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A formula for the conditional value-at-risk of classical portfolio insurance is derived and
shown to be constant for sufficiently small loss probabilities. As illustrations, we discuss
portfolio insurance for an equity market index using empirical data, and analyze the more
general multivariate situation of a portfolio of risky assets.
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1. Introduction. Portfolio insurance, introduced by Leland in the night of September

11, 1976, is a simple financial instrument used to protect capital against future adverse

falls. A collection of seminal papers, which study some of its main properties, is Luskin

[12]. Combined with classical actuarial contingencies like mortality risk, portfolio in-

surance leads to unit-linked insurance contracts, which under the economic risk capital

viewpoint have been analyzed in Hürlimann [6].

In the present note, the focus on classical portfolio insurance reveals a new remark-

able feature. It turns out that the economic risk capital as measured by value-at-risk or

conditional value-at-risk (CVaR) remains constant, provided the loss probability is suffi-

ciently small. In practice, confidence levelsα around 70%–90% often suffice to guarantee

this stability property.

In Section 2, we derive a formula for the CVaR of portfolio insurance, and show that

it is constant for small loss probabilities. Two specific examples illustrate our results.

In Section 3, we discuss portfolio insurance for an equity market index on the basis of

empirical data material. The more general multivariate situation of a portfolio of risky

assets is exemplified in Section 4 in the bivariate case.

2. Conditional value-at-risk. Suppose that the random variable S represents the

market value of a portfolio of assets at some future date T . The goal of portfolio insur-

ance is to protect this future market value in such a way that the fixed value or limit L
is guaranteed. For this, an investor can either hold the assets and buy a put option with

exercise price L or hold cash at the risk-free continuous interest rate δ and buy a call

option with exercise price L. The future values of these equivalent option strategies

satisfy the identity

S+(L−S)+ = L+(S−L)+. (2.1)

Let S0 denote the present value of the portfolio of assets, and let P(L), C(L) be the

put and call option prices with exercise price L, which are to be paid for these option
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strategies. Then the total cost K(L) of portfolio insurance satisfies the put-call parity

relation

K(L)= S0+P(L)= L·e−δT +C(L). (2.2)

The financial gain at time T per unit of invested capital is described by the random

return

R = L+(S−L)+−K(L)
K(L)

. (2.3)

The potential investor decides upon investment by looking at the tradeoff between

expected return and risk. Since the distribution of return is here asymmetrical, the usual

variance as measure of risk cannot be recommended. Indeed, a “good” risk measure

for the one-sided positively skewed return (2.3) should preserve the usual stochastic

order between returns, that is, if the returns R1, R2 satisfy R1 ≤ R2 with probability

one, a relation denoted by R1 ≤st R2, then ρ(R1) ≤ ρ(R2), where ρ(·) denotes the risk

measure. But R1 ≤st R2 does not imply Var[R1] ≤ Var[R2], from which it follows that

the variance is not an acceptable risk measure. In the present note, risk is measured

in terms of economic risk capital, which is determined using the conditional value-at-

risk measure. The latter is defined as follows. First, consider the upper CVaR to the

confidence level α defined by

CVaR+α[X]= E
[
X |X > VaRα[X]

]
, (2.4)

where the negative return X = −R represents the financial loss at time T per unit of

invested capital, and VaRα[X] = inf{x : FX(x) ≥ α} is the value-at-risk, with FX(x) =
Pr(X ≤ x) the probability distribution of the random variable X. The VaR quantity

represents the maximum possible loss, which is not exceeded with the probability α
(in practice α= 95%,99%,99.75%). The CVaR+ quantity is the conditional expected loss,

given the loss strictly exceeds its value-at-risk. Next, consider the α-tail transform Xα

of X with distribution function

FXα(x)=




0, x < VaRα[X],
FX(x)−α

1−α , x ≥ VaRα[X].
(2.5)

Rockafellar and Uryasev [14] define CVaR to the confidence level α as expected value

of the α-tail transform, that is, by

CVaRα[X]= E[Xα]. (2.6)

The obtained measure is a coherent risk measure in the sense of Arztner et al. [1, 2] and

coincides with CVaR+ in the case of continuous distributions. For technical simplicity,

we restrict ourselves to the latter situation. As pointed out in Hürlimann [8], several

equivalent formulas exist for the evaluation of (2.6). We use the stop-loss transform

representation

CVaRα[X]=QX(α)+ 1
ε
·πX

[
QX(α)

]
, (2.7)
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where QX(α) is the α-quantile of X, πX(x) = E[(X−x)+] is the stop-loss transform,

and ε = 1−α is interpreted as loss probability. Assuming the mean of X exists, we

derive the following formula.

Proposition 2.1. The CVaR associated to the negative return of portfolio insurance

is determined by

CVaRα[X]= 1
K(L)

{
K(L)−L−(QS(ε)−L)++ 1

ε
·(πS[QS(ε)]−πS[L])+

}
, (2.8)

where πX(x)= E[(x−X)+] denotes the conjugate stop-loss transform.

Proof. The function I(E) of the event E denotes an indicator such that I(E) = 1

if E is true and I(E) = 0 otherwise. The evaluation of the distribution and stop-loss

transform of X is done using the following separation into two steps:

FX(x)= Pr
({X ≤ x}∩{S > L})+Pr

({X ≤ x}∩{S ≤ L}), (2.9)

πX(x)= E
[
(X−x)+ ·I{S > L}

]+E[(X−x)+ ·I{S ≤ L}]. (2.10)

To simplify notations, one sets γ = K(L)−1 and β(x) = (1−x) ·K(L). Using (2.3), one

sees that X ≤ x if and only if β(x)≤ L+(S−L)+. It follows without difficulty that

{X ≤ x}∩{S > L} =

{S > β(x)}, β(x) > L,

{S > L}, β(x)≤ L, (2.11)

{X ≤ x}∩{S ≤ L} =

∅, β(x) > L,

{S ≤ L}, β(x)≤ L. (2.12)

Inserting in (2.9), one gets

FX(x)=

FS[β(x)], β(x) > L,

1, β(x)≤ L, (2.13)

from which one derives the α-quantile expression

QX(α)=




K(L)−L
K(L)

, QS(ε)≤ L,
K(L)−QS(ε)

K(L)
, QS(ε) > L.

(2.14)

Similarly, one has X >x if and only if β(x) > L+(S−L)+, and one obtains that

(X−x)+ ·I{S > L} = γ ·
(
β(x)−S)+ ·I{S > L}, (2.15)

(X−x)+ ·I{S ≤ L} = γ ·
(
β(x)−S)+ ·I{S ≤ L}. (2.16)
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If β(x)≤ L, then (2.15) vanishes. Otherwise, one has

E
[
(X−x)+ ·I{S > L}

]
= γ ·E[(β(x)−L)·I(L < S ≤ β(x))]
= γ ·{E[(β(x)−S)·I(S ≤ β(x))]−E[(β(x)−S)·I(S ≤ L)]}
= γ ·{πS[β(x)]−(β(x)−L)·FS(L)−πS[L]}
= γ ·{πS[β(x)]−πS[L]+(β(x)−L)·FS(L)}.

(2.17)

If β(x)≤ L, then (2.16) also vanishes. Otherwise, one has

E
[
(X−x)+ ·I{S ≤ L}

]= γ ·(β(x)−L)·FS(L). (2.18)

Inserting (2.17) and (2.18) into (2.10) one obtains

πX(x)=

γ ·

{
β(x)−L+πS

[
β(x)

]−πS[L]}, β(x) > L,

0, β(x)≤ L. (2.19)

Now, insert (2.14) into (2.19) to get

πX
[
QX(α)

]=

γ ·

{
πS
[
QS(ε)

]−πS[L]}, β(x) > L,

0, β(x)≤ L. (2.20)

Finally, put (2.14) and (2.20) into (2.7), and summarize to get the desired formula.

A remarkable feature of the portfolio insurance strategy is the constant amount of

required economic risk capital as measured by value-at-risk and conditional value-at-

risk as long as the loss probability is sufficiently small.

Corollary 2.2. If ε ≤ FS(L), then

CVaRα[X]= VaRα[X]= K(L)−LK(L)
. (2.21)

Proof. This follows immediately from (2.8) and (2.14).

It should be emphasized that in practice the condition of Corollary 2.2 is nearly

always fulfilled. Even more, a relatively large range of confidence levels may be toler-

ated. For example, suppose the logarithm return ln(S/S0) is normally distributed with

mean µ and standard deviation σ . In case L = S0 is “at the money,” one should have

α ≥ Φ(k−1), where k = σ/µ is the coefficient of variation and Φ(x) is the standard

normal distribution. Numerically, if µ = 0.1, σ = 0.2, one has α ≥ Φ(1/2) = 0.691. An

empirical study, which confirms these observations, follows in Section 3.

3. Portfolio insurance for a market index. Consider portfolio insurance for the Swiss

Market Index (SMI) over the one-month period between 20/11/1998 and 18/12/1998.

One has S0 = 7138 and the time horizon is T = 1/12. Following Herbert et al. [4, page

68], the long-term logarithm return ln(S/S0) can be assumed to be normally distributed
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Table 3.1. Put and call option prices for the SMI.

L 6900 7000 7100 7200 7300 7400

P(L) 154 187 218 272 406.8 476.8

C(L) 370 308 253 194 152.5 114

Table 3.2. CVaR for portfolio insurance of SMI, α≥ 0.7067.

Exercise price
Put option strategy

100·E[RP ] 100·CVaRα[XP ] 100·RAROCα[XP ]

6900 0.692 5.376 0.129

7000 0.682 4.437 0.154

7100 0.786 3.48 0.226

7200 0.666 2.834 0.235

7300 −0.441 3.245 −0.136

7400 −0.585 2.821 −0.207

Exercise price
Call option strategy

100·E[RC] 100·CVaRα[XC] 100·RAROCα[XC]

6900 1.194 4.904 0.244

7000 1.115 4.026 0.277

7100 1.027 3.249 0.316

7200 1.086 2.428 0.447

7300 0.995 1.849 0.538

7400 0.953 1.317 0.724

with mean µ = (r − (1/2)ν2) ·T and volatility σ = ν ·√T . According to Hürlimann [7,

Table 7.2], a valid parameter estimation over the one-year period between 29/9/1998

and 24/9/1999 is r = 0.1727, ν = 0.2863. Possible exercise prices with corresponding

put and call option prices as published in newspaper from 21/11/1998 are found in

Table 3.1.

One notes that the put-call parity relation (2.2) is empirically violated for all constant

choices of the risk-free rate. This phenomenon is not new and well known in the litera-

ture (see, e.g., Chance [3]). For the put and call option strategies, the different empirical

total costs are denoted, respectively, by

KP(L)= S0+P(L), KC(L)= L·e−δT +C(L). (3.1)

The corresponding random returns and negative random returns are denoted, respec-

tively, by RP , XP , RC , XC . The numerical percentage figures of our evaluation are sum-

marized in Table 3.2. The risk-free rate is chosen to be δ = ln(1.025). For ε ≤ 0.2933,

one sees that QS(ε)= S0 ·exp(µ+Φ−1(ε)σ)≤ 6900, hence Corollary 2.2 applies.

The CVaR risk measure is of great importance in decision-making, because it can be

used as a tool in risk-adjusted performance measurement. Consider the random return

of portfolio insurance per unit of CVaR to a fixed confidence level α, called CVaR return
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Table 3.3. Maximum percentage one-year expected return for constant CVaR
by varying confidence level and volatility.

ε
ν

0.10 0.15 0.20 0.25 0.30

0.20 0 4.2 19.6 35.3 51.3
0.10 4.2 27.0 50.1 73.4 97.0
0.05 16.8 45.9 75.3 104.9 134.7
0.01 40.4 81.3 122.5 163.9 205.6

ratio, which is defined by

R
CVaRα[−R] , (3.2)

where the random return R has been defined in (2.3). The expected value of the CVaR

return ratio measures the risk-adjusted return on capital. This way of computing the

return is commonly called RAROC (see, e.g., Matten [13, page 59]), and is defined by

RAROCα[R]= E[R]
CVaRα[−R] . (3.3)

Now, if an investor has to decide upon the more profitable of two portfolio insurance

strategies with different exercise prices and random returns R1 and R2, a decision in

favor of the first strategy is taken if and only if one has RAROCα[R1]≥ RAROCα[R2] at

given confidence levels α. This preference criterion tells us that a return is preferred

to another if its expected value per unit of economic risk capital is greater. In Table 3.2

the exercise price L = 7400 for the call option strategy is preferred to the other ones

under this RAROC criterion.

It is remarkable that the above results hold for all confidence levels α ≥ 0.7067.

The CVaR measure remains also stable under variation of the volatility. Indeed, in our

setting, one has QS(ε)≤ L if and only if

r ≤ 1
2
ν2−Φ−1(ε)· ν√

T
+ 1
T
· ln

(
L
S0

)
. (3.4)

Since Φ−1(ε)≤ 0 for ε ≤ 1/2, the right-hand side is monotone increasing in the volatility

parameter. Therefore, by fixed ε and ν , the condition of Corollary 2.2 holds provided

the one-year expected return r does not exceed the value reported in Table 3.3.

4. Multivariate portfolio insurance. In general, investors do not hold a market in-

dex but a portfolio of risky assets stemming from various asset categories in different

financial markets. Let S1, . . . ,Sm be the initial prices of m risky assets to be held over a

period of time [0,T ]. Then S0 =
∑m
i=1Si is the present value of the portfolio of assets,

and wi = Si/S0 is the proportion of wealth invested in the ith risky asset, i = 1, . . . ,m.

Let Ri, i = 1, . . . ,m, be the random accumulated returns over [0,T ]. Then the random

accumulated return of the portfolio choice w = (w1, . . . ,wm) is given and denoted by

Rw =
∑m
i=1wiRi. The random market value S = S0Rw of the portfolio at time T satisfies
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the relationship S = ∑m
i=1Xi, with Xi = SiRi, i = 1, . . . ,m. To evaluate CVaR following

Section 2, one needs a specification of the multivariate distribution of R = (R1, . . . ,Rm)
as well as option pricing formulas corresponding to the put and call random payoffs in

(2.1).

Suitable multivariate distributions with arbitrary marginals are obtained through the

method of copulas. However, according to Joe [10, Section 4.13, page 138], and until

quite recently, it has been an open problem to construct analytically tractable para-

metric families of copulas that satisfy some desirable properties. Based on mixtures

of independent conditional distributions and bivariate margins from a Fréchet copula,

a multivariate Fréchet copula with the desired properties has been constructed in Hürli-

mann [5, 9]. To maintain technicalities at a minimum level, our presentation is restricted

here to the bivariate case.

With the option pricing model of Black-Scholes in mind, assume the margin Ri is

lognormally distributed with parameters µi = (ri−(1/2)ν2
i )·T and σi = νi ·

√
T , where

ri, νi represent the one-year expected return and volatility, respectively. For option

pricing, we use the transformed margin Rδi , which is Ri but with ri replaced by the

risk-free rate δ. Then Xi = SiRi and Xδi = SiRδi are also lognormally distributed. The

corresponding distributions are denoted, respectively, by Fi(x) and Fδi (x), i= 1,2. The

bivariate distributions of the random couples (X1,X2) and (Xδ1 ,X
δ
2 ) are denoted and

defined, respectively, by

F(x1,x2)= C
[
F1(x1),F2(x2)

]
, Fδ(x1,x2)= C

⌊
Fδ1 (x1),Fδ2 (x2)

⌋
, (4.1)

where C(u,ν) is the linear Spearman copula

C(u,ν)= (1−|θ|)·C0(u,ν)+|θ|·Csgn(θ)(u,ν), θ ∈ [−1,1],

C0(u,ν)=uν, C1(u,ν)=min(u,ν), C−1(u,ν)=max(u+ν−1,0).
(4.2)

The Spearman grade correlation coefficient and the coefficient of upper tail depen-

dence of this copula are both equal to the dependence parameter θ. The distribu-

tions and stop-loss transforms of the dependent sums S = X1+X2 and Sδ = Xδ1 +Xδ2
are determined by the following analytical expressions (Hürlimann [5, Theorem 8.1]).

For i = 1,2, let Qi(u) = F−1
i (u), u ∈ [0,1], be the u-quantile of Xi, and set uθ =

(1/2)[1−sgn(θ)]+sgn(θ)u. Then one has the formulas

FS
[
Q1(u)+Q2(uθ)

]= (1−|θ|)·FS⊥[Q1(u)+Q2(uθ)
]+|θ|·u, (4.3)

πS
[
Q1(u)+Q2(uθ)

]
= (1−|θ|)·πS⊥

[
Q1(u)+Q2(uθ)

]
+|θ|·

{
π1
[
Q1(u)

]+sgn(θ)·π2
[
Q2(uθ)

]+ 1
2

[
1−sgn(θ)

]·[E[X2
]−Q2(uθ)

]}
,

(4.4)

where S⊥ = X⊥1 +X⊥2 , with (X⊥1 ,X
⊥
2 ) an independent version of (X1,X2) such that X⊥1

and X⊥2 are independent and identically distributed as X1 and X2. Similar expressions

hold for Sδ withQi(u) replaced byQδ
i (u)= (Fδi )−1(u), i= 1,2. For portfolio insurance
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valuation, we use the call and put option prices

C(L)= e−δT ·πSδ(L), P(L)= e−δT ·(L+πSδ(L))−S0, (4.5)

and CVaR follows from the representation (2.8):

CVaRα[−R]= 1
K(L)

{
K(L)−L−(QS(ε)−L)++ 1

ε
·(QS(ε)+πS[QS(ε)]−L−πS[L])+

}
.

(4.6)

For a concrete implementation of (4.3), (4.4), (4.5), and (4.6), analytical expressions for

one of density, distribution, and stop-loss transform of the independent sums S⊥ =
X⊥1 +X⊥2 and (Sδ)⊥ = (Xδ1 )⊥ + (Xδ2 )⊥ are required. From Johnson et al. [11, page 218],

the analytical expression for the density is equal to

fS⊥(x)= 1
2πβ1β2x

∫ 1

0

1
t(1−t) exp

{
− 1

2

(
ln(1−t)+ ln(x)−α1

β1

)2

− 1
2

(
ln(t)+ ln(x)−α2

β2

)2
}
dt,

(4.7)

where the parameters are given by

αi = ln
(
Si
)+(ri− 1

2
ν2
i

)
·T ,

βi = νi ·
√
T , i= 1,2.

(4.8)

Assuming finite integrals are implemented, one further obtains

FS⊥(x)=
∫ x

0
fS⊥(y)dy, πS⊥(x)= µ−x+

∫ x
0
(x−y)fS⊥(y)dy. (4.9)

Moreover, the stop-loss transform of the margin Xi = SiRi reads

πi(x)= SieriT
(

1−Φ
(

ln(x)−αi
βi

−βi
))
−x ·

(
1−Φ

(
ln(x)−αi

βi

))
, i= 1,2. (4.10)

For illustration, we list in Tables 4.1, 4.2, and 4.3 the values of cost, CVaR, and RAROC

for different exercise prices by varying the dependence parameter of the bivariate return

distribution. The choice of our parameters is δ= ln(1.025), ν1 = 0.3, ν2 = 0.2, S1 = S2 =
1/2, T = 1, r1 = ln(1.15), r2 = ln(1.10). For all ε ≤ 0.2 (or α≥ 0.8), one has

QS(ε)≤Q1(ε)+Q2(ε)= 1
2
·{exp

(
µ1+Φ−1(ε)σ1

)+exp
(
µ2+Φ−1(ε)σ2

)}≤ 0.88263.
(4.11)

It follows that Corollary 2.2 applies whenever L≥ 0.9.
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Table 4.1. Cost of bivariate portfolio insurance.

θ
L

0.9 1.0 1.1

0 1.02303 1.05962 1.11735

0.25 1.02838 1.06633 1.12397

0.5 1.03374 1.07303 1.13060

0.75 1.03909 1.07973 1.13722

1 1.04445 1.08644 1.14384

Table 4.2. CVaR for bivariate portfolio insurance.

θ
L

0.9 1.0 1.1

0 0.12026 0.05627 0.01553

0.25 0.12484 0.06220 0.02133

0.5 0.12937 0.06806 0.02706

0.75 0.13386 0.07385 0.03273

1 0.13830 0.07956 0.03833

Table 4.3. RAROC for bivariate portfolio insurance.

θ
L

0.9 1.0 1.1

0 0.20789 0.44429 1.61024

0.25 0.20028 0.40196 1.17231

0.5 0.19327 0.36740 0.92401

0.75 0.18681 0.33865 0.76409

1 0.18083 0.31436 0.65249

Applying the RAROC criterion, the exercise price L = 1.1 is preferred. Moreover, in

accordance with the usual standards in finance, low dependence between returns is

also preferred. Again, all these results hold under the weak assumption α≥ 0.8.
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