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A REMARK ON THE EXTENSION OF THE CONCEPT
OF INCIDENCE ALGEBRAS TO NONLOCALLY
FINITE PARTIALLY ORDERED SETS

BONIFACE I. EKE

Received 4 March 2003

An incidence algebra of a nonlocally finite partially ordered set Q is a very rare concept,
perhaps nonexistent. In this note, we will attempt to construct such an algebra.
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1. Introduction. Let P be a partially ordered set (poset) and K a field of character-
istic 0. The functions f : P X P — K, such that x £« y implies f(x,y) = 0, are called
the incidence functions of P over K. The set of such functions is denoted by ¢(K,P).
P is called locally finite if for every x,y € P the interval [x,y]={t€P|x <t <y} is
finite. When P is locally finite, 3 (K, P) becomes a K-algebra under a multiplication ()
defined by convolution:

frgx,y)= > flx,Hg(t,y), (1.1)

x<t<y

and the algebra 3(K,P) is called the incidence algebra of P over K [1, 2].

If P is not locally finite, the expression (1.1) may not make sense. So, one does not
often hear of an incidence algebra of a nonlocally finite poset. Our purpose in this note
is to show that if Q is any nonlocally finite poset and P is a locally finite poset, we can
form a nonlocally finite poset QS (P) for which an incidence algebra 3(K,QS(P)) can
be constructed.

Moreover, the posets Q and P are both embeddable in QS (P), while the set $(K,Q)
and the algebra ¢(K,P) are both embeddable in $(K,QS(P)), and if |P| < |Q], then
|QS(P)| = |Q]|.Besides, for the fixed posets P and Q, the incidence algebra ¢(K,QS(P))
is unique up to isomorphism. All these are established in Section 2.

In Section 3, we isolate the auxiliary locally finite poset P and try to deal directly
with Q. However, because of the problem still posed by (1.1), we can only construct
a sequence of what are called truncated incidence algebras for the nonlocally finite
poset Q. For this purpose, we will need an additional hypothesis that Q is well ordered.

2. The construction of QS (P) and 3(K,QS(P)). We will assume throughout that P
is a locally finite poset, Q a nonlocally finite poset, and K is a field of characteristic 0.
Let QS (P) be the Cartesian product P x Q. We will denote the order relation in P by <V
and the order relation in Q by <@. Then we define an order relation < in QS(P) by
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(x,7) < (y,s) if and only if x <V y and r <@ s. It is clear that, with the relation <,
QS (P) is a partially ordered set. However, QS (P) is not locally finite.

We will define addition and scalar multiplication on 3(K,QS(P)) as in [1]. We now
need to define the convolution multiplication shown in (1.1) on 3(K,QS(P)) so that it
will make sense.

For a fixed v € Q, denote P x {r} by P,. If (x,r) and (y,s) are any two elements
of QS(P), then (x,r) € Py, while (y,s) € P;. Moreover, P, and P are locally finite
subposets of QS(P). Denote (x,r) by u and (y,s) by v,andlet T = {t € P | x <)
t < y1. Then the set T(u,v) = (T X {r})U(T x {s}) € QS(P) is finite. Let J(u,v) =
[u,v]NnT(u,v). We define the operation (*) on 3(K,QS(P)) by the following: for all
elements u and v in QS(P) and for all f,g in $(K,QS(P)),

frguv)= > flu,z)g(z,v). (2.1)

z&€Ju,v)

Clearly, (2.1) is now well defined. The associativity follows from [1, Proposition 4.1].
Consequently, with (2.1), 3(K,QS(P)) is an incidence algebra of QS(P) over K.

P is isomorphic to P, for each v € Q. Similarly, for each y € P, Q is isomorphic to
Qy = {y¥}xQ.Hence both P and Q are embeddable in QS (P). Moreover, the correspon-
dence u, : f — f;, where f, is defined by f,(x,,Vyy) = f(x,y), is an isomorphism of
3(K,P) onto ¢(K,P,). Consequently, $(K,P) is embeddable in $(K,QS(P)). By a simi-
lar device, we find that ¢ (K, Q) is also embeddable in 3 (K,QS(P)). For the uniqueness
of $(K,QS(P)), we will prove the following.

PROPOSITION 2.1. IfP’ and Q' are any posets such that P is isomorphic to P’ and Q
is isomorphic to Q’, then 3(K,QS (P)) is isomorphic to 3(K,Q'S(P")).

PROOF. Let o :P — P’ be anisomorphism while 8 : Q — Q' is an isomorphism. Define
n:QS8(PP) - Q'S(P) by n(x,r) =(0(x),0(r)).1f n(x,r) =n(y,s), then (o(x),0(r)) =
(0(»),0(s)). By the definition of the order relation in Q'S (P’), we must have o (x) =
o(y) and O(r) = O(s). Consequently, x = y and v = s. Hence, (x,7) = (y,s). This
shows that n is injective. Clearly, also n is surjective. Therefore, n is an isomorphism.
For each u € QS(P), denote n(u) by u’. Now define : $(K,QS(P)) — 3(K,Q'S(P"))
by B(f) = f’, where f’ is defined by f'(u',v") = f(u,v) for all u’,v" € Q’S(P’). One
can directly check that § is also an isomorphism. Hence, the proposition holds. |

We observe that for the locally finite poset P, one could have chosen any nonempty
finite subset of Q itself. We will call the algebra $(K,QS(P)) the incidence algebra of
Q relative to P.

3. Truncated incidence algebras. Our interest now is to see what we can achieve
by isolating the locally finite poset P and dealing directly with Q. However, (1.1) still
poses a problem. Nevertheless, following the motivation received from Section 2, what
we need is to try to use a finite number of elements of the interval [7,s] at a time, for
any two elements ¥ and s of the nonlocally finite poset Q. Then arises the question of
how to choose the finite number of elements from [+, s]. The formula for choosing such
elements is outlined below for the case where Q is well ordered. What makes it possible
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is the property of a well-ordered set whereby not only does every nonempty subset of
such a set have a first element, but also such a first element is unique [3, Theorems
64 and 65, page 76]. First, we show the existence of a well-ordered nonlocally finite

poset Q.

EXAMPLE 3.1. Let Q = {1/n | n € N} U{O}, where N is the set of natural numbers.
Q is a poset subject to the usual relation “>” (greater than or equal to). Clearly, also
Q is well ordered by “>". However, for any a € Q, a # 0, the interval [0,a] is infinite.
Hence, Q is not locally finite.

Now let W be any well-ordered poset and let v < s € W. Set Wy = [v,s]. Let W, =
Wo — {r}. Then, if Wy = &, W; has a unique first element t;. Let W, = w; — {t1}. If
W, + &, then W> has a unique first element t,. In general, W; = W;_ — {t;_1}, where
ti_q1 = first element of W;_;,and tg = 7.

For any fixed natural number n, let T,,(r,s) = {r,t1,...,tn,s}. Let

[7,s] if [7,s] is finite,
Jn(r,s) = , (3.1)
T,(r,s) otherwise.

Then define the convolution multiplication * on ¢ (K,W) by the following: for all r, s €
W and for all f,g € 3(K,W),

fxgr,s)= > f(r,t)g(t,s). (3.2)

teJn(r,s)

Subject to (3.2), 3(K,W) is an incidence algebra. We denote this incidence algebra by
9. (K, W), and 9, (K,W) is called a truncated incidence algebra of W over K.

It is clear that T, (7,s) < Ty+1(7,s) for all n € N. We will call the incidence algebra
9n+1 (K, W) a refinement of the incidence algebra ¢, (K,W). The sequence {3, (K,W)}
of incidence algebras is finite if and only if W is locally finite.

We now observe that a well-ordered nonlocally finite poset Q is associated with an
infinite sequence of truncated incidence algebras, where each is a nontrivial refinement
of the one before it. Unifying these algebras to form one incidence algebra of Q over K
remains an open problem.

REFERENCES

[1] M. Aigner, Combinatorial Theory, Grundlehren der mathematischen Wissenschaften, vol.
234, Springer-Verlag, New York, 1979.

[2]  R. P. Stanley, Structure of incidence algebras and their automorphism groups, Bull. Amer.
Math. Soc. 76 (1970), 1236-1239.

[3]  P. Suppes, Axiomatic Set Theory, Dover Publications, New York, 1972.

Boniface I. Eke: Department of Mathematics, Morgan State University, Baltimore, MD 21251,
USA
E-mail address: beke@morgan.edu


mailto:beke@morgan.edu

