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1. Introduction. We recall that bounded cohomologyH∗b (G) of a group G (we will be

considering only cohomology with coefficients in the additive group of realsRwith triv-

ial action, so, in our notations for cohomology, the coefficient module will be omitted)

is defined using the complex

··· ←� Cn+1
b (G)

δnb←�������������������������������������������������������������������� Cnb (G)←� ··· ←� C2
b(G)

δ1
b←����������������������������������������������������������������� C1

b(G)
δ0
b=0←������������������������������������������������������������������������������������������������������������������������ R δ−1

b =0←������������������������������������������������������������������������������������������������������������������������������������������������� 0 (1.1)

of bounded cochains f :G×···×G→R, and δnb = δn|Cnb (G) is the bounded differential

operator. SinceH0
b(G)=R andH1

b(G)= 0 for any groupG, investigation of bounded co-

homology starts in dimension 2. One observes that H2
b(G) contains a subspace H2

b,2(G)
(called the singular part of the second bounded cohomology group), which has a simple

algebraic description in terms of quasicharacters and pseudocharacters, and the quo-

tient space H2
b(G)/H

2
b,2(G) is canonically isomorphic to the bounded part of the ordi-

nary cohomology groupH2(G). See [6] for background and available results on bounded

cohomology of groups. (For bounded cohomology of topological spaces, see [8].)

We recall that a function F :G→R is called a quasicharacter if there exists a constant

CF � 0 such that

∣∣F(xy)−F(x)−F(y)∣∣�CF ∀x,y ∈G. (1.2)

A function f :G→R is called a pseudocharacter if f is a quasicharacter and, in addition,

f
(
gn
)=nf(g) ∀g ∈G, n∈ Z. (1.3)
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The notions of a quasicharacter and a pseudocharacter originally arose from the ques-

tions of stability of solutions of functional equations [9, 10, 11] and continuous repre-

sentations of groups [12]. We use the following notation:

(i) X(G) is the space of additive characters G→R;

(ii) QX(G) is the space of quasicharacters;

(iii) PX(G) is the space of pseudocharacters;

(iv) B(G) is the space of bounded functions.

Then

H2
b,2(G)�QX(G)/

(
X(G)⊕B(G))� PX(G)/X(G) (1.4)

as vector spaces (cf. [6, Proposition 3.2 and Theorem 3.5]). Special interest in H2
b,2 is

motivated in part by its connections with other structural properties of groups such as

commutator length [1] and bounded generation [6]. (See [3] for a simple proof of triv-

iality of H2
b,2 for Chevalley groups over rings of S-integers in algebraic number fields

using bounded generation.) For example, Grigorchuk [7] (cf. also [5]) proved that the

amalgamated product A1∗H A2 does not have bounded generation provided that the

number of double cosets of A1 modulo H is at least 3 and [A2 :H] � 2 by showing that

dimH2
b,2(A1∗H A2) = ∞ in this case. The proof is based on the explicit construction

(see Example 4.4) of an infinite family of linearly independent quasicharacters which

naturally generalize the construction of quasicharacters for free groups. The quasichar-

acters for free groups were first constructed by Brooks [2], and Făıziev showed that they

can be used to find a basis for the space of pseudocharacters of a free group [4] (cf. [6,

Theorem 5.7] for a shorter and more conceptual proof).

However, no systematic study of bounded cohomology of amalgamated products

of groups has been undertaken. The goal of this paper is to provide the first step in

an attempt to obtain general information about bounded cohomology of amalgamated

products of groups. Since the main technical tool used to compute cohomology of the

amalgamated product A1∗H A2 is the Mayer-Vietoris exact sequence (see [14, Theorem

2.3])

··· �→Hn(A1∗H A2
)
�→Hn(A1

)⊕Hn(A2
)
�→Hn(H) �→Hn+1(A1∗H A2

)
�→ ··· ,

(1.5)

it is natural to try to exhibit an analog of this sequence for bounded cohomology. We

construct an initial segment of this sequence for bounded cohomology (it starts in

dimension 2) and we formulate our results in terms of spaces of pseudocharacters.

We begin by considering the case where the amalgamated subgroup is normal in both

factors (Theorem 2.1). In the general case, we restrict our attention to the special class

of pseudocharacters which we callH-spherical (Theorem 4.6); see Section 4 for relevant

definitions and discussion.

The sequences (2.11) and (4.14) constructed in Theorems 2.1 and 4.6, respectively,

reduce the problem of computation of spaces of pseudocharacters for amalgamated

products of groups to that for free products of groups (terms on the left); the structure

of the latter spaces is known [6, Proposition 4.3 and Remark 4.4].
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We conclude this section with two easy facts which will be used throughout the paper

without special reference.

Lemma 1.1. Any pseudocharacter is constant on conjugacy classes; a bounded pseu-

docharacter is trivial.

Proof. Let f ∈ PX(G) and suppose that f(yxy−1)− f(x) = a 	= 0 for some x,

y ∈ G. Then the difference f(yxny−1)−f(xn) = na is unbounded when n→∞. On

the other hand,

∣∣f (yxny−1)−f (xn)∣∣= ∣∣f (yxny−1)−f(y)−f (xn)−f (y−1)∣∣� 2Cf , (1.6)

a contradiction. The second assertion is obvious.

2. The case of a normal subgroup. In this section, we will establish an analog of the

initial segment of the Mayer-Vietoris sequence for spaces of pseudocharacters assum-

ing that the amalgamated subgroup N is normal in both factors A1 and A2 (in which

case it is also normal in the amalgamated product). To describe this sequence, we need

to introduce some natural linear maps. First, we define

β : PX
(
A1∗N A2

)
�→ PX(A1

)⊕PX(A2
)

(2.1)

as β= (β1,β2), where

βi : PX
(
A1∗N A2

)
�→ PX(Ai), i= 1,2, (2.2)

is the restriction map associated with the natural embedding Ai↩A1∗N A2. Next, let

γ : PX
(
A1
)⊕PX(A2

)
�→ PX(N) (2.3)

be defined by

γ
(
f1,f2

)= f1

∣∣
N−f2

∣∣
N. (2.4)

In contrast to the usual Mayer-Vietoris sequence for the spaces of characters,

0 �→X(A1∗N A2
) β̃
����������������������������������������→X(A1

)⊕X(A2
) γ̃
�����������������������������������������→X(N), (2.5)

where β̃ and γ̃ are analogous to β and γ introduced above, the sequence for pseu-

docharacters will contain, at the extreme left, one extra term which is typically an

infinite-dimensional vector space. To define it, we consider the embedding

α : PX
((
A1/N

)∗(A2/N
))
�→ PX(A1∗N A2

)
(2.6)

induced by the natural surjective homomorphism

A1∗N A2 �→
(
A1/N

)∗(A2/N
)

(2.7)
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and let PX0((A1/N)∗(A2/N)) denote the kernel of the linear map

β̄ : PX
((
A1/N

)∗(A2/N
))
�→ PX(A1/N

)⊕PX(A2/N
)
, (2.8)

β̄= (β̄1, β̄2), where

β̄i : PX
((
A1/N

)∗(A2/N
))
�→ PX(Ai/N) (2.9)

is the restriction map induced by the natural embedding

Ai/N ↩
(
A1/N

)∗(A2/N
)
, i= 1,2. (2.10)

The above spaces and linear maps align in the following sequence.

Theorem 2.1. LetN be a normal subgroup ofA1 andA2. Then the sequence of vector

spaces

0 �→ PX0
((
A1/N

)∗(A2/N
)) α
�������������������������������������������→ PX(A1∗N A2

)
β
����������������������������������������→PX(A1

)⊕PX(A2
) γ
�����������������������������������������→ PX(N)

(2.11)

is exact.

We will prove the theorem in the next section and will now derive two consequences.

Corollary 2.2. Given two arbitrary pseudocharacters f1 and f2 on the groups A1

and A2, respectively, there exists a pseudocharacter f on the free product A1∗A2 such

that f |Ai = fi, i= 1, 2.

Corollary 2.3. LetA be an arbitrary group andN its normal subgroup. Then the re-

striction homomorphism ρ : PX(A∗NA)→ PX(A), induced by embedding A into A∗N A
as either factor, is surjective. If, moreover, [A :N]= 2, then ρ is an isomorphism.

Proof. For the first assertion, one needs to observe that for any f ∈ PX(A), the pair

(f ,f ) belongs to Kerγ, and is therefore obtained as the restriction of a pseudocharacter

on A∗N A. If [A : N] = 2, then (A/N)∗ (A/N) is the infinite dihedral group. Since it

is amenable, all its pseudocharacters are in fact characters [6, Theorem 2.1]. On the

other hand, since it is generated by elements of order two, it does not have nonzero

characters. This, in particular, implies that

PX0
((
A1/N

)∗(A2/N
))= 0, (2.12)

hence our second claim.

3. Proof of Theorem 2.1

3.1. Exactness in the term PX(A1)⊕PX(A2). The inclusion Imβ⊂ Kerγ being obvi-

ous, all we need to prove is that, given pseudocharacters fi ∈ PX(Ai), i= 1,2, satisfying

f1|N = f2|N , there exists a pseudocharacter f ∈ PX(A1∗N A2) such that f |Ai = fi. The

following observation saves the (serious) trouble of verifying the condition f(gn) =
nf(g).
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Lemma 3.1. In the current notation, for the existence of a pseudocharacter f , it suf-

fices to construct a quasicharacter F ∈QX(A1∗N A2) such that the differences F|Ai−fi
are bounded for i= 1,2.

Proof. Indeed, it follows from (1.4) that given such an F , there exists a pseudochar-

acter f ∈ PX(A1∗N A2) for which the difference F −f is bounded. Then, for i = 1,2,

the difference

fi−f |Ai =
(
fi−F|Ai

)+(F−f)∣∣Ai (3.1)

is a bounded pseudocharacter of Ai, hence zero, proving that f |Ai = fi.
The construction of such a quasicharacter F ∈ QX(A1∗N A2) rests on a specific

choice of systems of representatives Xi of all left cosets 	= N in Ai/N for i = 1,2.

Namely, it is possible to choose such systems of representatives Xi having the follow-

ing property:

(P1) if x,y ∈Xi and xy ∈N, then either x2,y2 ∈N or y = x−1.

Indeed, let S̄i denote the set of elements of order two in Ai/N and pick an arbitrary

system of representatives Si ⊂Ai of the cosets from S̄i. Since, for each

x ∈ T̄i := (Ai/N)\(S̄i∪{e}) (3.2)

(e the identity), we have x 	= x−1, there exists a partition T̄i = T̄ ′i ∪T̄ ′′i such that T̄ ′i ∩T̄ ′′i =
∅ and T̄ ′′i = (T̄ ′i )−1. Choose an arbitrary system of representatives T ′i ⊂Ai of the cosets

from T̄ ′i and let Ti = T ′i ∪(T ′i )−1. Finally, let Xi = Si∪Ti.
Suppose that the systems of representatives Xi with property (P1) have been chosen.

We define an involutive transformation τi :Xi→Xi by setting

τi(x)=

x if x ∈ Si,
x−1 if x ∈ Ti.

(3.3)

Now, we let X = X1∪X2 (disjoint union) and introduce a function F and an involution

τ on X whose restrictions to Xi are fi and τi, respectively:

F(x)= fi(x), τ(x)= τi(x) if x ∈Xi. (3.4)

Let W be the set of all words of the form x1 ···xn, where xi ∈ X and, for every

i = 1, . . . ,n−1, the elements xi and xi+1 belong to different parts X1 or X2 of X (by

convention, the empty word is included in W and corresponds to n = 0). Then each

element g ∈G :=A1∗N A2 admits a unique canonical presentation of the form

g = x1 ···xnh (3.5)

for some h ∈ N and some word x1 ···xn ∈ W (cf., e.g., [13, Chapter I, Theorem 1]).

Using the canonical form (3.5), we can extend τ to an involutive transformation of G
by setting

τ(g)= τ(xn)···τ(x1
)
h. (3.6)
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Let f0 ∈ PX(N) denote the common restriction of f1 and f2 to N:

f0 := f1|N = f2|N. (3.7)

It follows from (3.6) that for every g ∈ G, we have gτ(g) ∈ N, so the expression

f0(gτ(g)) makes sense. Let S = S1 ∪ S2 and T = T1 ∪T2. We extend F to a function

on A1∗N A2 by the formula

F(g)= µ(g)+η(g), (3.8)

where

µ(g)= 1
2
f0
(
gτ(g)

)
, η(g)=

∑
xi∈T

F
(
xi
)
, (3.9)

and, by convention, η(g) = 0 if g ∈ N (in this definition, we use the unique canonical

presentation (3.5)).

Proposition 3.2. The function F defined by (3.8) is a quasicharacter of A1∗N A2

such that the differences F|Ai−fi are bounded for i= 1,2.

First, we observe that for h∈N, we have

µ(h)= 1
2
f0
(
h2)= f0(h). (3.10)

In particular, F|N = µ|N is a pseudocharacter with constant C = Cf0 . Also, writing g ∈G
in the canonical form and using the fact that f0 is the common restriction of pseu-

docharacters f1 and f2 to N, we obtain

µ
(
ghg−1)= µ(h) ∀g ∈G, h∈N. (3.11)

Next, we will show that the difference F|Ai−fi is a bounded function onAi for i= 1,2.
For g ∈N, we have

F(g)= 1
2
f0
(
g2)= f0(g). (3.12)

If g ∈Ai \N, we write it in the form g = xh with h∈N, x ∈Xi. If x ∈ Si, then

∣∣F(g)−fi(g)∣∣=
∣∣∣∣1

2
f0(xhxh)−fi(xh)

∣∣∣∣
=
∣∣∣∣1

2
fi
(
x2([x−1hx

]
h
))−fi(xh)

∣∣∣∣
�

1
2

∣∣fi(x2([x−1hx
]
h
))−fi(x2)−2fi(h)

∣∣
+∣∣fi(x)+fi(h)−fi(xh)∣∣

� 2Cfi .

(3.13)
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If x ∈ Ti, then

∣∣F(g)−fi(g)∣∣=
∣∣∣∣1

2
f0
(
xhx−1h

)+fi(x)−fi(xh)
∣∣∣∣

�
1
2

∣∣fi((xhx−1)h)−2fi(h)
∣∣+∣∣fi(h)+fi(x)−fi(xh)∣∣

�
3
2
Cfi .

(3.14)

In particular, we obtain

F|Ai ∈QX
(
Ai
)
. (3.15)

To complete the proof of the proposition, it remains to show that F is a quasicharacter

on the entire amalgamated product A1∗N A2. For a function f on G, we define

(δf)
(
g1,g2

)= f (g1g2
)−f (g1

)−f (g2
)
. (3.16)

So, we need to show that δF = δµ+δη is bounded on G×G. For convenience of further

reference, we will collect, in the following lemma, some properties of the functions µ
and η.

Lemma 3.3. (i) If g ∈G, h∈N, then |µ(gh)−µ(g)−µ(h)|�C .

(ii) If g1, . . . ,gk ∈G and τ(g1 ···gk)= τ(gk)···τ(g1), then

∣∣∣∣∣µ(g1 ···gk
)− k∑

i=1

µ
(
gi
)∣∣∣∣∣� k−1

2
C. (3.17)

(iii) η(gh)= η(g) for any g ∈G and any h∈N.

(iv) If x1 ···xn ∈ W , then η(x1 ···xn) = η(x1 ···xi)+ η(xi+1 ···xn) for any i =
1, . . . ,n−1.

(v) η(τ(g))=−η(g) for any g ∈G.

Proof. Indeed, if g ∈G and h∈N, then µ(gh)= (1/2)f0(ghτ(g)h), whence

∣∣µ(gh)−µ(g)−µ(h)∣∣= 1
2

∣∣f0
(
gτ(g)

[
τ(g)−1hτ(g)

]
h
)−f0

(
gτ(g)

)−f0
(
h2)∣∣,

(3.18)

and (i) follows. For (ii), one needs to observe that

µ
(
g1 ···gk

)= 1
2
f0

([(
g1 ···gk−1

)(
gkτ

(
gk
))(
g1 ···gk−1

)−1
]

×
[(
g1 ···gk−2

)(
gk−1τ

(
gk−1

))(
g1 ···gk−2

)−1
]
···[g1τ

(
g1
)])
.

(3.19)

Properties (iii), (iv), and (v) follow immediately from the definition of η.

For two given elements g1,g2 ∈G, we pick the canonical presentations

g1 = x1 ···xmh1, g2 =y1 ···ynh2, (3.20)
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where x1 ···xm, y1 ···yn ∈W and h1,h2 ∈N. We first consider the easiest case where

xm andy1 belong to different factorsAi, i= 1,2. In this case, the canonical presentation

of g1g2 is

g1g2 = x1 ···xmy1 ···ynh, (3.21)

where

h=
[(
y1 ···yn

)−1h1
(
y1 ···yn

)]
h2 ∈N. (3.22)

It follows from Lemma 3.3(iii) and (iv) that (δη)(g1,g2) = 0, so (δF)(g1,g2) =
(δµ)(g1,g2). Since

τ
(
x1 ···xmy1 ···yn

)= τ(y1 ···yn
)
τ
(
x1 ···xm

)
, (3.23)

we conclude from Lemma 3.3(i) and (ii) and (3.11) that∣∣µ(g1g2
)−µ(h1

)−µ(h2
)−µ(x1 ···xm

)−µ(y1 ···yn
)∣∣

�
∣∣µ(x1 ···xmy1 ···ynh

)−µ(x1 ···xmy1 ···yn
)−µ(h)∣∣

+∣∣µ(h)−µ(h1
)−µ(h2

)∣∣
+∣∣µ(x1 ···xmy1 ···yn

)−µ(x1 ···xm
)−µ(y1 ···yn

)∣∣
�C+C+ C

2
= 5

2
C.

(3.24)

On the other hand,

∣∣[µ(g1
)+µ(g2

)]−[µ(h1
)+µ(h2

)+µ(x1 ···xm
)+µ(y1 ···yn

)]∣∣� 2C. (3.25)

It follows, in this case, that

∣∣(δF)(g1,g2
)∣∣� 9

2
C. (3.26)

To consider the general case, we need to introduce the fragments of g1 and g2 that

cancel out in g1g2. Let k be the largest integer less than or equal to min{m,n} such

that xm−i+1yi ∈N for all i= 1, . . . ,k. We introduce the following elements:

w1 = x1 ···xm−k−1, u1 = xm−k, v1 = xm−k+1 ···xm,
v2 =y1 ···yk, u2 =yk+1, w2 =yk+2 ···yn, (3.27)

where, by convention, v1 = e if k = 0, w1 = e if m = k+1, and w1 = u1 = e if m = k,

with similar rules for v2, u2, andw2. We observe that v2 = τ(v1), so, letting v = v1, we

have the following factorizations:

g1 =w1u1vh1, g2 = τ(v)u2w2h2. (3.28)

It follows from our construction that both u1 and u2 belong to the same factor Ai, so

we can write

u1u2 = zh for some h∈N, z ∈X. (3.29)
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We claim that

∣∣(δµ)(g1,g2
)−(δµ)(u1,u2

)∣∣� 10C. (3.30)

This estimation is a consequence of the following three inequalities that reflect the

three-step transition from g1,g2 to u1,u2.

Lemma 3.4. (i) Let s1 =w1u1v , s2 = τ(v)u2w2, so that gi = sihi, i= 1,2; then

∣∣(δµ)(g1,g2
)−(δµ)(s1,s2

)∣∣� 4C. (3.31)

(ii) Let t1 =w1u1, t2 =u2w2, so that s1 = t1v , s2 = τ(v)t2; then

∣∣(δµ)(s1,s2
)−(δµ)(t1, t2)∣∣� 2C. (3.32)

(iii) |(δµ)(t1, t2)−(δµ)(u1,u2)|� 4C .

Proof. (i) We have

g1g2 = s1s2
([
s−1

2 h1s2
]
h2
)
. (3.33)

Using Lemma 3.3(i) and (3.11), we obtain the following two inequalities:

∣∣µ(g1g2
)−µ(s1s2

)−µ(h1
)−µ(h2

)∣∣� 2C,∣∣(µ(g1
)+µ(g2

))−(µ(s1
)+µ(s2

)+µ(h1
)+µ(h2

))∣∣� 2C,
(3.34)

from which (i) follows.

(ii) We have

s1s2 = t1t2
(
t−1

2

[
vτ(v)

]
t2
)
. (3.35)

Using Lemma 3.3(i) and (3.11), we obtain

∣∣µ(s1s2
)−µ(t1t2)−µ(vτ(v))∣∣�C. (3.36)

Since τ(s1)= τ(v)τ(t1) and τ(s2)= τ(t2)v , Lemma 3.3(ii) combined with the observa-

tion that µ(τ(v))= µ(v) implies that

∣∣(µ(s1
)+µ(s2

))−(µ(t1)+µ(t2)+2µ(v)
)∣∣�C. (3.37)

But µ(vτ(v))= f0(vτ(v))= 2µ(v), and (ii) follows.

(iii) We have

t1t2 =w1zw2
(
w−1

2 hw2
)
. (3.38)

Since τ(w1zw2)= τ(w2)τ(z)τ(w1), Lemma 3.3(i) and (ii) and (3.11) imply that

∣∣µ(t1t2)−(µ(w1
)+µ(z)+µ(w2

)+µ(h))∣∣� 2C, (3.39)



2112 IGOR V. EROVENKO

and therefore

∣∣µ(t1t2)−(µ(w1
)+µ(zh)+µ(w2

))∣∣� 3C. (3.40)

On the other hand, since τ(t1)= τ(u1)τ(w1) and τ(t2)= τ(w2)τ(u2), we have

∣∣(µ(t1)+µ(t2))−(µ(w1
)+µ(u1

)+µ(w2
)+µ(u2

))∣∣�C. (3.41)

Since zh=u1u2, we obtain (iii).

Next, we calculate (δη)(g1,g2) using Lemma 3.3(iii), (iv), and (v):

(δη)
(
g1,g2

)= [η(w1
)+η(z)+η(w2

)]−[η(w1
)+η(u1

)+η(v)]
−[η(τ(v))+η(u2

)+η(w2
)]= η(z)−η(u1

)−η(u2
)

= (δη)(u1,u2
)
.

(3.42)

From (3.30) and (3.42), we obtain

∣∣(δF)(g1,g2
)−(δF)(u1,u2

)∣∣� 10C. (3.43)

On the other hand, since both u1 and u2 belong to the same factor Ai, (3.15) implies

that (δF)(u1,u2) is bounded, and we finally conclude that (δF)(g1,g2) is bounded,

completing the proof of Proposition 3.2.

3.2. Exactness in the term PX(A1∗N A2). The exactness of (2.11) in PX(A1∗N A2)
is based on the following fact.

Lemma 3.5. Let G be an arbitrary group andN its normal subgroup. If a pseudochar-

acter f ∈ PX(G) has zero restriction to N, then it satisfies f(gh) = f(g) for all h ∈ N,

g ∈G. In other words, the natural sequence

0 �→ PX(G/N) �→ PX(G) �→ PX(N) (3.44)

is exact.

Proof. Suppose that f(gh) 	= f(g) for someh∈N,g ∈G, and leta= f(gh)−f(g).
Then

∣∣f ((gh)n)−f (gn)∣∣=n|a| �→∞ when n �→∞. (3.45)

On the other hand, (gh)n can be written as gnh′ for h′ ∈N, so

∣∣f ((gh)n)−f (gn)∣∣= ∣∣f (gnh′)−f (gn)−f (h′)∣∣ (3.46)

is bounded independent of n.

If f ∈ Kerβ, then f |N = 0. Lemma 3.5 implies that f factors through the group ho-

momorphism

A1∗N A2 �→
(
A1∗N A2

)
/N � (A1/N

)∗(A2/N
)
, (3.47)
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immediately implying that f ∈ Imα and proving the inclusion Kerβ⊂ Imα. The oppo-

site inclusion is obvious.

3.3. Remarks. The general construction of a quasicharacter F ∈QX(A1∗N A2) lift-

ing given pseudocharacters fi ∈ PX(Ai) (i = 1,2) with the same restrictions to N es-

sentially simplifies in the following two particular cases:

(1) S =∅, that is, when the quotients A1/N and A2/N do not have elements of order

two;

(2) T =∅, that is, when these quotients are groups of exponent two.

In the first case, with the above choice of the coset representative systems, F can be

extended “by linearity”:

F
(
x1 ···xnh

)= n∑
i=1

F
(
xi
)+f0(h). (3.48)

4. The case of an arbitrary subgroup. If we do not assume that the amalgamated

subgroup H is normal in both factors A1 and A2, then two difficulties arise. First of all,

when we switch representatives of cosets moduloH with elements ofH in order to write

a product of two words in the canonical form, the representative of a coset will change.

Secondly, there is no natural candidate for the term on the extreme left. We restrict

our attention to special classes of quasicharacters and pseudocharacters which we call

strongly H-spherical and H-spherical, respectively. We would like to point out that the

only explicitly known quasicharacters on amalgamated products (see Example 4.4) are

strongly H-spherical. Below is a brief analysis of what restrictions should be imposed

on pseudocharacters.

Let H be a subgroup of a group G. The first conjecture, which naturally arises after

preliminary considerations, is to look at the following class of pseudocharacters:

{
f ∈ PX(G) | f(xh)= f(x)+f(h) ∀x ∈G, h∈H}. (4.1)

However, it has to be discarded as the following observation shows.

Lemma 4.1. Let f ∈ PX(G) and suppose that

f(xb)= f(x)+f(b) (4.2)

holds for all x ∈G and all b in a certain subset B ⊂G. Then (4.2) also holds for all x ∈G
and all b in the normal subgroup N ⊂G generated by B. Moreover, if f(xb)= f(x) for

all x ∈G and b ∈ B, then the same is true for all x ∈G and all b ∈N.

Proof. It suffices to show that

H = {b ∈G | f(xb)= f(x)+f(b) ∀x ∈G} (4.3)

is a normal subgroup of G. If b1,b2 ∈H, then

f
(
x
(
b1b2

))= f ((xb1
)
b2
)= f(x)+f (b1

)+f (b2
)= f(x)+f (b1b2

)
(4.4)
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for all x ∈G, so b1b2 ∈H. Similarly, for b ∈H, we have

f(x)= f ((xb)b−1)= f(xb)−f(b)= f(xb)+f (b−1) (4.5)

which means that

f
(
yb−1)= f(y)+f (b−1) (4.6)

for all y ∈ G, that is, b−1 ∈ H. Finally, for fixed b ∈ H, g ∈ G, and an arbitrary x ∈ G,

we have

f
(
x
(
gbg−1))= f ((g−1xg

)
b
)= f (g−1xg

)+f(b)= f(x)+f (gbg−1), (4.7)

proving that gbg−1 ∈H, hence our first assertion. The argument for the second asser-

tion is similar: one shows that

{
b ∈G | f(xb)= f(x) ∀x ∈G} (4.8)

is a normal subgroup of G.

Corollary 4.2. Suppose that G has the property that every nontrivial normal sub-

group has finite index. If the center of G is trivial, then, given a nonzero pseudochar-

acter f ∈ PX(G) and an element a ∈ G, a 	= e, there exists x ∈ G such that f(xa) 	=
f(x)+f(a).

Proof. Assume the contrary. Then, according to Lemma 4.1, the equality f(xb) =
f(x)+f(b) holds for all x ∈ G and all b in N := the normal subgroup of G generated

by a. In particular, the restriction f |N is a character of N. Moreover, since f is constant

on conjugacy classes in G, it vanishes on the commutator subgroup [G,N]. Since the

center ofG is trivial, [G,N] 	= {e} and therefore has finite index inG. But then f |[G,N] = 0

implies f = 0 as required.

Further analysis leads to the following definition.

Definition 4.3. Let H be a subgroup of a group G. A quasicharacter F ∈QX(G) is

strongly H-spherical if

(i) F(h1gh2)= F(h1)+F(g)+F(h2) for all h1,h2 ∈H and g ∈G;

(ii) F(g−1)=−F(g) for all g ∈G.

A pseudocharacter f ∈ PX(G) is H-spherical if there exists a strongly H-spherical qua-

sicharacter F such that the difference f −F is bounded.

Example 4.4. We briefly recall the construction of quasicharacters used to prove

the result in [7] (a similar construction with a more geometric flavor was discovered

independently in [5]) as these are essentially the only known quasicharacters on amal-

gamated products. A product u1 ···un in the amalgamated product G = A1∗H A2 is

called reduced if the following holds:

(i) every ui belongs to either A1 or A2;

(ii) ui and ui+1 belong to different factors Aj , j = 1,2;
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(iii) if n> 1, then none of ui belongs to H;

(iv) if n= 1, then u1 	= 1.

Grigorchuk’s construction is based on the fact that if u1 ···un = v1 ···vm are two

reduced products in G, then n = m and, for every i = 1, . . . ,n, the elements ui and

vi belong to the same double coset modulo H, which is a simple consequence of the

structure theorem for reduced words in amalgamated products. Two wordsu and v are

called generally equal if there exist reduced products u = u1 ···un and v = v1 ···vm
such that n=m and, for every i= 1, . . . ,n, the elements ui and vi belong to the same

double coset modulo H. A reduced word w =w1 ···wk is said to generally occur in a

reduced word u= u1 ···un if there is a subword ui ···ui+k−1 of u which is generally

equal to w1 ···wk. We define #w(u) as the number of general occurrences of w in u,

and, for any g ∈G, we let

Fw(g)= #w(u)−#w−1(u), (4.9)

where u is any reduced word representing g. It turns out that if w is a reduced word,

then the function Fw is a quasicharacter of G. In case |H\A1/H|� 3 and [A2 :H] � 2,

it is possible to exhibit an infinite sequence of reduced words {wn} such that the qua-

sicharacters {Fwn} are linearly independent, whence the infinite dimensionality of the

second bounded cohomology group. It is immediate from (4.9) that Grigorchuk’s qua-

sicharacters are strongly H-spherical.

Notice that if F is a strongly H-spherical quasicharacter, then the restriction of F to

H is a character of H; in particular, F(1) = 0. Also, if H1 and H2 are subgroups of a

group G and F is a strongly Hi-spherical quasicharacter for i= 1,2, then F is a strongly

H-spherical quasicharacter, where H is the subgroup of G generated by H1 and H2. We

denote the space of H-spherical pseudocharacters of G by PX(G)H .

In the sequel, we will need the following observation.

Lemma 4.5. If F is a strongly H-spherical quasicharacter and g1g2 ∈ H for some

g1,g2 ∈G, then F(g1g2)= F(g1)+F(g2).

Proof. Our claim follows from

F
(
g2
)= F(g−1

1

)+F(g1g2
)=−F(g1

)+F(g1g2
)
. (4.10)

The canonical (surjective) homomorphism

θ :A1∗A2 �→A1∗H A2 (4.11)

gives rise to the following embedding of the spaces of pseudocharacters:

ι : PX
(
A1∗H A2

)
↩ PX

(
A1∗A2

)
, (4.12)

which allows us to identify the former with a subspace of the latter. We denote the

kernel of the linear map

β : PX
(
A1∗A2

)
�→ PX(A1

)⊕PX(A2
)

(4.13)
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by PX0(A1 ∗A2). The following analog of Theorem 2.1 holds for H-spherical pseu-

docharacters in the case when the amalgamated subgroup H is arbitrary.

Theorem 4.6. LetH be an arbitrary subgroup ofA1 andA2, let θ :A1∗A2→A1∗H A2

be the canonical homomorphism, let � be the subgroup of A1∗A2 generated by H∗H
and Kerθ, and let PX0,Kerθ(A1∗A2)� be the subspace of PX0(A1∗A2)� consisting of

pseudocharacters with trivial restriction to Kerθ. Then the sequence of vector spaces

0 �→ PX0,Kerθ
(
A1∗A2

)
� �→ PX(A1∗H A2

)
H

β
����������������������������������������→PX(A1

)
H⊕PX

(
A2
)
H

γ
�����������������������������������������→ PX(H)

(4.14)

is exact.

5. Proof of Theorem 4.6

5.1. Exactness in the term PX(A1)H⊕PX(A2)H . To prove the exactness of (4.14) in

the term PX(A1)H⊕PX(A2)H , we need to show that given H-spherical pseudocharac-

ters fi ∈ PX(Ai)H , i = 1,2, satisfying f1|H = f2|H , there exists an H-spherical pseu-

docharacter f ∈ PX(A1∗H A2)H such that f |Ai = fi. Let Fi ∈ QX(Ai), i = 1,2, be

strongly H-spherical quasicharacters with the property that the differences Fi − fi
are bounded; also, let C = max{CF1 ,CF2}. An analog of Lemma 3.1 shows that for

the existence of f , it suffices to construct a strongly H-spherical quasicharacter F ∈
QX(A1∗H A2) with the property that the differences F|Ai−Fi are bounded for i= 1,2.

Let Xi be an arbitrary system of representatives of left cosets 	=H in Ai/H, i = 1,2,

and let X = X1 ∪X2. Similarly to Section 3, we introduce a function F on X whose

restriction to Xi is Fi:

F(x)= Fi(x) if x ∈Xi, (5.1)

and let W be the set of all words of the form x1 ···xn, where xi ∈ X and for every

i = 1, . . . ,n−1, the elements xi and xi+1 belong to different parts X1 or X2 of X (by

convention, the empty word is included in W and corresponds to n = 0). Then any

element g ∈G :=A1∗H A2 admits a unique canonical presentation of the form

g = x1 ···xnh (5.2)

for some h∈H and some word x1 ···xn ∈W .

Since the restrictions of fi to H coincide, the difference F1|H − F2|H is bounded.

However, the restrictions Fi|H , i= 1,2, are the characters of H, hence

F1|H−F2|H = 0 (5.3)

and we let F0 denote the common restriction of F1 and F2 to H:

F0 := F1|H = F2|H ∈X(H). (5.4)

We now extend F to a function on A1∗H A2 using the canonical form (5.2):

F(g)= F(x1
)+···+F(xn)+F0(h). (5.5)
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To complete the proof of exactness of (4.14) in PX(A1)H ⊕PX(A2)H , it suffices to es-

tablish the following.

Proposition 5.1. The function F defined by (5.5) is a stronglyH-spherical quasichar-

acter of A1∗H A2 such that the differences F|Ai−Fi are bounded for i= 1,2.

The property that the differences F|Ai −Fi are bounded for i = 1,2 follows immedi-

ately from (5.5) (moreover, F|Ai = Fi).
Next, we are going to show that F is a quasicharacter of A1∗H A2. When we switch a

representative of a coset moduloH and an element ofH, both of them will change. Since

it is necessary to keep track of all these changes, we introduce the following notation:

given elements x ∈Xi and h∈H, there exist elements x〈h〉 ∈Xi and h〈x〉 ∈H such that

hx = x〈h〉h〈x〉. (5.6)

To simplify notation, we will write h〈x1,x2〉 instead of (h〈x1〉)〈x2〉 and similarly for

x〈h1,h2〉. From (5.6), we derive that

F(x)+F(h)= F(x〈h〉)+F(h〈x〉) (5.7)

which is a crucial equality in our argument. One of the main consequences of this

equality is the following fact which follows from (5.7) by induction on m.

Lemma 5.2. Let y1, . . . ,ym ∈X and h∈H. Then

F
(
y〈h〉1

)
+F

(
y〈h

〈y1〉〉
2

)
+F

(
y〈h

〈y1 ,y2〉〉
3

)
+···+F

(
y〈h

〈y1 ,...,ym−1〉〉
m

)
+F

(
h〈y1,...,ym〉

)
= F(y1

)+···+F(ym)+F(h). (5.8)

Given two elements g1,g2 ∈G, we fix their canonical presentations

g1 = x1 ···xmh1, g2 =y1 ···ynh2, (5.9)

where x1 ···xm, y1 ···yn ∈W and h1,h2 ∈H. Suppose first that xm and y1 belong to

different factors Ai, i= 1,2. Then the canonical presentation of g1g2 is

g1g2 = x1 ···xmy〈h1〉
1 y

〈h〈y1〉
1 〉

2 y
〈h〈y1 ,y2〉

1 〉
3 ···y〈h

〈y1 ,...,yn−1〉
1 〉

n

(
h〈y1,...,yn〉

1 h2

)
(5.10)

and

∣∣(δF)(g1,g2
)∣∣�

∣∣∣∣∣
[
F
(
y〈h1〉

1

)
+F

(
y
〈h〈y1〉

1 〉
2

)
+···+F

(
y
〈h〈y1 ,...,yn−1〉

1 〉
n

)
+F

(
h〈y1,...,yn〉

1

)]

−[F(y1
)+···+F(yn)+F(h1

)]∣∣∣∣∣+C.
(5.11)

Lemma 5.2 implies that, in this case, |(δF)(g1,g2)|�C .

In the general case, there might be some cancelation in the middle in the product

g1g2, and we indicate several steps to write the canonical form of g1g2 in a convenient
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way. First, we write it in the form (which is not a canonical form in general)

g1g2 = x1 ···xmy〈h1〉
1 y

〈h〈y1〉
1 〉

2 y
〈h〈y1 ,y2〉

1 〉
3 ···y〈h

〈y1 ,...,yn−1〉
1 〉

n

(
h〈y1,...,yn〉

1 h2

)
(5.12)

and let

z1 =y〈h1〉
1 , z2 =y〈h

〈y1〉
1 〉

2 , . . . , zn =y〈h
〈y1 ,...,yn−1〉
1 〉

n ∈X,
h0 = h〈y1,...,yn〉

1 h2 ∈H,
(5.13)

then (5.12) becomes

g1g2 = x1 ···xmz1 ···znh0. (5.14)

It remains to consider the case when xm and z1 belong to the same factor Ai; then

xmz1 =u1a1, (5.15)

where u1 ∈X or u1 = e and a1 ∈H. If u1 ∈X, then

g1g2 = x1 ···xm−1u1z
〈a1〉
2 z

〈a〈z2〉
1 〉

3 z
〈a〈z2 ,z3〉

1 〉
4 ···z〈a

〈z2 ,...,zn−1〉
1 〉

n

(
a〈z2,...,zn〉

1 h0

)
(5.16)

is the canonical form of g1g2. If u1 = e, then

g1g2 = x1 ···xm−1a1z2 ···znh0 = x1 ···xm−1z
〈a1〉
2 a〈z2〉

1 z3 ···znh0. (5.17)

Notice that we do not transfer a1 all the way to the right. Since xm−1 and z2 must belong

to the same Xi, we next write

xm−1z
〈a1〉
2 a〈z2〉

1 =u2a2, (5.18)

where u2 ∈ X or u2 = e and a2 ∈H. We continue this process until we find a positive

integer k such that

xm−j+1z
〈aj−1〉
j a

〈zj〉
j−1 = aj ∈H for 2� j � k−1, (5.19)

but

xm−k+1z
〈ak−1〉
k a〈zk〉k−1 =ukak, (5.20)

where uk ∈X and ak ∈H. Then the canonical form of g1g2 is

g1g2 = x1 ···xm−kukz〈ak〉k+1 z
〈a〈zk+1〉
k 〉

k+2 ···z〈a
〈zk+1 ,...,zn−1〉
k 〉

n

(
a〈zk+1,...,zn〉
k h0

)
. (5.21)

Before we can estimate |(δF)(g1,g2)|, we need the following fact.

Lemma 5.3. In the current notation,

∣∣F(uk)+F(ak)−[F(xm−k+1
)+···+F(xm)+F(z1

)+···+F(zk)]∣∣�C. (5.22)
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Proof. Since Fi, i= 1,2, are strongly H-spherical quasicharacters, then, using (5.7),

we conclude that

F
(
uk
)+F(ak)= Fi(uk)+Fi(ak)= Fi(ukak)

= Fi
(
xm−k+1z

〈ak−1〉
k a〈zk〉k−1

)
= Fi

(
xm−k+1z

〈ak−1〉
k

)
+F

(
a〈zk〉k−1

)
= Fi

(
ak−1)+Fi(xm−k+1

)+Fi(zk)
+
[
Fi
(
xm−k+1z

〈ak−1〉
k

)
−Fi

(
xm−k+1

)−Fi(z〈ak−1〉
k

)]
.

(5.23)

For 2� j � k−1, xm−j+1z
〈aj−1〉
j ∈H by (5.19), so Lemma 4.5 and (5.7) imply that

Fi
(
aj
)= Fi(xm−j+1z

〈aj−1〉
j a

〈zj〉
j−1

)
= Fi

(
xm−j+1z

〈aj−1〉
j

)
+Fi

(
a
〈zj〉
j−1

)
= Fi

(
xm−j+1

)+Fi(z〈aj−1〉
j

)
+Fi

(
a
〈zj〉
j−1

)
= Fi

(
xm−j+1

)+Fi(zj)+Fi(aj−1
)
.

(5.24)

Finally,

Fi
(
a1
)= Fi(xmz1

)= Fi(xm)+Fi(z1
)

(5.25)

by Lemma 4.5.

We obtain the following inequalities which show that F ∈QX(A1∗H A2):∣∣(δF)(g1,g2
)∣∣� ∣∣[F(x1

)+···+F(xm−k)+F(uk)+F(ak)
+F(zk+1

)+···+F(zn)+F(h0
)]

−[F(x1
)+···+F(xm)+F(h1

)]
−[F(y1

)+···+F(yn)+F(h2
)]∣∣+C (Lemma 5.2)

�
∣∣[F(z1

)+···+F(zn)+F(h0
)]

−[F(y1
)+···+F(yn)+F(h2

)+F(h1
)]∣∣+2C (Lemma 5.3)

� 3C (Lemma 5.2).

(5.26)

To finish the proof of Proposition 5.1, it remains to show that F satisfies Definition 4.3(i)

and (ii).

To prove (i), we write an arbitrary g ∈ G in the canonical form g = x1 ···xnh; then,

for any h1,h2 ∈H, the canonical form of h1gh2 is

x〈h1〉
1 x

〈h〈x1〉
1 〉

2 ···x〈h
〈x1 ,...,xn−1〉
1 〉

n

(
h〈x1,...,xn〉

1 hh2

)
. (5.27)

Since the restriction of F to H is a character of H, we obtain

F
(
h〈x1,...,xn〉

1 hh2

)
= F

(
h〈x1,...,xn〉

1

)
+F(h)+F(h2

)
(5.28)
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and Lemma 5.2 implies that

F
(
h1gh2

)= F(x1
)+F(x2

)+···+F(xn)+F(h1
)+F(h)+F(h2

)
= F(h1

)+F(g)+F(h2
) (5.29)

as required.

To prove (ii), we first suppose that the canonical form of g ∈ G is x1 ···xn, that is,

there is no H-component. Then the canonical form of g−1 is x−1
n ···x−1

1 and

F
(
g−1)= Fi(x−1

n
)+···+Fi(x−1

1

)=−Fi(xn)−···−Fi(x1
)=−F(g). (5.30)

In the general case, write g = g0h, where the canonical form of g0 has noH-component.

Since we have already shown that F satisfies (i) of stronglyH-spherical quasicharacters,

we use (5.30) to obtain

F
(
g−1)= F(h−1g−1

0

)= F(h−1)+F(g−1
0

)=−F(h)−F(g0
)=−F(g) (5.31)

as required.

5.2. Exactness in the term PX(A1∗H A2)H . Given f ∈PX0(A1∗H A2)H=Kerβ, we let

F denote the corresponding strongly H-spherical quasicharacter of A1∗H A2. We claim

that F̃ := F ◦θ is a strongly �-spherical quasicharacter of A1∗A2. Indeed, the bounded-

ness of δF̃ follows from that of δF and, moreover, F̃ is both strongly (H∗H)-spherical

(since θ(H∗H) = H) and strongly Kerθ-spherical, hence strongly �-spherical. There

exists a pseudocharacter f̃ ∈ PX(A1∗A2) such that the difference F̃ − f̃ is bounded.

Thus, f̃ is an �-spherical pseudocharacter of A1∗A2 and, clearly,

f̃ |A1 = f̃ |A2 = f̃ |Kerθ = 0. (5.32)

This shows the inclusion Kerβ⊂ PX0,Kerθ(A1∗A2)�.

For the opposite inclusion, we consider f̃ ∈ PX0,Kerθ(A1 ∗A2)� and let F̃ be the

corresponding strongly �-spherical quasicharacter. Then

F̃(gx)= F̃(g)+ F̃(x) ∀g ∈A1∗A2, x ∈ Kerθ. (5.33)

Since f̃ |Kerθ = 0, the restriction F̃|Kerθ is bounded. But Kerθ ⊂ � and F̃ is a character

of �. We conclude that F̃|Kerθ = 0, and thus

F̃(gx)= F̃(g) ∀g ∈A1∗A2, x ∈ Kerθ. (5.34)

Therefore there exists a function F on A1∗H A2 such that F̃ = F ◦θ. It is immediate that

F is a strongly H-spherical quasicharacter of A1∗H A2 with bounded restrictions to A1

and A2. Hence we can construct an H-spherical pseudocharacter f of A1∗H A2 whose

restrictions to A1 and A2 are trivial. Therefore

Kerβ⊃ PX0,Kerθ
(
A1∗A2

)
� (5.35)

and the proof of Theorem 4.6 is complete.
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