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1. Introduction. In this paper, we study the class �∗0 (δ) of δ-spirallike functions

with respect to a boundary point. Spirallikeness with respect to a boundary point is

a fresh idea being the subject of studies in [1, 2]. Cited papers developed the method

based, on the one hand, on the analytic formula for the class �∗0 of functions starlike

with respect to a boundary point proposed and proved partially by Robertson [10], and,

on the other hand, on some dynamical system built for �∗0 (δ). Lyzzaik [8] completing

Robertson’s proof solved positively his conjecture. Thereby the full analytic description

of functions in �∗0 was finished. The author [5], by using the Julia lemma, proposed an

alternative analytic formula for the class �∗0 different than Robertson’s characteriza-

tion. The necessary condition for functions to be in �∗0 was shown and, partially, the

sufficient condition. In [7], Lyzzaik and the author complete the proof and in this way

the class �∗0 was equipped with a new analytic characterization.

The use of the Julia lemma has the virtue of looking at the inner property of the

class �∗0 and the other classes defined by the geometric property connected with the

boundary point (see, e.g., [6]). In this paper, we apply once again the Julia lemma as a

technique to study the class �∗0 (δ). Theorem 3.5 demonstrates the basic observation

that spirallikeness, as earlier starlikeness with respect to a boundary point, is preserved

on each oricycle in the unit disk by every function in �∗0 (δ). Theorems 3.6 and 3.8

complete a new analytic characterization of δ-spirallike functions with respect to a

boundary point.

2. Preliminaries. Let D = {z ∈ C : |z| < 1} and let T = ∂D. For each k > 0, consider

the oricycle

Ok =
{
z ∈D :

|1−z|2
1−|z|2 < k

}
. (2.1)

The oricycle Ok is a disk in D whose boundary circle ∂Ok is tangent to T at 1.

Let ∆ = {z ∈ D : |arg(1−z)| < b, |z−1| < ρ}, b ∈ (0,π/2), ρ < 2cosb, be a Stolz

angle at 1.
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Let � denote the set of all analytic functions in D. The subset of � of all univalent

functions will be denoted by �. The set of allω∈� such that |ω(z)|< 1 for z ∈D will

be denoted by �.

An angular limit of f ∈� at ζ ∈ T will be denoted by f∠(ζ). An angular derivative

of f ∈� at ζ ∈ T will be denoted by f ′∠(ζ).
Let f ∈�. Assume that there exists a finite radial limit limr→1− f(r)= υ at 1. Denote

by

Q(z)= (z−1)f ′(z)
f(z)−υ , z ∈D, (2.2)

the Visser-Ostrowski quotient of f at 1 (see, e.g., [9, page 251]). We say that f satisfies

the Visser-Ostrowski condition at 1 if Q∠(1)= 1 (see, e.g., [9, page 252]).

We recall now the Julia lemma (see [4]; see also [11, pages 68–72]).

Lemma 2.1 (Julia). Let ω ∈�. Assume that there exists a sequence (zn) of points in

D such that

lim
n→∞zn = 1, lim

n→∞ω
(
zn
)= 1, (2.3)

lim
n→∞

1−∣∣ω(zn)∣∣
1−∣∣zn∣∣ = λ <∞. (2.4)

Then

∣∣1−ω(z)∣∣2

1−∣∣ω(z)∣∣2 ≤ λ
|1−z|2
1−|z|2 , z ∈D, (2.5)

that is, for every k > 0,

ω
(
Ok
)⊂Oλk. (2.6)

Remark 2.2. The constant λ defined in (2.4) is positive (see [11, pages 68–69]).

For ω∈� with ω∠(1)= 1, let

Λ= sup

{∣∣1−ω(z)∣∣2

1−∣∣ω(z)∣∣2 ·
1−|z|2
|1−z|2 : z ∈D

}
. (2.7)

The next lemma is a converse of the Julia lemma (see [11, page 72] and [3, pages

42–44]).

Lemma 2.3. Letω∈�. If (2.5) holds for some λ > 0, then there exists a sequence (zn)
of points in D satisfying (2.3) and such that

lim
n→∞

1−∣∣ω(zn)∣∣
1−∣∣zn∣∣ =Λ≤ λ. (2.8)
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Remark 2.4. In fact, in Lemma 2.3, we can find a sequence of real numbers (xn) in

(0,1) satisfying (2.3) and (2.8). Also it can be proved that then ω∠(1)= 1 and

lim
∆	z→1

1−ω(z)
1−z = lim

∆	z→1
ω′(z)=ω′

∠(1)=Λ (2.9)

for every Stolz angle ∆ (see [3, pages 42–44]).

For our need, it will be convenient to define the following classes of functions intro-

duced in [5].

Definition 2.5. Fix λ∈ (0,∞].ω∈� is said to belong to the class �(λ) ifω∠(1)= 1

and ω′∠(1)= λ.

Let �(λ) denote the class of all functions p of the form

p(z)= 4
1−ω(z)
1+ω(z) , z ∈D, (2.10)

where ω∈�(λ).

Remark 2.6. Note that p ∈�(λ) if and only if p∠(1)= 0 and p′∠(1)=−2λ.

3. Spirallikeness with respect to a boundary point.

3.1. Let for w ∈C and A⊂ C, wA= {wu :u∈A}.
We start with the following definition.

Definition 3.1. Fix δ ∈ (−π/2,π/2) and let L(δ) = {exp(e−iδt) : t ≤ 0} be the

logarithmic spiral joint 0 and 1. Clearly, L(0) is a line segment (0,1]. Let �∗0 (δ) denote

the class of simply connected domains Ω ⊂ C with 0 ∈ ∂Ω and such that wL(δ) ⊂ Ω
for every w ∈ Ω. Let �∗0 (δ) ⊂ � denote the corresponding class of functions mapping

D onto domains in �∗0 (δ).
Domains in �∗0 (δ) and functions in �∗0 (δ) will be called δ-spirallike with respect to

the boundary point at the origin.

For δ= 0, we get the class �∗0 , that is, �∗0 =�∗0 (0). Recall that f belongs to �∗0 if and

only if it is univalent in D and f(D) is a starlike domain with respect to the boundary

point at the origin, that is, the line segment (0,w] is a subset of f(D) for everyw ∈ f(D)
(for more about the class �∗0 , see [5, 7, 8, 10]).

Let f ∈ �∗0 (δ) for δ ∈ (−π/2,π/2), and fix w1 ∈ f(D). Then w1L(δ) ⊂ Ω is a curve

ending at the origin, so by [9, Proposition 2.1, page 29], the preimage of w1L(δ) is

a curve in D ending at some point ζ0 of T. Applying [9, Corollary 2.17, page 35], we

conclude that f has the angular limit zero at ζ0.

Proposition 3.2. Every function f ∈�∗0 (δ), δ∈ (−π/2,π/2), has the angular limit

zero at some point ζ0 ∈ T, that is, f∠(ζ0)= 0.

In the following considerations, we assume that ζ0 = 1, that is, we use the boundary

normalization f∠(1)= 0.
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3.2. In the proofs of the main theorems of this paper, we will need two lemmas

proved in [5].

Lemma 3.3. Every sequence (an) of positive numbers with

lim
n→∞

(
a1a2 ···an

)= 0 (3.1)

has a convergent subsequence (ank) and

0≤ lim
k→∞

ank = a≤ 1. (3.2)

Lemma 3.4. Let f ∈� have a radial limit limr→1− f(r)= υ. Then there exist λ∈ [0,1]
and a sequence (rn) with 0< rn < 1 and limn→∞ rn = 1 such that

lim
n→∞

∣∣Q(rn)∣∣= 2λ. (3.3)

3.3. The theorem below says that every function in �∗0 (δ) having a boundary nor-

malization f∠(1)= 0 preserves spirallikeness with respect to a boundary point on each

oricycle in D. This information will be used later to find an analytic formula for func-

tions in �∗0 (δ).

Theorem 3.5. Fix δ ∈ (−π/2,π/2) and let f ∈ �. Then f ∈ �∗0 (δ) and f∠(1) = 0 if

and only if f(Ok)∈�∗0 (δ) for every k > 0.

Proof. Assume that f ∈�∗0 (δ) and f∠(1)= 0. For each t ≤ 0, define

ωt(z)= f−1(exp
(
e−iδt

)
f
(
z
))
, z ∈D. (3.4)

Since f(D) ∈ �∗0 (δ), exp(e−iδt)f (z) ∈ f(D) for every t ≤ 0, z ∈D, and the univalence

of f shows that ωt is well defined for each t ≤ 0.

Now, fix t < 0 and w1 ∈ f(D). Hence w1L(δ)⊂ f(D). For n∈N, let

wn = exp
(
e−iδ(n−1)t

)
w1 (3.5)

and zn = f−1(wn). Since the sequence (wn) is placed on the logarithmic spiral w1L(δ)
and limn→∞wn = 0, limn→∞zn = 1 by Proposition 3.2. Observe that

ωt
(
zn
)= f−1(exp

(
e−iδt

)
wn

)= f−1(exp
(
e−iδnt

)
w1
)= zn+1. (3.6)

Let now

an = 1−∣∣ωt
(
zn
)∣∣

1−∣∣zn∣∣ , n∈N. (3.7)

Hence

an = 1−∣∣zn+1

∣∣
1−∣∣zn∣∣ (3.8)
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for all n∈N. Consequently,

lim
n→∞

(
a1a2 ···an

)= lim
n→∞

(
1−∣∣z2

∣∣
1−∣∣z1

∣∣ 1−∣∣z3

∣∣
1−∣∣z2

∣∣ ··· 1−∣∣zn∣∣
1−∣∣zn−1

∣∣ 1−∣∣zn+1

∣∣
1−∣∣zn∣∣

)

= lim
n→∞

1−∣∣zn+1

∣∣
1−∣∣z1

∣∣ = 0.
(3.9)

Lemma 3.3 yields a convergent subsequence (ank) such that

0≤ lim
k→∞

ank = λ(t)≤ 1, (3.10)

which means that

lim
k→∞

1−∣∣ωt
(
znk

)∣∣
1−∣∣znk∣∣ = λ(t)≤ 1 (3.11)

for each t < 0. In view of Remark 2.2, λ(t) > 0 for every t < 0.

Hence, each ωt satisfies the assumptions of the Julia lemma, and since λ(t) ≤ 1

for every t < 0, we derive that ωt(Ok) ⊂ Oλ(t)k ⊂ Ok for every k > 0. This yields

exp(e−iδt)f (Ok)⊂ f(Ok) for every t < 0, and hence f(Ok)∈�∗0 (δ).
Conversely, assume that f(Ok)∈�∗0 (δ) for every k > 0. Since 0∈⋂k>0 ∂f(Ok) and

f(D)=
⋃
k>0

f
(
Ok
)
, (3.12)

it follows that 0 ∈ ∂f(D) and f(D) ∈ �∗0 (∆), so f ∈ �∗0 (δ). We show that f∠(1) = 0.
Fix k > 0 and w1 ∈ f(Ok). Then w1L(δ)⊂ f(Ok) is a curve ending at 0∈ ∂f(D). By [9,

Proposition 2.14, page 29], f−1(w1L(δ)) is a curve in D ending at some point ζ0 of T.

Since f−1(w1L(δ))⊂Ok and Ok∩T= {1}, we have ζ0 = 1. The proof of the theorem is

finished.

Using Theorem 3.5, we characterize functions in �∗0 (δ) as follows.

Theorem 3.6. Fix δ ∈ (−π/2,π/2). If f ∈ �∗0 (δ) and f∠(1) = 0, then there exist

λ∈ (0,1] and ω∈�(λ) such that

−eiδ(1−z)2 f
′(z)
f(z)

= 4
1−ω(z)
1+ω(z) , z ∈D. (3.13)

Proof. The case δ = 0 reduces to [5, Theorem 3.1]. Therefore we assume that δ ∈
(−π/2,π/2)\{0}. Let Ok = ∂Ok \{1} and Γk = ∂f(Ok) for every k > 0. First, we show

that

Re

{
eiδ(1−z)2 f

′(z)
f(z)

}
< 0, z ∈D. (3.14)

We prove that the last inequality is true for all points on Ok for every k > 0. Now, fix

k > 0, z ∈Ok and let w = f(z). We parametrize Ok as follows:

Ok : z = γk(θ)= 1+keiθ
1+k , θ ∈ (0,2π). (3.15)
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Thus Ok is positively oriented. Denote by τ(z) the tangent vector to Γk at w = f(z),
that is, τ(z)= γ′k(θ)f ′(γk(θ)), where z = γk(θ). Since

(
1−γk(θ)

)2 = k2

(1+k)2
(
1−eiθ)2 =−4ksin2(θ/2)

(k+1)i

(
k

k+1
eiθi

)

= 4ksin2 (θ/2)
k+1

γ′k(θ)i= 2Re
{
1−γk(θ)

}
γ′k(θ)i, θ ∈ (0,2π),

(3.16)

we have

τ(z)= −i
(
1−γk(θ)

)2f ′
(
γk(θ)

)
2Re

{
1−γk(θ)

} = −i(1−z)
2f ′(z)

2Re{1−z} . (3.17)

Let

w(t)= f(z)exp
(
e−iδt

)
, t ≤ 0, (3.18)

be a parametrization of f(z)L(δ) and let w′(0)= limt→0−w′(t)= e−iδf (z) be the one-

sided tangent vector to the logarithmic spiral f(z)L(δ) at f(z). Byϕ(z) we denote the

directed angle from the vector iw′(0) to τ(z), that is,

ϕ(z)= arg
{
τ(z)

}−arg
{
iw′(0)

}

= arg

{
−i(1−z)2f ′(z)

2Re{1−z}

}
−arg

{
ie−iδf (z)

}

= arg

{
−eiδ (1−z)

2f ′(z)
f(z)

}
.

(3.19)

By Theorem 3.5, f(Ok)∈�∗0 (δ) for every k > 0. Hence it is easy to see that

wL(δ)⊂ f (Ok
)
, (3.20)

where w = f(z) ∈ Γk. Indeed, let w0 ∈ wL(δ) be arbitrary. Thus w0 = wu0 for some

u0 ∈ L(δ). Since w ∈ Γk, there exists a sequence (wn) of points in f(Ok) convergent

to w. The inclusion wnL(δ) ⊂ f(Ok) yields that wnu0 is a point of f(Ok) for every

n ∈ N. At the end, the convergence of the sequence (wnu0) of points of f(Ok) to w0

implies that w0 ∈ f(Ok). Since w0 was arbitrary, our claim is proved.

Let l be a line going through f(z) withw′(0) as the directional vector. Then l divides

the plane into two closed half-planesH1 andH2. One of them, sayH1, contains the origin

and the spiral f(z)L(δ). We assume first that δ∈ (−π/2,0). This means that the spiral

L(δ) has the shape such that it attains 1 from the lower half-plane. Moreover, f(z)L(δ)
parametrized as above turns round the origin in the counterclockwise direction. Hence,

iw′(0) lies in H1. By Theorem 3.5, f(Ok) ∈ �∗0 (δ). Hence, and from (3.20), it follows

that either Γk is tangent both to f(z)L(δ) (one-sided) and to l at f(z), and then τ(z)
lies in l so in H1, or by [9, Proposition 2.13, page 28], there is a crosscut C ⊂ l of f(Ok)
with one endpoint at f(z). Thus, by [9, Proposition 2.12, page 27], f(Ok) has exactly

two components, one of them, say G, lies in H2. Clearly, ∂G = C∪Γ , where Γ ⊂ Γk ends

at f(z). Hence Γ is a subset of H2 and, since it is part of a positively oriented closed
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analytic curve Γk, we deduce finally that the tangent vector τ(z) to Γk at f(z) lies in H1.

In a similar way, we can prove that both vectors iw′(0) and τ(z) lie together in H2 as

δ∈ (0,π/2). This, (3.19), and the fact that iw′(0) is orthogonal to l yield

∣∣ϕ(z)∣∣≤ π
2
. (3.21)

As k > 0 and z ∈Ok was arbitrary, this is true in D.

Suppose now that equality holds in (3.21) for some z0 ∈D. By the maximum principle

for harmonic functions, it holds in the whole disk D, which implies that there exists

y ∈R\{0} so that

eiδ(1−z)2 f
′(z)
f(z)

≡yi, z ∈D. (3.22)

But the solution

f(z)= f0(z)= f(0)exp

(
e−iδyiz

1−z

)
, z ∈D, (3.23)

of the last equation is not univalent in D. So f0 
∈ �∗0 (δ), and hence strict inequality

holds in (3.21).

Let p(z)=−eiδ(1−z)2f ′(z)/f(z) and let

ω(z)= 4−p(z)
4+p(z) , z ∈D. (3.24)

Then ω(D)⊂D. We now prove that ω∈�(λ) for some λ∈ (0,1]. Recalling the Visser-

Ostrowski quotient, we can write

p(z)= eiδ(1−z)Q(z), z ∈D. (3.25)

Since, for every r ∈ (0,1),

∣∣Q(r)∣∣≤ 4
1+r (3.26)

(see [5, Lemma 2.2, (2.3)]), we have

lim
r→1−

{
(1−r)Q(r)}= lim

r→1−
{
e−iδp(r)

}= 0. (3.27)

Hence limr→1− p(r) = 0 and, in view of (3.24), limr→1−ω(r) = 1, so condition (2.3) of

the Julia lemma is satisfied. By Lemma 3.4, there exist λ0 ∈ [0,1] and a sequence (rn)
in (0,1) with limn→∞ rn = 1 such that

lim
n→∞

∣∣Q(rn)∣∣= 2λ0. (3.28)
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From (3.24) and (3.27) we have

lim
n→∞

∣∣1−ω(rn)∣∣
1−rn = lim

n→∞

{
2∣∣4+p(rn)∣∣ ·

∣∣p(rn)∣∣
1−rn

}

= lim
n→∞

{
2∣∣4+p(rn)∣∣

∣∣Q(rn)∣∣
}

= λ0 ∈ [0,1].

(3.29)

But

1−∣∣ω(rn)∣∣
1−rn ≤

∣∣1−ω(rn)∣∣
1−rn , (3.30)

so we can find a subsequence (rnk) of (rn) such that

lim
k→∞

1−∣∣ω(rnk)∣∣
1−rnk

= λ1 ≤ λ0. (3.31)

By Remark 2.2, λ1 ∈ (0,1]. Hence ω satisfies the assumptions of the Julia lemma with

λ = λ1. Since then (2.5) holds, by using Lemma 2.3 and Remark 2.4, we see that ω ∈
�(Λ), where Λ≤ λ1 ≤ 1 is given by (2.7). This ends the proof of the theorem.

Corollary 3.7. If f ∈ �∗0 (δ), δ ∈ (−π/2,π/2), and f∠(1) = 0, then there exists

λ∈ (0,1] such that

lim
∆	z→1

Q(z)= 2λe−iδ (3.32)

for every Stolz angle ∆.

Proof. Since

Q(z)= e−iδ 4
1+ω(z)

1−ω(z)
1−z , z ∈D,

lim
∆	z→1

1−ω(z)
1−z =Λ∈ (0,1]

(3.33)

for every Stolz angle ∆, the assertion follows at once with λ=Λ.

Theorem 3.8. Fix δ ∈ (−π/2,π/2). Let f ∈ � with f∠(1) = 0. If there exist λ ∈
(0,cosδ] and a function ω∈�(λ) such that (3.13) holds, then f ∈�∗0 (δ).

Proof. First we show that f is univalent in D. It is immediate from (3.13) that f is

locally univalent in D. Let ω ∈�(λ), where λ ∈ (0,cosδ], and let g be the solution of

the differential equation

−(1−z)2g
′(z)
g(z)

= 4
1−ω(z)
1+ω(z) , z ∈D, (3.34)

with the boundary condition g∠(1) = 0. As was proved in [7, Theorem 3], g belongs

to the class �∗0 , so it is univalent, and g(D) being a simply connected domain lies in a
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wedge of angle 2λπ . Hence there exists a single-valued analytic branch of logg in D,

and

ge
−iδ
(z)= exp

{
e−iδ logg(z)

}
, z ∈D, (3.35)

is well defined. But, in view of (3.13) and (3.34), we have

g′

g
= eiδ f

′

f
, (3.36)

so

f = ge−iδ . (3.37)

Since λ∈ (0,cosδ], from the above, the univalence of f in D follows.

Now, we prove that f(D)∈�∗0 (δ). This is clear, looking at the relation (3.37) between

classes �∗0 and �∗0 (δ), which yields the geometric relation between starlikeness and

spirallikeness of domains in the plane. To be self-contained, we prove it without using

geometric properties of functions in �∗0 . We assume that δ 
= 0, since this case reduces

to [7, Theorem 3].

Let Ok = ∂Ok \{1} and Γk = ∂f(Ok) for every k > 0. Suppose, on the contrary, that

f(D) 
∈ �∗0 (δ). By Theorem 3.5, there exists k > 0 such that f(Ok) 
∈ �∗0 (δ). Hence

w0L(δ) 
⊂ f(Ok) for some w0 ∈ f(Ok). Thus there exists w1 ∈ (w0L(δ) \ {w0})∩ Γk
such that the subarc of w0L(δ) joining w1 and w0 without w1 is contained in f(Ok).
Since w1 ∈ Γk, w1 = f(z1) for some z1 ∈Ok. Let

v(t)=w0 exp
{
e−iδt

}
, t ≤ 0, (3.38)

be a parametrization of w0L(δ). Clearly,

w1 = v
(
t1
)=w0 exp

{
e−iδt1

}
(3.39)

for some t1 < 0. Let

w(t)=w1 exp
{
e−iδs

}
, s ≤ 0, (3.40)

be a parametrization of w1L(δ). From (3.38), (3.39), and (3.40), we have

w(t)=w0 exp
{
e−iδt1

}
exp

{
e−iδs

}=w0 exp
{
e−iδ

(
t1+s

)}
, (3.41)

which means that w1L(δ) is a subset of w0L(δ). Moreover,

v′
(
t1
)= e−iδw0 exp

{
e−iδt1

}= e−iδf (z1
)=w′(0). (3.42)

Therefore the tangent line l to w0L(δ) at w1 has the directional vector v′(t1)=w′(0)
and is the boundary of two closed half-planes denoted by H1 and H2. One of them, say

H1, contains the origin. Let δ∈ (−π/2,0). As we remarked in the proof of Theorem 3.6,
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the spiral L(δ) has the shape such that it attains 1 from the lower half-plane. Moreover,

w1L(δ) parametrized as above turns round the origin in the counterclockwise direction.

Hence, iw′(0) lies in H1. Observe that either Γk is tangent as well tow1L(δ) (one-sided)

as to l at w1 and then τ(z1) lies in l, or, by [9, Proposition 2.13, page 28], there is a

crosscut C ⊂ l of f(Ok)with one endpoint atw1. Thus, by [9, Proposition 2.12, page 27],

f(Ok) has exactly two components, one of them, sayG, lies inH2. Moreover, ∂G = C∪Γ ,
where Γ ⊂ Γk ends at w1. Hence Γ is a subset of H2 and, since it is part of a positively

oriented closed analytic curve Γk, we deduce finally that the tangent vector τ(z1) to Γk
at f(z1) lies in H2. Since iw′(0) is orthogonal to l and lies in H1, we deduce that

∣∣ϕ(z1
)∣∣≥ π

2
, (3.43)

where ϕ(z1) denotes the directed angle defined by (3.19), with z1 instead of z. This

contradicts (3.13). Similarly, we get a contradiction assuming that δ∈ (0,π/2).
Remark 3.9. In [1], the authors found necessary and sufficient conditions for func-

tions to be in �∗0 (δ) (Theorem 2.1). The analytic formula (2.1) in [1] generalizes the

Robertson inequality for starlike functions with respect to a boundary point. In fact,

the authors of [1] proved that each spirallike function with respect to a boundary point

is a complex power of a corresponding function which is starlike with respect to a

boundary point. Formula (3.13) presents an alternative analytic description of the class

�∗0 (δ). In case δ = 0 (µ = 2π in [1, equation (2.1)]), these two analytic formulas for

�∗0 (0) characterizing starlike functions with respect to a boundary point are equivalent.

Looking at [1, Theorem 2.1(III) and Theorems 3.2 and 3.3], we can expect that formulas

(2.1) in [1] and (3.13) of the present paper are equivalent, which, in fact, means that in

Theorem 3.6 the assumptions λ∈ (0,1] should be replaced by λ∈ (0,cosδ]. This is an

open problem.

3.4. Now, we present some examples of functions. In all of the examples below,

δ∈ (−π/2,π/2) andp(z)=−eiδ(1−z)2f ′(z)/f(z). It is convenient to express formula

(3.13) in terms of the class �(λ). Therefore, in the examples below, we apply Remark 2.6

which says that p ∈ �(λ) if and only if p∠(1) = 0 and p′∠(1) = −2λ. In every case, we

use Theorem 3.8 reformulated by using the class �(λ).

Example 3.10. (1) f(z)= ((1−z)/(1+z))βe−iδ , β > 0, z ∈D.

Then p(z) = 2β(1−z)/(1+z). Hence Rep(z) > 0, z ∈D, p(1) = 0, and p′(1) = −β.

Consequently, f ∈�∗0 (δ) for β∈ (0,2]. For every β > 2, f 
∈�∗0 (δ).
(2) f(z)= (1−z)βe−iδ , β > 0, z ∈D.

Then p(z) = β(1−z). Hence Rep(z) > 0, z ∈ D, p(1) = 0, and p′(1) = −β. Conse-

quently, f ∈�∗0 (δ) for β∈ (0,2]. For every β > 2, f 
∈�∗0 (δ).
(3) f(z)= (1−z)2e−iδee−iδz, z ∈D.

Then p(z) = −z2+1. Hence Rep(z) > 0, z ∈ D, p(1) = 0, and p′(1) = −2. Conse-

quently, f ∈�∗0 (δ).

Acknowledgment. The author would like to thank prof. D. Shoikhet who, during

the conference in honour of prof. L. Zalcman organized by Braude College in Israel in

2003, pointed out an error in the proof of Theorem 3.8.



THE CLASS OF FUNCTIONS SPIRALLIKE . . . 2143

References

[1] D. Aharonov, M. Elin, and D. Shoikhet, Spiral-like functions with respect to a boundary point,
J. Math. Anal. Appl. 280 (2003), no. 1, 17–29.

[2] M. Elin, S. Reich, and D. Shoikhet, Holomorphically accretive mappings and spiral-shaped
functions of proper contractions, Nonlinear Anal. Forum 5 (2000), 149–161.

[3] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic
Press, New York, 1981.

[4] G. Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math. 42 (1920), 349–355 (French).
[5] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal.

Appl. 261 (2001), no. 2, 649–664.
[6] , On the class of functions convex in the negative direction of the imaginary axis,

J. Aust. Math. Soc. 73 (2002), no. 1, 1–10.
[7] A. Lecko and A. Lyzzaik, A note on univalent functions starlike with respect to a boundary

point, J. Math. Anal. Appl. 282 (2003), no. 2, 846–851.
[8] A. Lyzzaik, On a conjecture of M. S. Robertson, Proc. Amer. Math. Soc. 91 (1984), no. 1,

108–110.
[9] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der mathematis-

chen Wissenschaften, vol. 299, Springer-Verlag, Berlin, 1992.
[10] M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal.

Appl. 81 (1981), no. 2, 327–345.
[11] G. Sansone and J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable. II:

Geometric Theory, Wolters-Noordhoff Publishing, Groningen, 1969.

Adam Lecko: Department of Mathematics, Rzeszów University of Technology, Wincentego Pola
2, 35-959 Rzeszów, Poland

E-mail address: alecko@prz.rzeszow.pl

mailto:alecko@prz.rzeszow.pl

