difference is that one of two arbitrary constants is eliminated

using other conditions.
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5. Parametric identification of the model. Here are the methods of obtaining ex-

plicit equations (nondifferential), connecting estimated parameters with the measure-

ments.

Usage of Fourier series. Consider t ≥ t∗ � 1 (t �= jπ/ω) and take only one

period. For distinctness, let its first half be for the cracker turned on. Move the time

zero (t ∈ [0,σ]) and find c, u in the form (i=√−1):

c(t,x)=
+∞∑
−∞
cn(x)exp(inωt), u(t,x)=

+∞∑
−∞
un(x)exp(inωt). (5.1)

Being nonlinear does not allow using superposition of oscillations. Being real of c,
u implies cn and c−n, un, and u−n become complex conjugate. Thus consider only

n ≥ 0. Due to the smoothing effect of the diffusion equation we are interested only in

harmonics with small n. High harmonics are difficult to determine experimentally. The

quantities with similar names c0,L = c0,L(t), cn = cn(x), cx = cx(t,x) and u0,� =u0,�(t),
un = un(x), ux = ux(t,x) are distinguished by context. Substituting into (2.1), (4.8),

we obtain, for stationary oscillations,

cn(x)inω=Dc′′n(x), x ∈ (0,L),

cn(x)=An exp(λx)+Bn exp(−λx), λ2 = inω
D
,

un(x)inω=D∗u′′n(x)−a1un(x)+ a1a2un(x)
inω+a2

,

un(x)=A∗n exp
(
λ∗x

)+B∗n exp
(−λ∗x), x ∈ (0,�),

λ2
∗ =

inω+a1−a1a2/
(
inω+a2

)
D∗

.

(5.2)

Here f ′ ≡ fx , the constants An, Bn, A∗n, and B∗n are to be determined. It is not impor-

tant which root of the number inω/D is taken as λ. The same is true for λ∗ (let�> 0).

The initial condition (2.16) gives the initial data c0(0)=Q0, cn(0)=−2iQ1/(nπ) (n is

odd), and cn(0)= 0 (n is even, n> 0). From here the following holds for the odd natural

n (for even formally Q1 = 0):

cn(x)= 2An sinh(λx)−2iQ1(nπ)−1 exp(−λx). (5.3)

Then, using a boundary condition (2.10) due to (2.9) and µs∗p� = 0, obtain

u̇� =−g∗J−g∗D∗ux(t,�), inωun(�)=−g∗J〈n〉−g∗D∗u′n(�),

σJ〈n〉 =
〈
J(t),exp(inωt)

〉
L2
, σ = 2π

ω
, L2 = L2

(
[0,σ],C

)
.

(5.4)

Besides,

Dc′n(L)=D∗u′n(0), kcn(L)−k∗un(0)=−Dc′n(L). (5.5)
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Substituting to these equations the expressions for cn(x), un(x), obtain a system of

linear algebraic equations for An, A∗n, and B∗n:

Dλ
[
2An cosh(λL)+2iQ1(nπ)−1 exp(−λL)]=D∗λ∗(A∗n−B∗n),

k
[
2An sinh(λL)−2iQ1(nπ)−1 exp(−λL)]−k∗(A∗n+B∗n)

=−D∗λ∗
(
A∗n−B∗n

)
,

inω
[
A∗n exp

(
λ∗�

)+B∗n exp
(−λ∗�)]

=−g∗J〈n〉 −g∗D∗λ∗
[
A∗n exp

(
λ∗�

)−B∗n exp
(−λ∗�)].

(5.6)

When determining the expressions A∗n, B∗n obtain

un(�)=A∗n exp
(
λ∗�

)+B∗n exp
(−λ∗�)=Un(D∗,g∗,k,k∗,ai,Q1

)
. (5.7)

The explicit expression for Un is too cumbersome to be presented here.

On the other hand, from the measurement equation (2.15) follows that

u(t,�)=u�(t)= g∗R(t)√
b∗

�⇒un(�)= ΠR〈n〉α�
. (5.8)

Equating the two expressions for un(�), obtain the equations in the form

fn
(
D∗,g∗,ai,Q1

)=Un− ΠR〈n〉α�
= 0. (5.9)

The variables k, k∗ are eliminated with the help of known Γ , Σ.

When n= 0, in the similar way, the equation is obtained:

(
Q0− J〈0〉L�D

)
Γ −J〈0〉Σ=ΠR〈0〉, (5.10)

which allows determining the unknown concentration Q0.

Remark 5.1. Each equation is transformed to two:�fn = 0, �fn = 0. Other variants

are also possible. Present a harmonics u−n(�)exp(−inωt)+un(�)exp(inωt) in a real

form Ωn sin(nωt+ϕn). In the same way this harmonics must be treated in Fourier

series expansion g∗R(t)/
√
b∗. Equating amplitudes or/and phases for n≥ 1, obtain the

equations for the unknown parameters. Phases are calculated more precisely. Equations

for even naturaln are simpler:Q1 = 0 should be assumed formally. But if the membrane

is very thin, then due to cn(0)= 0 at small n the even harmonics will be weak and gives

poor information compared to odd ones (cn(0) = −2Q1/(nπ)). While n grows, odd

harmonics becomes less different (and thus less informative) also.

The value 2Q1 of amplitude of oscillation c0(t) is determined via the model param-

eters and the oscillation period. The value Q0−Q1 = c̄0 is obtained from (3.4). Sub-

stituting Q0, we calculate Q1. It is possible to act in other way also. When J ≈ J̄, J̄h,
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the concentrations c(t,x), u(t,x) are linear in layers (see Section 3). Writing the ex-

pressions c̄0(J̄), c̄0(J̄h) explicitly (2Q1 = c̄0(J̄h)− c̄0(J̄)), obtain

c̄L− c̄0

L
= cx =−D−1J̄,

ū�−ū0

�
=ux =−D−1

∗ J̄,

kc̄L−k∗ū0 = J̄, ū� = g∗
(
J̄
b∗

)1/2
= ΠR̄
�

�⇒ 2Q1Γ� =
(
J̄h− J̄

)
Σ+(R̄h− R̄)Π+ΓL�D−1(J̄h− J̄).

(5.11)

The concentration Q1 should be determined beforehand and substituted to fn = 0.

Thus, the identification problem is reduced to a system of equations for elementary

functions. In case if the capture is small (w = 0,ai = 0), there will beα= 1 instead ofα=
(1+a1/a2). Equations fn = 0 become simpler and will contain only D∗, g∗. Eliminating

g∗, obtain a scalar equation for the diffusion coefficient D∗, yet cumbersome. It can be

relatively easily solved in physically reasonable range for D∗. When D∗, g∗, and ai (if

the capture is considered) are already determined, other parameters k, k∗, and b∗ are

calculated on known values Σ, Γ , and Π.

Conjugate equations method. A strategy of using (4.15), (4.20) is as follows.

Choose specific solutions ϕ, ψ of conjugate equations, taking joint conditions (4.13),

(4.14) into consideration. Important here is the fact that the equations are linear homo-

geneous with no boundary conditions. Thus there are infinitely many possible variants.

Substituteϕ, ψ to (4.15) or (4.20) according to which form is used. The equations were

obtained such that there is no concentration or flows in the volume in (4.15), (4.20). Only

stationary concentrations are present (they can be calculated explicitly) and the values

connected with surface processes. Note that the measurements are connected exactly

with desorption on the surface. The only thing to do is to obtain explicit dependencies

between the model parameters from (4.15), (4.20) using the model equations.

Taking capture into consideration (ai �= 0) leads to very complicated equations for

the parameters. Their theoretical analysis is hardly possible. In applications, usually the

traps formed by the material defects are considered as a small perturbation. Limitative

parameters are the main parameters connected with diffusion and sorption. Here is an

algorithm of model identification for ai = 0. Obtained parameters will be a good initial

estimation for perturbed problem ai �= 0. The locally convergent solver of systems of

equations is sufficient.

So, let the defects of the second layer be negligible: ai = 0, N3(x) = 0, and w = 0.

The parameters D∗, g∗, b∗, s∗, k, and k∗ must be estimated on the measurements

J(t). Formally, if ai = 0, it is necessary to put α = 1, the quotient a1/a2 appeared

from a1ū = a2w̄. Equation (3.1) allows eliminating s∗. The coefficients of equilibrium

dissolubility allow obtaining Γ = γ∗/γ = χ = k/k∗. Only four parametersD∗,g∗, b∗, and

k∗ remain undetermined. Stationary linear distributions of diffusing hydrogen do not

depend on existence of reversible capture: equation (3.7) (α = 1) remains unchanged.

This allows finding

Σ= z1+z4, Π= z2z3, z1 = �2

D∗
, z2 = 1√

b∗
, z3 = g∗�, z4 = �

k∗
. (5.12)
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At least two equations are necessary. They can be obtained from the transition pro-

cess. The change λ∗ = (1+ i)
√
nω/(2D∗) should be made in the previous subsection.

But even with these simplifications, fn = 0 remain very cumbersome. But conjugate

equations method allows solving the problem analytically.

A conjugate system appears in the form

ϕt =−Dϕxx, x ∈ (0,L), ψt =−D∗ψxx, x ∈ (0,�), t > 0,

Dϕx(t,L)=D∗ψx(t,0), kϕ(t,L)−k∗ψ(t,0)=−Dϕx(t,L). (5.13)

Equation (4.15) coincides with (4.20) without the last term in the right-hand side (for

ai = 0), if [0,σ] is replaced by [τ1,τ2].
We consider how the method can be realized. If J(t)= J̄ and J(t)= J̄h, then concen-

trations in the layers are distributed linearly and thus can be easily calculated:

c(0,x)= c(σ,x)= c̄0−xD−1J̄,

u(0,x)=u(σ,x)= χc̄0−
(
χLD−1+k−1

∗ +xD−1
∗
)
J̄,

c
(
σ
2
,x
)
=Q0+Q1−xD−1J̄h = c̄0+2Q1−xD−1J̄h,

u
(
σ
2
,x
)
= χ(c̄0+2Q1

)−(χLD−1+k−1
∗ +xD−1

∗
)
J̄h,

c̄0 =Q0−Q1 = g
{
µsp̄− J̄
b

}1/2
, χ = k

k∗
.

(5.14)

Stationary mode is reached asymptotically. If x = 0, t = 0, and σ/2, then due to (2.16),

there are concentration jumps c(+0,0)− c(−0,0) = c(σ + 0,0)− c(σ − 0,0) = 2Q1,

c(σ/2+0,0)−c(σ/2−0,0) = −2Q1. This detail is not very significant, for the expres-

sions c(0,x), c(σ/2,x), and c(σ,x) will be used only under the integral on x ∈ [0,L]
sign. To obtain, for instance, u(0,x), it is necessary to substitute ū0 from kc̄L−k∗ū0 =
J̄, where c̄L = c̄0−LD−1J̄, to the linear expression u(0,x) = ū0−xD−1∗ J̄ for the sta-

tionary initial concentration in the second layer. When a significant capture is present

(ai �= 0), the equations in (5.14) remain unchanged.

(I) Firstly consider a simplest case ϕ = const. As (4.15) and (4.20) are homogeneous

with respect to ϕ, ψ, let ϕ = 1. Then ψ= χ and on a period [0,σ], (4.15) has a simple

physical meaning:

∫ σ
0
Dcx(t,0)dt =

∫ σ
0
D∗ux(t,�)dt. (5.15)

Turning a cracker on implies a concentration jump on the surface and a quick estab-

lishment of the inlet flux:

c(t,0)=Q0+Q1, t ∈
(

0,
σ
2

)
,

Dcx(t,0)≈−J̄h, t ∈
(
ε,
σ
2

)
, ε� σ.

(5.16)
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On the interval (σ/2,σ), due to (2.4) it holds thatDcx(t,0)= q̇−µsp̄+bq2. The integral

at a relatively large segment [0,σ] ofbq2(t) is calculated as an integral ofb[c̄0/g]2, with

taken (3.4) into consideration. A jump of surface concentration is limited by (2Q1/g)

and a transition time is negligibly small. But while calculating an integral of q̇ it is

not possible to assume q̇ = 0. While transition time reduces, q̇ grows. The integral

of q̇ remains equal to q(σ)−q(σ/2) in the limit also, when the transition period is

considered momentary. Such ideas are formalized in terms of δ-functions. While cal-

culating the right-hand side, use (2.10) at µs∗p� = 0: −D∗ux(t,�)= v̇(t)+J(t). Finally

obtain an equilibrium equation (J̄+ J̄h)π/ω+2Q1/g = S, S is the integral of J(t) on

a segment [0,σ]. This gives one more possibility to estimate Q1, Q0. But there is no

additional information about the estimated parameters. Thus we consider (4.20) on

semiperiods. When [τ1,τ2]= [0,σ/2], an expression for the flux −Dcx(t,0), which es-

tablishes slower than inlet concentration, is needed. It is reasonable from the point of

view of precision to choose ϕ from an additional condition ϕ(t,0)= 0 (this will elimi-

nate Dcx(t,0) from (4.20)) or [τ1,τ2]= [σ/2,σ], when the inlet surface contacts with

the molecular hydrogen according to (2.4).

Let [τ1,τ2]= [σ/2,σ] and calculate the integrals I1, . . . , I7 in (4.20):

I1 =
∫ L

0

{
c(σ,x)−c

(
σ
2
,x
)}
dx =−2Q1L−

(
J̄− J̄h

)
D−1L2

2
,

I2 =
∫ σ
σ/2
Dcx(t,0)dt =

∫ σ
σ/2

(
q̇−µsp̄+bq2)dt =−2Q1

g
− J̄π
ω
,

I4 =
∫ �

0

{
u(σ,x)−u

(
σ
2
,x
)}
dx =Π(R̄− R̄h)+D−1∗ �2

(
J̄− J̄h

)
2

,

I5 =−
∫ σ
σ/2
D∗ux(t,�)dt =

∫ σ
σ/2
(v̇+J)dt = R̄− R̄h√

b∗
+S.

(5.17)

The integrals I3, I6, and I7 are zero; here S is for the integral of J(t) on the time segment

[σ/2,σ]. In variables zi, (4.20) for ϕ = 1, ψ = χ, [τ1,τ2] = [σ/2,σ], ai = 0 is linear

algebraic:

f1 = z1
(
J̄− J̄h

)
2

+z2
(
R̄− R̄h

)+B+S = 0,

B =−2Q1L−D
−1L2

(
J̄− J̄h

)
2

− 2Q1

g
− J̄π
ω
+Π(R̄− R̄h).

(5.18)

(II) Let [τ1,τ2]= [0,σ/2] andϕ = x/L. Then, for a linearψ=αx+β, the following is

obtained from the conjugate system: ψ=DD−1∗ x/L+(kL+D)/(k∗L). After calculating

the integrals in (4.20), f2 = d1z2
1+d2z1+d3z2+d4 = 0 is obtained. Here

d1 =−DMξ
3
, M = J̄h− J̄, ξ = 1

χ�L
,

d2 =DMΣξ−DQ1

L
+M, d3 = (DΣξ+1)

(
R̄h− R̄

)
,
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d4 =Q1L−MD
−1L2

3
−
(
c̄0+2Q1

)
Dπ

ωL
−DMΣ2ξ

+2Σ
(
Q1D
L

−M
)
+2Q1χ�− MDξ +

(
DΣξ+1

)
S+DΠξS1/2,

(5.19)

The values S, S1/2 are the integrals of J(t) and R(t) = J1/2(t) on the time segment

[τ1,τ2].
For the period [0,σ],ϕ = x/L, the equation from the previous paragraph is obtained

from (4.15) (n= 0). The case [τ1,τ2]= [σ/2,σ], ϕ = x/L, does not give any new infor-

mation about z1, z2. Also there is no need to detail [τ1,τ2]= [σ/2,σ], ϕ = (x−L)/L,

ψ=DD−1∗ x/L+D/(k∗L) for it is a combination of ϕ = 1, ϕ = x/L.

(III) The solutions of conjugate equations (ai = 0) will be determined in the form

ϕ = (t−τ0
)
ϕ1(x)+ϕ0(x), ψ=

(
t−τ0

)
ψ1(x)+ψ0(x)

�⇒ϕ1 =−D
[(
t−τ0

)
ϕ′′

1 +ϕ′′
0

]
, ψ1 =−D∗

[(
t−τ0

)
ψ′′1 +ψ′′0

]
.

(5.20)

Let ϕ′′
1 = 0, ψ′′1 = 0: ϕ1 = d1(x−L)+d0, ψ1 = d∗1x+d∗0. Then

ϕ0 = h3(x−L)3+h2(x−L)2+h1(x−L)+h0,

ψ0 = h∗3x3+h∗2x2+h∗1x+h∗0,
(5.21)

and d1 = −6Dh3, d0 = −2Dh2, d∗1 = −6D∗h∗3, d∗0 = −2D∗h∗2. After substitution to

the joint conditions and equating functions of x and what is at (t−τ0), four linear

equations for hi, h∗i will be obtained. The parameters di, d∗i, and h∗i are uniquely

represented via h0, . . . ,h3. These can be considered as arbitrary constants.

The only thing to do is to substitute ϕ, ψ to (4.15), (4.20), and calculate the in-

tegrals. Stationary distributions c(τi,x), u(τi,x) are substituted from (5.14). The flux

−Dcx(t,0) on the time interval (0,σ/2) is replaced by J̄h, and on the interval (σ/2,σ)—
by −q̇+µsp̄−bq2 due to (2.4). At that, q(t)= c̄0/g due to (3.4), that is, µsp̄−bq2 = J̄ on

(σ/2,σ). It is not possible to assume q̇ = 0 due to jumps of c(t,0). The flux−D∗ux(t,�)
is replaced by v̇+J. The integrals with q̇, v̇ are transformed by integration by parts. The

functions u(t,�), v(t) are determined from J = b∗v2 and g∗v =u(t,�). To eliminate,

for instance, Dcx(t,0), it is necessary to choose h0 = 0, h2 = 0 (ϕ(t,0) = 0). Detailed

explanation is omitted.

(IV) Other variants may also be considered:

ϕ = β(t)sin(νx)(cos), β(t)exp(νx),
(
t−τ0

)mϕm(x)+···+ϕ0(x),

sin(αt)ϕ1(x)+cos(αt)ϕ2(x),
(
t−τ0

)
exp

{
α
(
t−τ0

)}
ϕ1(x)

+exp
{
α
(
t−τ0

)}
ϕ2(x).

(5.22)

The meaning of choosing different ϕ, ψ (test functions) is the following. In the variant

(I) there are no terms with boundary concentrations c0(t), u�(t) in (4.15), (4.20). The

value ϕ(t,0) = 0 allows eliminating the flux −Dcx(t,0). Different weight is given to

stationary concentrations c(τi,x), u(τi,x) in integrals, and so on. It is possible to

choose which quantities will influence mostly on the equations fi = 0.
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The obtained equations are enough to determine uniquely the model coefficientsD∗,

g∗, b∗, s∗, k, and k∗ when ai = 0. Let the values D, g/
√
b, γ, and γ∗ be known (√µs =

γ
√
b/g). For preliminary analysis of hydrogen permeability by a permeability method,

it is possible to use the results of [8]. The experiment is held for two pressures p̄ = p̄1,

p̄ = p̄2. From (3.7) (α = 1) for J̄ = J̄1, J̄ = J̄2, and c̄01, c̄02, the values Σ = �2/D∗+�/k∗,

Π= �g∗/
√
b∗ are obtained. The equations are linear with respect to Σ and Π. From (3.1)

it follows that s∗ = (χγ�/Π)2/µ. The concentrations c̄0i are determined according to

(3.4) or more roughly c̄0i ≈ γ
√
p̄i (and then g/

√
b and s are not necessary). Unknown

values Qi are estimated by c̄0 =Q0−Q1, equations from the previous paragraph, and

Section 3. To determine z1, z2, it is enough to use linear equations (5.18). Other variants

are also possible. Averaging and the least squares methods are reasonable here. Those

integrals that contain the measurements J(t), R(t)= J1/2(t) are calculated beforehand.

Finally, the estimated parameters are obtained:

D∗ = �
2

z1
, k∗ = �

z4
= �
Σ−z1

, b∗ = 1

z2
2

,

g∗ = z3

�
= Π
z2�

, k= χk∗.
(5.23)

For the perturbed system, when ai �= 0, obtained estimations should be taken as

initial approximations. The equations of the form fn = 0 are obtained in the same way

as when ai = 0 using the conjugate equations method, yet these equations are far more

cumbersome. But these are the equations of the different class: in the initial form, the

parameters are connected by a differential model, and the given method reduces it to

a numerical solving of systems of equations. Calculating one-dimensional integrals is

relatively easy.

6. Remarks and some simplifications. (1) If the model (2.16) is adequate for the ma-

terial of the second layer, then it is possible to exchange the layers—providing pressure

p̄ at the side of the second layer. Formally it is necessary to exchange the parameters

D, g, b, s, k, L and D∗, g∗, b∗, s∗, k∗, � in all the equations fn = 0. To enlarge the flux

often glow discharge is used instead of the cracker.

(2) A bit simple is the case of easier coming out of hydrogen from the second layer

to the vessel. At the outlet, let a flux balance model be used:

µs∗(T)p�(t)−b∗(T)u2(t,�)−D∗(T)ux(t,�)= 0. (6.1)

Hydrogen does not accumulate on the surface, but desorbs immediately. The flux den-

sity is known: J(t) = b∗u2(t,�). Formally it corresponds to the case g∗ = 1, v̇ = 0. In

the vacuum, assume µs∗p� = 0. The identification algorithm is simplified significantly.

There will be no terms with z2 in (5.18) (they appeared as a result of integration of v̇).

(3) The algorithm of parameter estimation on measurements will be numerically sta-

ble if the terms in the equations have similar number exponents. This depends on the

materials and L, �. In particular, number exponents of L2/D, �2/D∗ should be more or

less similar, or the system of equations will be ill-posed. Inverse problems are usually

not immune to experimental and numerical errors.
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(4) The given algorithm needs a significant experimental and numerical work. It is

reasonable to study the material of the first layer (usually it is a metal substrate) before-

hand. It is also possible to consider a multilayer material as a single membrane and thus

estimate the parameters integrally and more roughly. In any case, practically even sim-

plified single-layer variant may be sufficient. Thus, to help the reader to avoid studying

all given materials here it is given independently in a rather brief form. Mathematical

model:

ct =Dcxx, x ∈ (0,�), c(0,x)=ϕ(x), c0,�(t)= gq0,�(t),

q̇0,�(t)= µsp0,�(t)−bq2
0,�(t)±Dcx|x=0,�, J(t)= bq2

�(t).
(6.2)

In the conditions of the experiment, the equilibrium concentration of dissolved-in-metal

hydrogen is proportional to the square root of the molecular hydrogen pressure on

the surface. The coefficient of equilibrium dissolvability γ may be determined as fol-

lows. Place a membrane (not a barrier) to the vacuum vessel with gas hydrogen with

pressure p̄. Heat the membrane to intensify adsorption-desorption processes and dif-

fusion. In some time, a constant concentration c(t,x)= c̄ will establish. For the model

(p0 = p� = p̄), it means that all derivatives are zero: c̄ = g√µsp̄/b = γ√p̄. Quickly cool

the membrane (turning the electric current off), at room temperature the rates of the

studied processes are very low. Pump out the gas, almost all dissolved hydrogen will

remain in the membrane. Now heat the membrane to a high temperature to degas it.

Since p̄, the total amount of captured hydrogen and geometry of the membrane, is

known, it is possible to calculate c̄ and, thus, the coefficient of equilibrium dissolvabil-

ity γ = g√µs/b, γ = γ(T̄ ), where T̄ is the temperature at which saturation and the MCI

experiment are held.

Return back to MCI when the membrane is a barrier and at the outlet side a vacuum is

provided. Firstly analyze a mapping p̄� J̄: at constant pressure p0(t)= p̄, a stationary

flux J(t) = J̄, t ≥ t∗, establishes at the outlet by some time t∗. For t ≥ t∗, all time

derivatives may be considered zero, which implies a linear stationary concentration

distribution c(t,x) = c(t∗,x), t ≥ t∗, c(t∗,x) = ξ1 ·(x−�)+ξ2. Calculate ξ1, ξ2. From

the measurement equation J = bq2
� , it follows that

ξ2 = c
(
t∗,�

)= gq�(t∗)= g
(
J̄
b

)1/2
= grL̄, r = b−1/2, L= J1/2. (6.3)

An angular coefficient ξ1 is equal to cx(t,�)=−D−1J̄ (q̇� = 0, t ≥ t∗):

c(t,x)= c(t∗,x)=D−1J̄ ·(�−x)+grL̄, t ≥ t∗. (6.4)

At the outlet (x = �) the concentration c̄�, proportional to J̄1/2, establishes and the

diffusion flux Dcx(t,x) does not change with respect to the width of the membrane

and is equal to the desorption flux J̄ by absolute value.

On the other hand, q̇0 = 0⇒ c(t,0)= c̄0 = gr(µsp̄−J̄)1/2, t ≥ t∗. Under the root, there

is a positive number: flux is the difference between the coming to the inlet surface flux

µsp̄ and the desorption back to the vessel.
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Comparing the two expressions for c̄0, obtain an equation f(D,g,b,s) = 0, which

explicitly connects the unknown parameters in algebraic form:

gr(µsp̄− J̄)1/2−grL̄−�D−1J̄ = 0

�⇒X[(µsp̄− J̄)1/2− L̄]= J̄, X = Dgr
�
.

(6.5)

The two equations (6.5), for different pressures p̄i, allow determining uniquely s and a

complex X. Using γ, s, and X, obtain D =√µsX�/γ, gr = γ/(√µs�)= �X/D.

When µsp̄� J̄, it is possible to replace the first term in (6.5) by γ
√
p̄. These two linear,

with respect toD−1 and gr , equations allow determiningD and gr , when p̄ = p̄i, J̄ = J̄i.
The parameter s is later found using γ = gr√µs.

Nothing more can be obtained from the analysis of equilibrium and stationary modes:

the parameters g, b are impossible to be split. Thus the transition process must be

studied. At least one more equation is necessary. Here are two ways to provide any

number of equations f(D,g,b)= 0.

Fourier series. Due to (2.16), by some time t∗, the stationary oscillations of the

flux J(t) appear at the outlet, independent of the initial distribution c(0,x) = ϕ(x).
For the Fourier coefficients, obtain

cn(x)inω=Dc′′n(x), inωcn(�)=−gDc′n(�)−gJ〈n〉, (6.6)

cn(0)=−2iQ1/(nπ) (n is odd), cn(0)= 0 (n is even, n �= 0). It implies

c0(x)=−D−1J〈0〉x+Q0,

cn(x)= 2An sinh(λx)−2iQ1(nπ)−1 exp(−λx). (6.7)

Here λ= (1+i)[nω/(2D)]1/2. The values An are determined by

An
(
inωsinh(λ�)+λgDcosh(λ�)

)
=−gJ〈n〉/2+iQ1

[
nπ exp(λ�)

]−1(inω−λgD). (6.8)

Here n is odd natural (for the even ones the terms with Q1 are absent).

On the other hand, c(t,�) = g(J/b)1/2(t)⇒ cn(�) = grL〈n〉. Equating grL〈n〉 to the

above-obtained equation for cn(x) at x = �, obtain on r = b−1/2, Q1 linear equations

fn(D,g,b)= 0 (λ2D = inω). Details are omitted. For each n, they can be transformed

into two equations, equating real or imaginary parts to zero. Eliminating Q1, obtain b,

and using gr , determine g. If the oscillation period is not arbitrary, but is exactly that

for which J(t) has enough time to reach the asymptotes J = J̄h, J = J̄ while the cracker

turns on and off, then 2Q1 =D−1[J̄h− J̄]�+gr[L̄h− L̄]. Using known X, D, the explicit

formula gives r . Then, using X, γ, the parameter g is obtained.

While n grows, even and odd harmonics in c(t,x) are distinguished less. For even

n > 1, there is no term with Q1. But if the membrane is thin enough, then due to

cn(0) = 0, the even harmonics will be weak even for small n and thus carries a little

information.
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Conjugate equations. Consider an arbitrary solution ψ(t,x) of conjugate to

ct = Dcxx equation ψt = −Dψxx without initial or boundary conditions. Using the

integration by parts formula, obtain

0=
∫ τ2

τ1

∫ �
0
ψ·(ct−Dcxx)dxdt

=
∫ �

0
(ψc)|τ2

t=τ1
dx−

∫ τ2

τ1

D
(
cxψ

)∣∣�
x=0dt+

∫ τ2

τ1

D
(
ψxc

)∣∣�
x=0dt.

(6.9)

For the specific ψ, the equation becomes more detailed. The simplest solutions ψ= 1,

ψ= x/�may be taken as well as more complicatedψ= β(t)sin(σx) (cos, exp). They are

defined up to the multiplier β(t) = exp(±Dσ 2t). There are infinitely many solutions

ψ as there are no boundary conditions for the equation ψt = −Dψxx . This allows

constructing infinitely many equations for the parameters.

Here are some variants: [τ1,τ2] = [0,π/ω], [τ1,τ2] = [π/ω,σ]. The flux grows

monotonically on the first time segment from J̄, reaching by the time π/ω the asymp-

tote J = J̄h > J̄. On the second, when the cracker is off, it declines monotonically from

J̄h to J̄. For the first time segment andψ= 1, the outlet flux Dcx(t,0) will be present in

(6.9). When the cracker is on, the author does not have an adequate model forDcx(t,0).
Thus we take a solution ψ= x/�:

z
[
J̄h− J̄

]
6

+ zX
[
L̄h− L̄

]
2

+r[L̄h− L̄]+S− J̄hπω +X
(
S1/2− L̄hπω

)
= 0. (6.10)

Here z = �2/D, S is an integral of J(t), and S1/2 is an integral of L(t) on the segment

[τ1,τ2]. The expression

c� = gq�, q� = rL, c0 =Q0+Q1 =D−1J̄h�+grL̄h,
Dcx(t,�)=−q̇�−J

(6.11)

and c(τi,x) (for the levels J̄, J̄h) should be substituted to (6.9).

The choice ψ= 1 for [τ1,τ2]= [π/ω,σ] provides

z
[
J̄− J̄h

]
2

+zX[L̄− L̄h]+S− J̄πω +2r
[
L̄− L̄h

]+rX−1(J̄− J̄h)= 0. (6.12)

In (6.9) it is necessary to take bq2
0 = µsp̄− J̄ (q0(t)= g−1(Q0−Q1)= g−1c̄0) and

q0
(
τ2
)−q0

(
τ1
)=−2Q1g−1, 2Q1 =D−1[J̄h− J̄]�+gr[L̄h− L̄], (6.13)

into consideration.

The equations are linear on z, r , it is possible to determine D, b, and the parameter

g is obtained from X =Dgr/� or γ = gr√µs. Thus, the initial nonlinear inverse prob-

lem for the system of differential equations is reduced to algebraic equations for the

unknown parameters. Equilibrium and stationary modes allow obtaining D, s, and gr .

Considering only stationary mode allows obtaining s and X. To split g, b (D, g, b), it is

sufficient to use one (two) of the obtained equations.
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In the equations there are only the differences J̄h− J̄, L̄h− L̄,

S− J̄hπ
ω

= S− J̄π
ω
−
(
J̄h− J̄

)
π

ω
,

S1/2− L̄hπω = S1/2− L̄πω −
(
L̄h− L̄

)
π

ω
.

(6.14)

The values S− J̄π/ω, S1/2− L̄π/ω are the integrals of J(t)− J̄, L(t)− L̄ on the appro-

priate time segments of the length π/ω. Thus it is enough to have information about

the level of exceeding of J(t), L(t) over the background values J̄, L̄.

Thus, an inverse parametric identification problem of the hydrogen transfer through

the stratified materials model with nonlinear dynamical boundary conditions in the

form of differential equations, which model sorption-desorption processes on the sur-

face, is reduced to solving a system of nondifferential equations. The measurements

are under an integral sign, which provides some immunity of identification for noises.

The amount of the experimental work is significant, but, unlike the methods which

study surface processes and diffusion separately, here their close connection is taken

into consideration.
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