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DETERMINATION OF COUPLED SWAY, ROLL, AND YAW MOTIONS
OF A FLOATING BODY IN REGULAR WAVES
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This paper investigates the motion response of a floating body in time domain under the
influence of small amplitude regular waves. The governing equations of motion describ-
ing the balance of wave-exciting force with the inertial, damping, and restoring forces are
transformed into frequency domain by applying Laplace transform technique. Assuming
the floating body is initially at rest and the waves act perpendicular to the vessel of lateral
symmetry, hydrodynamic coefficients were obtained in terms of integrated sectional added-
mass, damping, and restoring coefficients, derived from Frank’s close-fit curve. A numerical
experiment on a vessel of 19190 ton displaced mass was carried out for three different
wave frequencies, namely, 0.56 rad/s, 0.74 rad/s, and 1.24 rad/s. The damping parameters
(ςi) reveal the system stability criteria, derived from the quartic analysis, corresponding to
the undamped frequencies (βi). It is observed that the sway and yaw motions become max-
imum for frequency 0.56 rad/s, whereas roll motion is maximum for frequency 0.74 rad/s.
All three motions show harmonic behavior and attain dynamic equilibrium for time t > 100
seconds. The mathematical approach presented here will be useful to determine seawor-
thiness characteristics of any vessel when wave amplitudes are small and also to validate
complex numerical models.
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1. Introduction. Precise prediction of hydrodynamic behavior and motion response

of a floating body in water waves is essential for proper harbor design. A floating body

excited by waves experiences six degrees of motion constituting three translatory and

three rotational motions. These motions can be described kinematically in terms of

surge, sway, and heave, which are translations along thex-,y-, and z-axes, and rotations

about the same set of axes are roll, pitch, and yaw (Figure 1.1). For a floating body with

lateral symmetry in shape and weight distribution, the six coupled equations of motion

can be reduced to two sets of equations, where the first set consisting of surge, heave,

and pitch can be decoupled from the second set consisting of sway, roll, and yaw. We

investigate the second set since the roll motion is important with respect to the stability

of the floating body.

Important investigations to understand the hydrodynamic behavior and motion re-

sponse of a floating body were first started by W. Froude with an initial study of rolling.

Subsequently, several investigations were carried out with the development of strip

theory in ship hydrodynamics, in conjunction with the study of ship vibration. In most

of the studies, ship motions were considered in a calm water environment until the

landmark research work of Weinblum and St. Denis [10], which takes into account
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Figure 1.1. Sign convention for translatory and angular displacements of a
floating body with the direction of wave propagation.

sea environment. Cummins [1] formulated linearized equations of motion of a floating

body in transient seaway. Tasai [6] introduced a strip theory to calculate sway-roll-yaw

motions for a ship in oblique waves with zero forward speed. Vugts [9] reported exper-

imental observations on sway and roll amplitudes for various cylinder shapes in beam

waves. Salvesen et al. [4] presented a new strip theory for predicting heave, pitch, sway,

roll, and yaw motions as well as wave-induced vertical and horizontal shear forces,

bending moments, and torsional moments for a ship in arbitrary heading waves with

constant forward speed. The motion of a floating horizontal cylinder in a uniform in-

viscid fluid at irregular wave frequencies was studied by Ursell [8], considering it as a

classical potential flow problem. Mulk and Falzarano [3] studied nonlinear ship rolling

motion in six degrees of freedom by using numerical path-following techniques and

numerical integration. Faltinsen et al. [2] studied nonlinear wave loads on a vertical

cylinder. The effect of nonlinear damping and restoring in ship rolling and ship sta-

bility in dynamic environments can be found in the recent works of Taylan [7] and

Surendran and Reddy [5].

The present study attempts to develop a mathematical approach to determine sway,

roll, and yaw motions and considers the general formulation given by Salvesen et al.

[4] to describe harmonic response of a floating body. This approach is useful for three

main purposes: (i) to get insight into the effect of various parameters and its relative

importance while wave forces act in concurrence, (ii) to validate complex numerical

models by providing useful benchmarking, and (iii) to provide accurate mathematical

tools to supplement detailed model testing.

2. Problem formulation. Let (x,y,z) be a right-handed coordinate system fixed with

respect to the mean position of the body and z-axis considered vertically upward. The
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origin O lies in the undisturbed free surface. Let the translatory displacements in x, y ,

and z directions with respect to the origin be η1, η2, and η3 indicating surge, sway, and

heave, respectively. In rotational motion, the angular displacements about the same set

of axes are η4, η5, and η6 indicating roll, pitch, and yaw, respectively. The definition of

six motions of any floating body with sign convention is shown in Figure 1.1.

In order to construct the governing equations of motion, the following assumptions

are made.

(i) The floating body is slender and rigid with symmetric distribution of mass.

(ii) Motion amplitude is small so that equations can be linearized.

(iii) Except in roll motion, the effect of viscosity is neglected.

(iv) Incident waves are unidirectional and of single periodicity.

(v) Due to lateral symmetry, longitudinal and transverse motions are decoupled.

Under the above assumptions, six linearly coupled differential equations of motions

can be written as (see [4])

6∑
k=1

[(
Mjk+Ajk

)
η̈k+Bjkη̇k+Cjkηk

]= Fj, j = 1,2, . . . ,6, (2.1)

where Mjk are the components of the generalized mass matrix of the ship, Ajk and

Bjk are the frequency-dependent added-mass and damping coefficients, respectively,

Cjk are the hydrostatic restoring coefficients, and Fj are the external exciting forces or

moments. The generalized form of mass matrix coefficient is given by

Mjk =




M 0 0 0 Mzc 0

0 M 0 −Mzc 0 0

0 0 M 0 0 0

0 −Mzc 0 I4 0 −I46

Mzc 0 0 0 I5 0

0 0 0 −I46 0 I6



, (2.2)

whereM is the mass of the floating body, Ij is the moment of inertia in the jth mode of

motion, and Ijk is the product of inertia for the kth mode of motion coupled with the

jth mode. The coordinate of the center of gravity G is (O′,0,zc), where O′ and zc are

the x-coordinate and the z-coordinate of the center of gravity, respectively (Figure 1.1).

The added-mass and damping coefficient matrices are expressed as

Ajk=




A11 0 A13 0 A15 0

0 A22 0 A24 0 A26

A31 0 A33 0 A35 0

0 A42 0 A44 0 A46

A51 0 A53 0 A55 0

0 A62 0 A64 0 A66



, Bjk=




B11 0 B13 0 B15 0

0 B22 0 B24 0 B26

B31 0 B33 0 B35 0

0 B42 0 B44 0 B46

B51 0 B53 0 B55 0

0 B62 0 B64 0 B66



.

(2.3)
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3. Sway, roll, and yaw motions. Following the assumptions, sway, roll, and yaw

motions are described as

{[
Mij

]+[Aij]}[η̈i]+[Bij][η̇i]+[Cij][ηi]= [Fj], (3.1)

where

[
Mij

]=



M −Mzc 0

−Mzc I4 −I46

0 −I46 I6


 , [

Aij
]=



A22 A24 A26

A42 A44 A46

A62 A64 A66


 ,

[
Bij
]=



B22 B24 B26

B42 B44 B46

B62 B64 B66


 , [

Cij
]=




0 0 0

0 C44 0

0 0 0


 ,

[
η̈i
]=



η̈2

η̈4

η̈6


 , [

η̇i
]=



η̇2

η̇4

η̇6


 , [

ηi
]=



η2

η4

η6


 , [

Fj
]=



F2

F4

F6


 ,

(3.2)

η̇i and η̈i being the velocity and acceleration in the ith mode of motion, respectively.

Substituting (3.2) in (3.1), the governing equations are obtained as

(
A22+M

)
η̈2+B22η̇2+

(
A24−Mzc

)
η̈4+B24η̇4+A26η̈6+B26η̇6+= F2, (3.3)(

A42−Mzc
)
η̈2+B42η̇2+

(
A44+I4

)
η̈4+B44η̇4+C44η4+

(
A46−I46

)
η̈6+B46η̇6 = F4, (3.4)

A62η̈2+B62η̇2+
(
A64−I46

)
η̈4+B64η̇4+

(
A66+I6

)
η̈6+B66η̇6 = F6. (3.5)

Considering the forward speed equal to zero, the expressions for added-mass and

damping coefficients are given in the appendix. The moment of inertia (Ij ) and the

product of inertia (Ijk) can be determined for any particular floating body. The restor-

ing coefficient C44 which appears in the roll equation (3.4) can be expressed as

C44 = ρg∇ḠM̄, (3.6)

where ∇ is the displaced volume of the body in calm water, ḠM̄ is the metacentric

height, ρ is the mass density of water, and g is the gravitational acceleration. The wave

exciting forces and moments are

Fi = F̄isin(�t+ε), i= 2,4,6, (3.7)

where F̄2, F̄4, and F̄6 are the amplitudes of the sway exciting force, roll exciting moment,

and yaw exciting moment, respectively, and ε is the phase angle. � represents the

encountering frequency. Since there is no forward speed of the body, the amplitudes of

sway exciting force, roll exciting moments, and yaw exciting moments can be obtained
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as (see [4])

F̄2 =αρ
∫ (
f2+h2

)
dξ,

F̄4 =αρ
∫ (
f4+h4

)
dξ,

F̄6 =αρ
∫
ξ
(
f2+h2

)
dξ,

(3.8)

where α is the amplitude of the incident wave, fi and hi represent the sectional Froude-

Kriloff force and sectional diffraction force, respectively, and ξ is a variable of integra-

tion in x direction. The integration has been taken over the length of the body.

4. Method of solution. The coupled sway, roll, and yaw motions can be rewritten in

the following form after normalizing by the respective coefficient of the acceleration

term:

η̈2+a2η̇2+b1η̈4+b2η̇4+c1η̈6+c2η̇6 =K2 sin�t,
a4η̈2+a5η̇2+ η̈4+b5η̇4+b6η4+c4η̈6+c5η̇6 =K4 sin�t,

a7η̈2+a8η̇2+b7η̈4+b8η̇4+ η̈6+c8η̇6 =K6 sin�t.
(4.1)

For a given frequency, the added-mass and damping coefficients are considered con-

stant for small amplitude motion. In the absence of a phase angle, we set ε = 0. The

Laplace transform of (4.1) gives

lif2(s)+mif4(s)+nif6(s)= rj (i= 1, . . . ,3, j = 1, . . . ,4), (4.2)

where

fi(s)=
∫∞

0
e−stηi(t)dt. (4.3)

The expressions for li,mi, ni, and rj are given in the appendix. Equation (4.2) contains

three unknowns, namely, f2(s), f4(s), and f6(s), which can be solved in the frequency

domain by using Cramer’s rule:

f2(s)= D1

D
, f4(s)= D2

D
, f6(s)= D3

D
, (4.4)

where

D1 =
∣∣∣∣∣∣∣
r1 m1 n1

r2 m2 n2

r3 m3 n3

∣∣∣∣∣∣∣ , D2 =
∣∣∣∣∣∣∣
l1 r1 n1

l2 r2 n2

l3 r3 n3

∣∣∣∣∣∣∣ ,

D3 =
∣∣∣∣∣∣∣
l1 m1 r1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣ , D =
∣∣∣∣∣∣∣
l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣ .
(4.5)

To evaluate (4.4), the denominator term D should be nonsingular, that is, D ≠ 0. Now

expanding determinant D, we obtain

D = l1
(
m2n3−n2m3

)+l2(m3n1−n3m1
)+l3(m1n2−n1m2

)
. (4.6)
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Substituting the expressions for li, mi, and ni in (4.6), one can write

D = g4s2(s4+r3s3+r2s2+r1s+r0
)= g4s2Q, (4.7)

where Q is the quartic with respect to the frequency-dependent variable s. Expressing

Q as the product of two quadratic factors, we further write

Q= (s2+2ς1β1s+β2
1

)(
s2+2ς2β2s+β2

2

)
. (4.8)

Similarly, determinant D1 in (4.5) can be expressed as (see the appendix)

D1 = r1
(
m2n3−n2m3

)+r2
(
m3n1−n3m1

)+r3
(
m1n2−n1m2

)= s
∑6
i=0D

1
i si(

s2+�2
) , (4.9)

where D1
i = f{ai,bi,ci,�,Ki,η2i(0), η̇2i(0)}. Substituting (4.7), (4.8), and (4.9) in (4.4),

we obtain

f2(s)= s
∑6
i=0D

1
i si

g4s2
(
s2+�2

)(
s2+2ς1β1s+β2

1

)(
s2+2ς2β2s+β2

2

) . (4.10)

The partial fraction (4.10) gives

f2(s)= 1
g4

[
α1

s
+ α2s+α3

s2+�2
+ α4s+α5

s2+2ς1β1s+β2
1

+ α6s+α7

s2+2ς2β2s+β2
2

]
, (4.11)

where αi = f{D1
i ,�,βi,ςi}. Similarly, the expressions for f4(s) and f6(s) are

f4(s)= 1
g4

[
α′1s+α′2
s2+�2

+ α′3s+α′4
s2+2ς1β1s+β2

1

+ α′5s+α′6
s2+2ς2β2s+β2

2

]
,

f6(s)= 1
g4

[
α′′1
s
+ α

′′
2 s+α′′3
s2+�2

+ α′′4 s+α′′5
s2+2ς1β1s+β2

1

+ α′′6 s+α′′7
s2+2ς2β2s+β2

2

]
,

(4.12)

where αi, α′i, and α′′i are unknown coefficients required to be determined. Equating

the like powers of s, a set of linear algebraic equations involving the above unknown

coefficients are obtained which are then solved by using the Gauss elimination method.

5. Numerical experiment. To get an insight into the effect of various parameters

on sway, roll, and yaw motions, a ship of length = 150 m, beam = 20.06 m, draught =
9.88 m, and mass = 19190 tons was assumed, for which the beam-draft ratio becomes

nearly equal to two. The location of center of gravity G is considered at the point O′,
which is –1 m away from the originO. The monochromatic sinusoidal waves act perpen-

dicular to the longitudinal axis of the ship with three different frequencies of 0.56 rad/s,

0.74 rad/s, and 1.24 rad/s, corresponding to the wave height of 1.0 m. The coefficients

related to sectional added mass, sectional damping, and sectional wave exciting force

were used from the experimental results of Vugts [9] and Frank’s close-fit curve (Table

5.1), for a cylinder with rectangular cross-section with identical beam-draft ratio.

A computer program, “SIPCOEF,” was developed to generate the relevant coefficients

corresponding to the set of linear equations for each mode of motion. In order to obtain
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Table 5.1. Computed sectional coefficients of the floating body.

Wave
Frequency (Rad/s) 0.56 0.74 1.24

Period (s) 11.2 8.5 5.1

Sectional

coefficients

Sway added mass 1.6 0.65 0.05

Roll added mass 0.07 0.055 0.035

Sway-roll added mass −0.25 −0.13 −0.02

Sway damping 0.6 1.0 0.7

Roll damping 0.01 0.02 0.012

Sway-roll damping −0.07 −0.16 −0.1

Sway exciting force 2.25 1.5 0.34

Roll exciting moment 1.9 1.2 0.28

Principal dimensions of the
floating body

Sec. coeff. for added mass,
damping, and wave exciting

force

Initial conditions

Wave parameters

SIPCOEF

Calculation of the coeff. aij of the system of

equations
∑
j āijαj = di in transformed domain

Calculation of damping factor (ςi) and undamped
system frequency (βi)

GAUSEU

Solves the system of equations to get αj , α′j , α
′′
j .

CALMOT
Calculation of sway, roll, and yaw motions

Time history

Sway Roll Yaw

Figure 5.1. Schematic diagram of the mathematical model development.

unknown coefficients in the transformed domain, the Gauss elimination method was

used. A computer program, “GAUSEU,” was used to solve the system of equations.

Finally, the time evolution of sway, roll, and yaw motions for a particular wave frequency

was obtained from the program “CALMOT.” The schematic diagram of the mathematical

model development is shown in Figure 5.1.

6. System stability and quartic analysis. In order to obtain the inverse of the Laplace

transform, determinant D which appears as the denominator is set equal to zero. This

leads to the condition that either Q or g4s2 is equal to zero. For Q = 0, the roots of

the characteristic equation are obtained in the frequency domain. The variables ςi and

βi (i = 1,2) which appear in the biquadratics are known as damping factors and un-

damped natural frequencies of the damped system, respectively. As the factor g4s2 is
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Table 6.1. Computed damping coefficients.

Wave frequency

(rad/s)
Damping coefficients

ς1 ς2

0.56 1.13 0.053

0.74 1.29 0.04

1.24 2.3 0.077

set equal to zero in D, the corresponding ς3 also becomes zero. This manifests pure

oscillation, without damping or building up. As the numerical values for ςi are of prime

importance, their role on system stability is summarized as follows:

(i) ςi ≤−1 implies that the motion will be a nonoscillatory divergence;

(ii) −1< ςi < 0 implies that the motion will be a divergent oscillation;

(iii) 0< ςi < 1 implies that the motion will be oscillatory and will die out;

(iv) ςi ≥ 1 implies that the motion will die out without oscillation;

(v) ςi = 0 implies that the motion will be oscillatory.

Once the quadratic factors are obtained, the corresponding oscillatory/nonoscillatory

features are determined depending upon the values of ςi. The frequency-wise variation

of damping coefficients, ς1 and ς2, is given in Table 6.1.

If βid are damped natural frequencies, their relations with undamped natural fre-

quencies can be expressed as β1d = β1

√
ς2

1 −1 and β2d = β2

√
1−ς2

2 , depending upon

the values of ςi. Using the above analysis and employing the inverse of the Laplace

transform in (4.11) and (4.12), sway-roll-yaw motions are obtained as

η2(t)=
(

1
g4

)α1+α2cos�t+
(
α3

�

)
sin�t+α4e−ς1β1tcosh

(
β1

√
ς2

1−1
)
t

+(α5−α4ς1β1
)
e−ς1β1t

sinh
(
β1

√
ς2

1 −1
)
t

β1

√
ς2

1 −1

+α6e−ς1β1t cos
(
β2

√
1−ς2

2

)
t

+(α7−α6ς2β2
)
e−ς2β2t

sin
(
β2

√
1−ς2

2

)
t

β2

√
1−ς2

2


 ,

(6.1)

η4(t)=
(

1
g4

)α′1 cos�t+
(α′2
�

)
sin�t

+α′3e−ς1β1t cosh
(
β1

√
ς2

1−1
)
t

+
(
α′4−α′3ς1β1

)
e−ς1β1t

sinh
(
β1

√
ς2

1−1
)
t

β1

√
ς2

1−1
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+α′5e−ς2β2t cos
(
β2

√
1−ς2

2

)
t

+(α′6−α′5ς2β2
)
e−ς2β2t

sin
(
β2

√
1−ς2

2

)
t

β2

√
1−ς2

2


 ,

(6.2)

η6(t)=
(

1
g4

)α′′1 +α′′2 cos�t+
(α′′3
�

)
sin�t+α′′4 e−ς1β1t cosh

(
β1

√
ς2

1−1
)
t

+
(
α′′5 −α′′4 ς1β1

)
e−ς1β1t

sinh
(
β1

√
ς2

1−1
)
t

β1

√
ς2

1−1

+α′′6 e−ς1β1t cos
(
β2

√
1−ς2

2

)
t

+(α′′7 −α′′6 ς2β2
)
e−ς2β2t

sin
(
β2

√
1−ς2

2

)
t

β2

√
1−ς2

2


 .

(6.3)

7. Results and discussion. To illustrate the floating body motions, the exact

solutions obtained in (6.1), (6.2), and (6.3) are evaluated numerically. The unknown

coefficients which appear in the above expressions are determined by using the Gauss

elimination method prior to applying the Laplace inverse. The detailed description of

the entire procedure is given in Figure 5.1. A close inspection of the analytical solution

reveals that the expressions (6.1) and (6.3) are similar in nature. This is due to the ab-

sence of restoring forces in sway and yaw equations of motion. However, the governing

equation for roll contains hydrostatic restoring force inherently and, as a consequence,

roll motion manifests harmonic behavior. In the absence of wave force, sway and yaw

motions do not preserve harmonic property. Under the action of sinusoidal waves, the

solution obtained for the three modes of motion are grouped into three parts; (i) con-

stant term, indicating shift (ii) oscillatory term, indicating harmonic behavior, and (iii)

decay term. In roll motion, the constant term representing shift is absent.

The time history of forcing function (wave force) and sway motions for frequencies

0.56 rad/s, 0.74 rad/s, and 1.24 rad/s are shown in Figures 7.1a and 7.1b. The wave peri-

ods corresponding to the three frequencies are obtained as 11.2, 8.5, and 5.1 seconds. It

can be observed that the sway displacement is maximum for wave frequency 0.56 rad/s

and it decreases as wave frequency increases. The maximum sway displacement corre-

sponding to these frequencies are found to be 65 m, 9 m, and 1.75 m, respectively. For

all three frequencies, sway motions become harmonic with the elapse of time t > 100.

In (6.1), the terms having a factor e−ςiβit indicate sway damping, which eventually dies

out as t→∞. The time required for attainment of dynamic equilibrium corresponding

to these frequencies is found to be 100, 50, and 35 seconds, respectively.

Figures 7.2a and 7.2b show the forcing function and the time history of roll displace-

ments (in degree) measured in the anticlockwise direction with respect to the x-axis. As

the floating body is initially at rest, the effect of damping on oscillation is noticed for

t < 50 seconds. As t→∞, the effect of damping ceases and, consequently, the first and
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Figure 7.1. (a, c, and e) Time history of forcing function and (b, d, and f) sway
motion for wave frequencies (a, b) 0.56 rad/s, (c, d) 0.74 rad/s, and (e, f)

1.24 rad/s.
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Figure 7.2. (a, c, and e) Time history of forcing function and (b, d, f) roll
motion for wave frequencies (a, b) 0.56 rad/s, (c, d) 0.74 rad/s, and (e, f)

1.24 rad/s.
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Figure 7.3. Time history of yaw motion for wave frequencies: (a) 0.56 rad/s,
(b) 0.74 rad/s, and (c) 1.24 rad/s.

second terms of (6.2) only contribute. Subsequently, roll motions for all three frequen-

cies show harmonic behavior for t > 50 seconds. The maximum roll displacements for

wave frequencies 0.56 rad/s, 0.74 rad/s, and 1.24 rad/s are ±0.5◦, ±1.6◦, and ±0.05◦,
respectively.

The yaw motions (in degree) measured in the anticlockwise direction with respect

to the z-axis show the angular displacements for all three frequencies (Figure 7.3). The

predominant yaw angles are found to be negative, and their frequency-wise maximum

values are obtained as −0.75◦, −0.15◦, and −0.016◦, respectively, while subjected to

the same wave forces. This is due to the fact that the location of the center of gravity of

the floating body is −1 m away from the origin of the x-axis, which creates uneven yaw

moments. The amplitude of yaw angles decreases with the increase of wave frequency.
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Appendix. Expressions for added-mass coefficients and damping coefficients (with

zero forward speed) (derived from Salvesen et al. [4]) which appeared in (2.3) are as

follows:

A22 =
∫
a22dξ, A24 =A42 =

∫
a24dξ, A26 =

∫
ξa22dξ, A44 =

∫
a44dξ,

A46 =
∫
ξa24dξ, A62 =A26, A64 =A46, A66 =

∫
ξ2a22dξ,

B22 =
∫
b22dξ, B24 =

∫
b24dξ = B42, B26 =

∫
ξb22dξ, B44 =

∫
b44dξ,

B46 =
∫
ξb24dξ, B62 = B26, B64 = B46, B66 =

∫
ξ2b22dξ,

(A.1)

where ajk denote two-dimensional sectional added-mass coefficients and bjk denote

two-dimensional sectional damping coefficients. Steps involved in the expansion of

determinant D, which appeared in (4.4), are as in (4.6), where

l1 = s2+a2s, m1 = b1s2+b2s, n1 = c1s2+c2s,

l2 = a4s2+a5s, m2 = s2+b5s+b6, n2 = c4s2+c5s,

l3 = a7s2+a8s, m3 = b7s2+b8s, n3 = s2+c8s.

(A.2)

Substitution of li, mi, and ni (i= 1,2,3) in D leads to

D = s2(g4s4+g3s3+g2s2+g1s+g0
)
, (A.3)

where

g4 =
(
1−b7c4

)+a4
(
b7c1−b1

)+a7
(
b1c4−c1

)
,

g3 =
(
b5+c8−b8c4−b7c5+a2−a2b7c4

)+a4
(
b7c2+b8c1−b2−b1c8

)
+a5

(
b7c1−b1

)+a7
(
b1c5+b2c4

)−a7
(
b5c1+c2

)+a8
(
b1c4−c1

)
,

g2 =
(
b6+b5c8−b8c5+a2b5+a2c8−a2b8c4−a2b7c5

)
+a4

(
b8c2−b2c8

)+c5
(
b7c2+b8c1−b2−b1c8

)+a7b2c5−a7
(
b6c1+b5c2

)
+a8

(
b1c5+b2c4

)−a8
(
b5c1+c2

)
,

g1=
(
b6c8+a2b6+a2b5c8−a2b8c5

)+a5
(
b8c2−b2c8

)+a8b2c5−a8
(
b6c1+b5c2

)−a7b6c2,

g0 = a2b6c8−a8b6c2,

D = s2g4
(
s4+r3s3+r2s2+r1s+r0

)
,

(A.4)

where

r3 = g3

g4
, r2 = g2

g4
, r1 = g1

g4
, r0 = g0

g4
,

D = s2g4
(
s2+u1s+u0

)(
s2+ν1s+ν0

)
= s2g4

(
s2+2ς1β1s+β2

1

)(
s2+2ς2β2s+β2

2

)
,

(A.5)
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where

β1 =√u0, ς1 = u1

2
√
u0
, β2 =√ν0, ς2 = ν1

2
√
ν0
. (A.6)

A quartic can be considered as the product of two quadratic factors. Therefore, we

write

s4+r3s3+r2s2+r1s1+r0 =
(
s2+u1s+u0

)(
s2+ν1s+ν0

)
, (A.7)

then

u1+ν1 = r3, (A.8)

u0+ν0+u1ν1 = r2, (A.9)

u1ν0+u0ν1 = r1, (A.10)

u0ν0 = r0. (A.11)

If (A.8) and (A.10) are solved simultaneously in order to obtain u1 in terms of u0 and

ν0, (A.8), (A.9), (A.10), and (A.11) can be replaced with (A.12), (A.13), (A.14), and (A.15)

as follows:

u0ν0 = r0, (A.12)

u1 = r1−u0r3

ν0−u0
, (A.13)

ν1 = r3−u1, (A.14)

[2pt]u0+ν0+u1ν1 = r2. (A.15)

Now a trial-and-error solution is applied. Assuming ν0, we calculate u0 from (A.12), u1

from (A.13), ν1 from (A.14), and check whether (A.15) is satisfied. In this process, it is

possible that u0 could be equal to ν0 so that u1 need not be calculated from (A.13).

Hence, a new set of equations may be used:

u0 = ν0,

r1

r3
=u0,

r 2
3 +8u0 ≥ 4r2,

u1 = r3+
√
r 2

3 −4
(
r2−2r1/r3

)
2

,

ν1 = r3−u1.

(A.16)

Steps involved in the expansion of D1 are as follows:

D1 = r1
(
m2n3−n2m3

)+r2
(
m3n1−n3m1

)+r3
(
m1n2−n1m2

)
, (A.17)
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where

r1 = p1+q1,

p1 = p̄1
1s+ p̄1

0 ,

p̄1
1 =

{
η2(0)+b1η4(0)+c1η6(0)

}
,

p̄1
0 =

{
a2η2(0)+b2η4(0)+c2η6(0)+ η̇2(0)+b1η̇4(0)+c1η̇6(0)

}
,

q1 = K2�
s2+�2

,

r1 = p1+q1 =
∑3
i=0 r̄

1
i si

s2+�2
,

r̄ 1
3 = p̄1

1 , r̄ 1
2 = p̄1

0 , r̄ 1
1 = p̄1

1�
2, r̄ 1

0 = p̄1
0�

2+K2�,

r2 = p2+q2,

p2 = p̄2
1s+ p̄2

0 , p̄2
1 =

{
a4η2(0)+η4(0)+c4η6(0)

}
,

p̄2
0 =

{
a5η2(0)+b5η4(0)+c5η6(0)+a4η̇2(0)+ η̇4(0)+c4η̇6(0)

}
,

q2 = K4�
s2+�2

,

r2 = p2+q2 =
∑3
i=0 r̄

2
i si

s2+�2
,

r̄ 2
3 = p̄2

1 , r̄ 2
2 = p̄2

0 , r̄ 2
1 = p̄2

1�
2, r̄ 2

0 = p̄2
0�

2
1+K4�,

r3 = p3+q3,

p3 = p̄3
1s+ p̄3

0 , p̄3
1 =

{
a7η2(0)+b7η4(0)+η6(0)

}
,

p̄3
0 =

{
a8η2(0)+b8η4(0)+c8η6(0)+a7η̇2(0)+b7η̇4(0)+ η̇6(0)

}
,

q3 = K6�
s2+�2

,

r3 = p3+q3 =
∑3
i=0 r̄

3
i si

s2+�2
,

r̄ 3
3 = p̄3

1 , r̄ 3
2 = p̄3

0 , r̄ 3
1 = p̄3

1�
2, r̄ 3

0 = p̄3
0�

2+K6�,

m2n3−n2m3 = s
( 3∑
i=0

d1
i s
i

)
,

d1
3=1−b7c4, d1

2=b5+c8−
(
b8c4+b7c5

)
, d1

1=b6+b5c8−b8c5, d1
0 = b6c8,

m3n1−n3m1 = s2

( 2∑
i=0

d2
i s
i

)
,

d2
2 = b7c1−b1, d2

1 = b7c2+b8c1−
(
b2+b1c8

)
, d2

0 = b8c2−b2c8,

m1n2−n1m2 = s
( 3∑
i=0

d3
i s
i

)
,
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d3
3=b1c4−c1, d3

2=b1c5+b2c4−c1b5−c2, d3
1=b2c5−b6c1−b5c2, d3

0=−b6c2,

D1= 1(
s2+�2

)
[( 3∑

i=0

r̄ 1
i s

i

)
s
( 3∑
i=0

d1
i s
i

)
+
( 3∑
i=0

r̄ 2
i s

i

)
s2

( 2∑
i=0

d2
i s
i

)
+
( 3∑
i=0

r̄ 3
i s

i

)
s
( 3∑
i=0

d3
i s
i

)]
,

D1 = s(
s2+�2

)
[( 6∑

i=0

δ1
i s
i

)
+s
( 5∑
i=0

δ2
i s
i

)
+
( 6∑
i=0

δ3
i s
i

)]
,

D1 = s
∑6
i=0D

1
i si(

s2+�2
) .

(A.18)

Steps involved in the computation of f2(s) are as follows:

f2(s)= D1

D
= 1
g4

[
s
∑6
i=0D

1
i si(

s2+�2
)
s2
(
s2+u1s+u0

)(
s2+ν1s+ν0

)
]

= 1
g4

[α1

s
+ α2s+α3

s2+�2
+ α4s+α5

s2+u1s+u0
+ α6s+α7

s2+ν1s+ν0

]
,

(A.19)

where αis are computed with the help of the Gauss elimination method from the set

of seven equations as follows:

7∑
j=1

āijαj = di, i= 1,2, . . . ,7, (A.20)

where

ā11 =�2r0, ā12 = 0, ā13 = 0, ā14 = 0, ā15 = 0, ā16 = 0, ā17 = 0,

ā21 =�2r1, ā22 = 0, ā23 = r0, ā24 = 0,

ā25 =�2ν0, ā26 = 0, ā27 =�2u0,

ā31 = r0+�2r2, ā32 = r0, ā33 = r1,

ā34 =�2ν0, ā35 =�2ν1, ā37 =�2u1,

ā41 = r1+�2r3, ā42 = r1, ā43 = r2, ā44 =�2ν1,

ā45 = ν0+�2, ā46 =�2u1, ā47 =u0+�2,

ā51 = r1, ā52 = r2+�2, ā53 = r3, ā54 = ν0+�2,

ā55 = ν1, ā56 =u0+�2, ā57 =u10,

ā61 = r3, ā62 = r3, ā63 = 1, ā64 = ν1, ā65 = 1, ā66 =u1, ā67 = 1,

ā71 = 1, ā72 = 1, ā73 = 0, ā74 = 1, ā75 = 0, ā76 = 1, ā77 = 0,

d1 =D1
0 , d2 =D1

1 , d3 =D1
2 , d4 =D1

3 , d5 =D1
4 , d6 =D1

5 , d7 =D1
6 .

(A.21)

In a similar manner, computations were carried out for f4(s) and f6(s). These are being

omitted here for briefness.
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