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THE AXISYMMETRIC BOUSSINESQ-TYPE PROBLEM
FOR A HALF-SPACE UNDER OPTIMAL HEATING

OF ARBITRARY PROFILE
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A solution of the axisymmetric Boussinesq-type problem is derived for transient thermal
stresses in a half-space under heating by using the Laplace and Hankel transforms. An
analytical method is developed to predict the temperature field that satisfies the prescribed
mechanical conditions. Several simple shapes of punches of arbitrary profile are considered
and an expression for the total load is derived to achieve penetration. The numerical results
for the temperature and the total load on the punch are shown graphically.
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1. Introduction. The problem of determining (within the terms of the classical the-

ory of elasticity) the distribution of stresses within an elastic half-space when it is

deformed by a normal pressure against its boundary by a rigid punch seems to have

been first considered by Boussinesq (see [1, 6]). After the publication of the Boussinesq

solution, several alternative solutions were derived, an excellent account of which is

given in the books by Galin [2] and Sneddon [4] as well as in the paper by Sneddon [5].

In this paper, we consider the analysis of a mixed boundary value problem for a half-

space in a transient thermoelasticity under the prescribed mechanical boundary con-

dition. We consider the thermal stresses produced in the semi-infinite elastic medium

z > 0 bounded only by the plane z = 0. The solid is supposed to be deformed by being

pressed against a perfectly rigid solid of revolution of prescribed shape whose axis of

revolution coincides with the z-axis of the coordinate system (and hence is normal to

the boundary plane). It is obvious from the axial symmetry that the strained surface of

the elastic medium will fit the rigid body over the part between the lowest point and a

certain circular section.

In the formation of the problem, we assume that, on the one hand, the initial condi-

tion is that the temperature is zero at time zero and, on the other hand, the mechanical

problem is defined by conditions (2.4). The main results of the paper are that the resul-

tant force applied on the punch and the temperature distribution in the half-space are

obtained. The analysis for finding the distribution of temperature and stresses in this

type of problems has undergone marked development in connection with such prob-

lems as those arising during the design of steam and gas turbines and nuclear reactors.

The mathematical analysis is developed by using the Laplace and Hankel transforms

and the solution of the problem is reduced to dual integral equations of Bessel func-

tions. The solution of the dual integral equations is reduced to a Fredholm integral
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equation of the second kind. The Fredholm integral equation is solved numerically and

the numerical results for the resultant force applied to a punch of arbitrary profile are

obtained and shown graphically for two specific profiles.

2. Thermal stress. Let (r ,θ,z) be the polar cylindrical coordinates. By using the

thermoelastic potential function Φ and Love’s function L for the axisymmetric problem,

nonzero displacements ui and stresses σij are given by

ur = Φ,r −L,rz,
uz = Φ,z+2(1−ν)∆2L−L,zz,
σrr
2µ

= Φ′rr −∆2Φ+(ν∆2L−L,rr
)
,z,

σθθ
2µ

= 1
r
Φ′r −∆2Φ+(ν∆2L−r−1L,r

)
,z,

σzz
2µ

= Φ′zz−∆2Φ+[(2−ν)∆2L−L,zz
]
,z,

σrz
2µ

= Φ′rz+
[
(1−ν)∆2L−L,zz

]
,r ,

(2.1)

where µ is Lame’s constant, ν is the Poisson ratio, ∆2 = ∂2/∂r 2+(1/r)(∂/∂r)+∂2/∂z2,

and the comma denotes partial differentiation with respect to a variable.

The thermoelastic potential function Φ and Love’s function L must satisfy the fol-

lowing differential equations:

∆2Φ =KT, K =
(

1+ν
1−ν

)
α, (2.2)

∆4L= 0, (2.3)

where T is the temperature change and α is the coefficient of linear thermal expansion.

The boundary conditions for the problem are

σrz(r ,0, t)= 0, 0< r <∞,
σzz(r ,0, t)= 0, a < r <∞,
uz(r ,0, t)=u0f(r)g(t), 0< r < a,

(2.4)

where u0 is a constant and f(r) and g(t) are the prescribed functions with respect to

position r and time t, respectively.

We introduce the Laplace transform u∗z (r ,z,p) of the function uz(r ,z,t) with re-

spect to t by

u∗z =u∗z (r ,z,p)=
∫∞

0
uz(r ,z,t)e−ptdt, (2.5)

where p is the Laplace parameter. Performing the Laplace transform on (2.3), the Love

function L∗ in the transform domain may be expressed by

L∗ =K
∫∞

0
s−2[1+sz]e−szA(s,p)J0(rs)ds, (2.6)
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where Jν(rs) denotes the Bessel function of first kind of order ν ≥ 0 and A(s,p) is an

unknown function to be determined from the boundary conditions. The displacement

u∗z and stresses σ∗zz, σ∗rz in the transform domain are given by

u∗z =
∂Φ∗

∂z
+K

∫∞
0

[
(4ν−3)−sz]A(s,p)e−szJ0(rs)ds,

σ∗zz
2µ

= Φ∗,zz−∆2Φ∗+
∫∞

0

[
s2z+2s(1−ν)]A(s,p)e−szJ0(rs)ds,

σ∗rz
2µ

= ∂
2Φ∗

∂r∂z
−
∫∞

0
s
[−(1−ν)(1+sz)+ν(1−sz)]A(s,p)e−szJ0(rs)ds,

(2.7)

where the displacement u∗r and stresses σ∗rr , σ∗θθ are omitted.

Next, an axisymmetrical fundamental equation for the transient heat condition with-

out heat generation is

k∆2T = T,t, (2.8)

where k is the thermal diffusivity. When the initial temperature is zero, the Laplace

transform of (2.8) is

k∆2T∗ = pT∗. (2.9)

For this problem, the general solution of (2.9) may be taken as

T∗ =
∫∞

0
D(s,p)e−(s

2+p/k)1/2zJ0(rs)ds. (2.10)

Substituting (2.10) into (2.2)1 in the transform domain, the expression for the thermoe-

lastic potential function is given by

Φ∗ =K k
p

∫∞
0
D(s,p)e−(s

2+p/k)1/2zJ0(rs)ds. (2.11)

Substituting (2.11) into (2.7), we find that

u∗z
K
=− k

p

∫∞
0

(
s2+ p

k

)1/2
D(s,p)e−(s

2+p/k)1/2zJ0(rs)ds

+
∫∞

0

[
(4ν−3)−sz]A(s,p)e−szJ0(rs)ds,

(2.12)

σ∗zz
2µK

= k
p

∫∞
0
s2D(s,p)e−(s

2+p/k)1/2zJ0(rs)ds

+
∫∞

0

(
zs2+2s(1−ν))A(s,p)e−szJ0(rs)ds,

(2.13)

σ∗rz
2µK

= k
p

∫∞
0
sD(s,p)

(
s2+ p

k

)1/2
e−(s

2+p/k)1/2zJ1(rs)ds

+
∫∞

0
s
[
(1−ν)(1+sz)−ν(1−sz)]A(s,p)e−szJ1(rs)ds.

(2.14)
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The boundary conditions (2.4) in the Laplace transform domain may be written as

σrz(r ,0,p)= 0, 0< r <∞, (2.15)

σzz(r ,0,p)= 0, a < r <∞, (2.16)

uz(r ,0,p)=u0f(r)g∗(p), 0< r < a. (2.17)

Making use of condition (2.15), we find that

D(s,p)=−p
k

[
(1−2ν)A(s,p)(
s2+p/k)1/2

]
. (2.18)

Making use of (2.18), we find, from (2.12) and (2.13), that

u∗z
K
=−2(1−ν)

∫∞
0
A(s,p)J0(rs)ds,

σ∗zz
2µK

=
∫∞

0

[
2(1−ν)− s(1−2ν)(

s2+p/k)1/2

]
sA(s,p)J0(rs)ds.

(2.19)

From boundary conditions (2.17) and (2.16), respectively, we find that

∫∞
0
C(s,p)J0(rs)ds+

∫∞
0
K2(s,p)C(s,p)J0(rs)ds = u0f(r)g∗(p)

2(1−ν)K , 0< r < a,

(2.20)∫∞
0
sC(s,p)J0(rs)ds = 0, a < r , (2.21)

where

C(s,p)=− A(s,p)
K1(s,p)

, (2.22)

K1(s,p)=
(
s2+p/k)1/2

[
2(1−ν)(s2+p/k)1/2−s(1−2ν)

] , (2.23)

K2(s,p)=K1(s,p)−1. (2.24)

We use the following representation:

C(s,p)=
∫ a

0
χ(u,p)cos(su)du. (2.25)

On integrating (2.25) by parts, we get

C(s,p)=
[
χ(a,p)sin(sa)

a
− 1
s

∫ a
0
χ′(u,p)sin(su)du

]
, (2.26)

where the prime denotes the derivative with respect to t. Substituting the expression

(2.25) into (2.21), we find that (2.21) is identically satisfied and that (2.20) leads to the

following integral equation:

∫ r
0

χ(u,p)du(
r 2−u2

)1/2 +
∫∞

0
K2(s,p)C(s,p)J0(rs)ds = u0g∗(p)f(r)

2(1−ν)K , 0< r < a. (2.27)
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The above equation is of Abel type and hence its solution may be written in the following

form:

χ(u,p)+
∫ a

0
χ(ν,p)M(u,ν,p)dν = u0g∗(p)

π(1−ν)K
d
du

∫ u
0

rf(r)dr(
u2−r 2

)1/2 , 0< t < a,

(2.28)

where

M(u,ν,p)= 2
π

∫∞
0
K2(s,p)cos(us)cos(νs)ds (2.29)

and we have used (2.25) and the following result:

cos(st)= d
dt

∫ t
0

rJ0(sr)dr(
t2−r 2

)1/2 . (2.30)

Equation (2.28) is a Fredholm integral equation of the second kind, which can be solved

numerically.

3. Formula for the total load on the punch. The total load P on the punch required

to produce the above penetration is given by

P∗ = −2π
∫ a

0
rσ∗zz(r ,0,p)dr , (3.1)

where

σ∗zz(r ,0,p)=−
1
r
∂
∂r
r
∫∞

0
C(s,p)J1(rs)ds. (3.2)

Substituting the value of C(s,p) from (2.25) into (3.2), we obtain

σ∗zz(r ,0,p)=−
1
r
∂
∂r

∫ a
r

uχ(u,p)du(
u2−r 2

)1/2 , 0< r < a. (3.3)

Making use of (3.1) and (3.3), we get

P∗ = −2π
∫ a

0
χ(u,p)du. (3.4)

4. Results for special shapes of punches. We will now consider some special cases

of the application of these formulae.

(a) Flat-ended cylindrical punch. We begin by considering the case in which

the half-space z > 0 is deformed by the normal penetration of the boundary by a flat-

ended rigid cylinder of radius a. We suppose that the punch penetrates a constant

distance u0. For this case, we assume that f(r) = 1, g(t) = 1. Using this, and upon

nondimensionalizing equation (2.28) by the transformation of variables

u= au1, s = s1

a
, P1 = apk , χ

(
au1,p

)= u0Ψ
(
u1,P1

)
π(1−ν)Kp , (4.1)
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we find, from (3.1), that

Ψ
(
u1,P1

)+
∫ 1

0
Ψ
(
ν1,P1

)
M2
(
u1,ν1,P1

)
dν1 = 1, 0<u1 < 1, (4.2)

where

M2
(
u1,ν1,P1

)= 2
π

∫∞
0
K2
(
s1,P1

)
cos

(
u1s1

)
cos

(
s1ν1

)
ds1,

K2
(
s,P1

)=K1
(
s1,P1

)−1,

K1
(
s1,P1

)=
(
s2

1+P1
)1/2

[
2(1−ν)(s2

1+P1
)1/2−(1−2ν)s1

] .
(4.3)

For this case, (3.4) can be written in the following form:

P∗ = − 2u0a
α(1+ν)p

∫ 1

0
Ψ
(
u1,P1

)
du1. (4.4)

When p→ 0, we can easily find that

P∞ = (P)t→∞ =− 2au0

(1+ν)α . (4.5)

Making use of (4.4) and (4.5), we find that

P∗

P∞
= 1
p

∫ 1

0
Ψ
(
u1,P1

)
du1. (4.6)

We find that by using the inversion theorem of Laplace transforms,

P
P∞

= 1
2πi

∫
βr

eP1t1dP1

P1

[∫ 1

0
Ψ
(
u1,P1

)
du1

]
, (4.7)

where βr stands for a Bromwich path and

t1 = k
a
t. (4.8)

Solving (4.2) numerically and then, from (4.7), by using the method of finding the in-

version of Laplace transforms discussed by Miller and Guy [3], we find the numerical

values of P/P∞. The results for P/P∞ against t1 are shown in Figure 4.1 for the flat-

ended cylindrical punch.

We can easily find from (2.10), (2.18), (2.22), (2.23), and (2.25) that

T∗

c1
=
(

1−2ν
1+ν

)∫ 1

0
Ψ
(
u1,P1

)
du1

×
∫∞

0

e−(s
2
1+P1)z1K1

(
s1,P1

)
J0
(
r1s1

)
cos

(
s1u1

)
ds1(

s2
1+P1

)1/2 ,
(4.9)

where

r = ar1, z1 = za, c1 = au0

παk
. (4.10)
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Figure 4.1. Variation of P/P∞ versus t1 for values of ν = 0.4,0.3,0.2,0.1 and
where t1 = (k/a)t and P∞ = (P)t1→∞.
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Figure 4.2. Variation of T/c1 versus t1 for values of z1 = 2,4,7 and r1 = 1.

Making use of (4.9) and the method of finding the inversion of Laplace transforms

discussed in [3], we find the temperature field in the semi-infinite solid. The results are

displayed in Figure 4.2.

(b) Conical punch. For normal penetration by a rigid conical solid of semivertical

angle α1, we may take f(r)= εr and g(t)= 1, where ε= tanα1. For this case, we find,

from (2.28), that

Ψ1
(
u1,P1

)+
∫ 1

0
Ψ
(
ν1,P

)
M2
(
u1,ν1,P1

)
dν1 =u1, 0< t1 < 1, (4.11)

where

χ
(
au1,p

)= au0εΨ1
(
u1,P1

)
2αp(1+ν) . (4.12)

For this case, (3.4) may be written in the following form:

P∗ = − πu0a2ε
(1+ν)αp

∫ 1

0
Ψ1
(
u1,P1

)
du1. (4.13)
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Figure 4.3. Variation of P/P∞ versus t1 for values of ν = 0.4,0.3,0.2,0.1 and
where t1 = (k/a)t and P∞ = (P)t1→∞.

When p→ 0, we find that

P∞ = (P)t→∞ =− a2u0επ
2(1+ν)α . (4.14)

Making use of (4.13) and (4.14), we find that

P∗

P∞
= 2
p

∫ 1

0
Ψ1
(
u1,P1

)
du1. (4.15)

Now, by using the inversion theorem of Laplace transforms, we find that

P
2P∞

= 1
2πi

∫
βr

eP1t1dP1

P1

∫ 1

0
Ψ1
(
u1,P1

)
du1. (4.16)

Solving (4.11) numerically and using (4.16) and the method of finding the inversion of

Laplace transforms discussed by Miller and Guy [3], we find P/2(P)∞. The results are

displayed in Figure 4.3.

5. Conclusions. The numerical results of this work are displayed in Figures 4.1, 4.2,

and 4.3. Figures 4.1 and 4.3 show the variation of the total load on the punch against

t1 for the cylindrical and conical punches, respectively. We notice from these figures

that the total load on the punch decreases with time t as well as Poisson’s ratio ν of

the material. And as t1 → 0 or t → 0, we find analytically that P/P∞ → 2(1−ν). For a

cylindrical punch, we conclude, from Figure 4.2, that the temperature field decreases

with the depth of the material.
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