# ON DIFFERENTIAL SUBORDINATIONS FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR 

V. RAVICHANDRAN, HERB SILVERMAN, S. SIVAPRASAD KUMAR, and K. G. SUBRAMANIAN

Received 25 September 2003

We obtain several results concerning the differential subordination between analytic functions and a linear operator defined for a certain family of analytic functions which are introduced here by means of these linear operators. Also, some special cases are considered.

2000 Mathematics Subject Classification: 30C45, 30C80.

1. Introduction. Let $\mathscr{A}_{0}$ be the class of normalized analytic functions $f(z)$ with $f(0)=0$ and $f^{\prime}(0)=1$ which are defined in the unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$. Let $\mathscr{A}$ be the class of all analytic functions $p(z)$ with $p(0)=1$ which are defined on $\Delta$. The class $\mathscr{P}$ of Carathéodory functions consists of functions $p(z) \in \mathscr{A}$ having positive real part. For two functions $f(z)$ and $g(z)$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.1}
\end{equation*}
$$

their Hadamard product (or convolution) is defined, as usual, by

$$
\begin{equation*}
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) . \tag{1.2}
\end{equation*}
$$

Define the function $\phi(a, c ; z)$ by

$$
\begin{equation*}
\phi(a, c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \quad(c \neq 0,-1,-2, \ldots ; z \in \Delta), \tag{1.3}
\end{equation*}
$$

where $(x)_{n}$ is the Pochhammer symbol or the shifted factorial defined by

$$
(x)_{n}= \begin{cases}1, & n=0,  \tag{1.4}\\ x(x+1)(x+2) \cdots(x+n-1), & n \in \mathbb{N}:=\{1,2,3, \ldots\} .\end{cases}
$$

Corresponding to the function $\phi(a, c ; z)$, Carlson and Shaffer [1] introduced a linear operator $L(a, c)$ on $\mathscr{A}_{0}$ by the following convolution:

$$
\begin{equation*}
L(a, c) f(z):=\phi(a, c ; z) * f(z), \tag{1.5}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
L(a, c) f(z):=z+\sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} a_{n+1} z^{n+1} \quad(z \in \Delta) \tag{1.6}
\end{equation*}
$$

It follows from (1.6) that

$$
\begin{equation*}
z(L(a, c) f(z))^{\prime}=a L(a+1, c) f(z)-(a-1) L(a, c) f(z) \tag{1.7}
\end{equation*}
$$

For two functions $f$ and $g$ analytic in $\Delta$, we say that the function $f(z)$ is subordinate to $g(z)$ in $\Delta$, and write

$$
\begin{equation*}
f \prec g \quad \text { or } f(z) \prec g(z) \quad(z \in \Delta), \tag{1.8}
\end{equation*}
$$

if there exists a Schwarz function $w(z)$, analytic in $\Delta$ with

$$
\begin{equation*}
w(0)=0, \quad|w(z)|<1 \quad(z \in \Delta) \tag{1.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \Delta) \tag{1.10}
\end{equation*}
$$

In particular, if the function $g$ is univalent in $\Delta$, the above subordination is equivalent to

$$
\begin{equation*}
f(0)=g(0), \quad f(\Delta) \subset g(\Delta) . \tag{1.11}
\end{equation*}
$$

Over the past few decades, several authors have obtained criteria for univalence and starlikeness depending on bounds of the functionals $z f^{\prime}(z) / f(z)$ and $1+z f^{\prime \prime}(z) / f^{\prime}(z)$. See $[4,5,7]$ and the references in [7]. In [2, 6], certain results involving linear operators were considered. In this paper, we obtain sufficient conditions involving

$$
\begin{equation*}
\frac{L(a+1, c) f(z)}{L(a, c) f(z)}, \quad \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)} \tag{1.12}
\end{equation*}
$$

for functions to satisfy the subordination

$$
\begin{equation*}
\frac{L(a, c) f(z)}{L(a+1, c) f(z)} \prec q(z), \quad\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right)^{\beta} \prec q(z) \quad(q(z) \in \mathscr{A}) . \tag{1.13}
\end{equation*}
$$

Also, we obtain sufficient conditions involving

$$
\begin{equation*}
\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}, \quad \frac{L(a+1, c) f(z)}{z} \tag{1.14}
\end{equation*}
$$

for functions to satisfy the subordination

$$
\begin{equation*}
\left(\frac{L(a, c) f(z)}{z}\right)^{\beta} \prec q(z), \quad \frac{z}{L(a+1, c) f(z)} \prec q(z) \quad(q(z) \in \mathscr{A}) . \tag{1.15}
\end{equation*}
$$

Since $L(n+1,1) f(z)=D^{n} f(z)$, where $D^{n} f(z)$ is the Ruscheweyh derivative of $f(z)$, our results can be specialized to the Ruscheweyh derivative and we omit these details. Note that the Ruscheweyh derivative of order $\delta$ is defined by

$$
\begin{equation*}
D^{\delta} f(z):=\frac{z}{(1-z)^{\delta+1}} * f(z) \quad\left(f \in \mathscr{A}_{0} ; \delta>-1\right) \tag{1.16}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
D^{\delta} f(z):=z+\sum_{k=2}^{\infty}\binom{\delta+k-1}{k+1} a_{k} z^{k} \quad\left(f \in \mathscr{A}_{0} ; \delta>-1\right) \tag{1.17}
\end{equation*}
$$

In our present investigation, we need the following result of Miller and Mocanu [3] to prove our main results.

THEOREM 1.1 (cf. [3, Theorem 3.4h, page 132]). Let $q(z)$ be univalent in the unit disk $\triangle$ and let $\vartheta$ and $\varphi$ be analytic in a domain $\mathbb{D} \supset q(\triangle)$ with $\varphi(w) \neq 0$, when $w \in q(\triangle)$. Set

$$
\begin{equation*}
Q(z):=z q^{\prime}(z) \varphi(q(z)), \quad h(z):=\vartheta(q(z))+Q(z) \tag{1.18}
\end{equation*}
$$

## Suppose that

(1) $Q$ is starlike univalent in $\Delta$;
(2) $\mathfrak{R}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \triangle$.

If $p(z)$ is analytic in $\Delta$, with $p(0)=q(0), p(\Delta) \subset \mathbb{D}$, and

$$
\begin{equation*}
\vartheta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \vartheta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{1.19}
\end{equation*}
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
2. Main results. We begin with the following.

THEOREM 2.1. Let $\alpha, \beta$, and $\gamma$ be real numbers, $\beta \neq 0$, and $(1+a) \beta \gamma<0$. Let $q(z) \in \mathscr{A}$ be univalent in $\triangle$ and let it satisfy the following condition for $z \in \triangle$ :

$$
\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}\frac{\beta+(1+a) \gamma}{\beta} & \text { if } \frac{\beta+\gamma(a+1)}{\beta} \geq 0  \tag{2.1}\\ 0 & \text { if } \frac{\beta+\gamma(a+1)}{\beta} \leq 0\end{cases}
$$

If $f(z) \in \mathscr{A}_{0}$ and

$$
\begin{align*}
& \frac{L(a, c) f(z)}{L(a+1, c) f(z)}\left\{\alpha \frac{L(a+1, c) f(z)}{L(a, c) f(z)}+\beta \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\gamma\right\}  \tag{2.2}\\
& \quad \prec \frac{1}{a+1}\left\{\alpha(a+1)+a \beta+[\beta+\gamma(a+1)] q(z)-\beta z q^{\prime}(z)\right\}
\end{align*}
$$

then

$$
\begin{equation*}
\frac{L(a, c) f(z)}{L(a+1, c) f(z)} \prec q(z) \tag{2.3}
\end{equation*}
$$

and $q(z)$ is the best dominant.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\frac{L(a, c) f(z)}{L(a+1, c) f(z)} . \tag{2.4}
\end{equation*}
$$

Then, clearly, $p(z)$ is analytic in $\Delta$. Also, by a simple computation, we find from (2.4) that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\frac{z(L(a, c) f(z))^{\prime}}{L(a, c) f(z)}-\frac{z(L(a+1, c) f(z))^{\prime}}{L(a+1, c) f(z)} . \tag{2.5}
\end{equation*}
$$

By making use of the familiar identity (1.7) in (2.5), we get

$$
\begin{equation*}
\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}=\frac{1}{a+1}\left(1+\frac{a}{p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right) \tag{2.6}
\end{equation*}
$$

By using (2.4) and (2.6), we obtain

$$
\begin{align*}
& {\left[\alpha \frac{L(a+1, c) f(z)}{L(a, c) f(z)}+\beta \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\gamma\right] \frac{L(a, c) f(z)}{L(a+1, c) f(z)}} \\
& \quad=\left[\frac{\alpha}{p(z)}+\frac{\beta}{a+1}\left(1+\frac{a}{p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right)+\gamma\right] p(z)  \tag{2.7}\\
& \quad=\frac{1}{a+1}\left\{(a+1) \alpha+a \beta+[\beta+\gamma(a+1)] p(z)-\beta z p^{\prime}(z)\right\} .
\end{align*}
$$

In view of (2.7), the subordination (2.2) becomes

$$
\begin{equation*}
[\beta+\gamma(a+1)] p(z)-\beta z p^{\prime}(z)<[\beta+\gamma(a+1)] q(z)-\beta z q^{\prime}(z) \tag{2.8}
\end{equation*}
$$

and this can be written as (1.19), where

$$
\begin{equation*}
\vartheta(w):=[\beta+\gamma(a+1)] w, \quad \varphi(w):=-\beta . \tag{2.9}
\end{equation*}
$$

Note that $\mathfrak{\vartheta}(w), \varphi(w)$ are analytic in $\mathbb{C}$. Since $\beta \neq 0$, we have $\varphi(w) \neq 0$. Let the functions $Q(z)$ and $h(z)$ be defined by

$$
\begin{align*}
& Q(z):=z q^{\prime}(z) \varphi(q(z))=-\beta z q^{\prime}(z), \\
& h(z):=\vartheta(q(z))+Q(z)=[\beta+(a+1) \gamma] q(z)-\beta z q^{\prime}(z) . \tag{2.10}
\end{align*}
$$

In light of hypothesis (2.1) stated in Theorem 2.1, we see that $Q(z)$ is starlike and

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\mathfrak{R}\left\{\frac{\gamma(a+1)+\beta}{-\beta}+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0 . \tag{2.11}
\end{equation*}
$$

The result of Theorem 2.1 now follows by an application of Theorem 1.1.

Note that

$$
\begin{align*}
& L(1,1) f(z)=f(z) \\
& L(2,1) f(z)=z f^{\prime}(z),  \tag{2.12}\\
& L(3,1) f(z)=z f^{\prime}(z)+\frac{z^{2} f^{\prime \prime}(z)}{2}
\end{align*}
$$

By taking $a=c=1$ in Theorem 2.1 and after a change in the parameters, we have the following.

Corollary 2.2. Let $\alpha$ be a real number, $1+\alpha>0$, and let $q(z)$ be univalent in $\Delta$, and let it satisfy

$$
\mathfrak{R}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}-\alpha & \text { if } \alpha \leq 0  \tag{2.13}\\ 0 & \text { if } \alpha \geq 0\end{cases}
$$

If $f \in A_{0}$ and

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\alpha\right\} \prec z q^{\prime}(z)+\alpha q(z)-\alpha \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)} \prec q(z) \tag{2.15}
\end{equation*}
$$

and $q(z)$ is the best dominant.
If we take

$$
\begin{equation*}
q(z)=1+\frac{\lambda}{1+\alpha} z \tag{2.16}
\end{equation*}
$$

in Corollary 2.2, we obtain a recent result of Singh [7, Theorem 1(i), page 571].
By using Theorem 1.1, we can show the following.
Lemma 2.3. Let $\gamma, \beta$ be real numbers, $\beta \neq 0$, and $1>\gamma / \beta$. Let $q(z) \in \mathscr{A}$ be univalent in $\Delta$ and let it satisfy

$$
\mathfrak{R}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}\frac{\gamma}{\beta} & \text { if } \frac{\gamma}{\beta} \geq 0  \tag{2.17}\\ 0 & \text { if } \frac{\gamma}{\beta} \leq 0\end{cases}
$$

If $p(z) \in \mathscr{A}$ satisfies

$$
\begin{equation*}
\gamma p(z)-\beta z p^{\prime}(z) \prec \gamma q(z)-\beta z q^{\prime}(z), \tag{2.18}
\end{equation*}
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
By using Lemma 2.3, or from Theorem 2.1, we have the following.

Corollary 2.4. Let $\alpha, \beta, \gamma$ be real numbers, $\beta \neq 0$, and $1>\gamma / \beta$. Let $q(z) \in \mathscr{A}$ be univalent in $\Delta$ and let it satisfy (2.17). If $f(z) \in \mathscr{A}_{0}$ satisfies

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}\left\{\alpha \frac{z f^{\prime}(z)}{f(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\gamma\right\} \prec \alpha+\beta-\beta z q^{\prime}(z)+\gamma q(z) \tag{2.19}
\end{equation*}
$$

then (2.15) holds and $q(z)$ is the best dominant.
By using Theorem 1.1, we obtain the following.
Theorem 2.5. Let $a \neq-1$. Let $\alpha, \beta, \gamma$, and $\delta$ be real numbers, $\alpha \neq 0$, and $1+$ $\delta(a+1)(\alpha+\gamma) / \alpha>0$. Let $q(z) \in \mathscr{A}$ be univalent in $\triangle$ and let it satisfy the following condition for $z \in \triangle$ :

$$
\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}-\frac{\delta(a+1)(\alpha+\gamma)}{\alpha} & \text { if } \frac{\delta(a+1)(\alpha+\gamma)}{\alpha} \leq 0  \tag{2.20}\\ 0 & \text { if } \frac{\delta(a+1)(\alpha+\gamma)}{\alpha} \geq 0\end{cases}
$$

If $f(z) \in \mathscr{A}_{0}$ and

$$
\begin{align*}
& \left\{\alpha \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\beta\left(\frac{z}{L(a+1, c) f(z)}\right)^{\delta}+\gamma\right\}\left(\frac{L(a+1, c) f(z)}{z}\right)^{\delta}  \tag{2.21}\\
& \quad \prec \frac{\alpha}{\delta(a+1)} z q^{\prime}(z)+(\alpha+\gamma) q(z)+\beta,
\end{align*}
$$

then

$$
\begin{equation*}
\left(\frac{L(a+1, c) f(z)}{z}\right)^{\delta} \prec q(z) \tag{2.22}
\end{equation*}
$$

and $q(z)$ is the best dominant.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\left(\frac{L(a+1, c) f(z)}{z}\right)^{\delta} . \tag{2.23}
\end{equation*}
$$

Then, clearly, $p(z)$ is analytic in $\Delta$. Also, by a simple computation, we find from (2.23) that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\frac{\delta z(L(a+1, c) f(z))^{\prime}}{L(a+1, c) f(z)}-\delta \tag{2.24}
\end{equation*}
$$

By making use of the familiar identity (1.7) in (2.24), we get

$$
\begin{equation*}
\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}=\frac{1}{\delta(a+1)} \frac{z p^{\prime}(z)}{p(z)}+1 . \tag{2.25}
\end{equation*}
$$

By using (2.23) and (2.25), we obtain

$$
\begin{align*}
\{\alpha & \left.\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\beta\left(\frac{z}{L(a+1, c) f(z)}\right)^{\delta}+\gamma\right\}\left(\frac{L(a+1, c) f(z)}{z}\right)^{\delta} \\
& =\left\{\alpha\left(\frac{1}{\delta(a+1)} \frac{z p^{\prime}(z)}{p(z)}+1\right)+\frac{\beta}{p(z)}+\gamma\right\} p(z)  \tag{2.26}\\
& =\frac{\alpha}{\delta(a+1)} z p^{\prime}(z)+(\alpha+\gamma) p(z)+\beta .
\end{align*}
$$

In view of (2.26), the subordination (2.21) becomes

$$
\begin{equation*}
\delta(a+1)(\alpha+\gamma) p(z)+\alpha z p^{\prime}(z) \prec \delta(a+1)(\alpha+\gamma) q(z)+\alpha z q^{\prime}(z) \tag{2.27}
\end{equation*}
$$

and this can be written as (1.19), where

$$
\begin{equation*}
\vartheta(w):=\delta(a+1)(\alpha+\gamma) w, \quad \varphi(w):=\alpha \tag{2.28}
\end{equation*}
$$

Note that $\varphi(w) \neq 0$ and $\mathcal{\vartheta}(w), \varphi(w)$ are analytic in $\mathbb{C}$. Let the functions $Q(z)$ and $h(z)$ be defined by

$$
\begin{align*}
Q(z) & :=z q^{\prime}(z) \varphi(q(z))=\alpha z q^{\prime}(z) \\
h(z) & :=\vartheta(q(z))+Q(z)=\delta(a+1)(\alpha+\gamma) q(z)+\alpha z q^{\prime}(z) \tag{2.29}
\end{align*}
$$

By hypothesis (2.20) stated in Theorem 2.5, we see that $Q(z)$ is starlike and

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\mathfrak{R}\left\{\frac{\delta(a+1)(\alpha+\gamma)}{\alpha}+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0 . \tag{2.30}
\end{equation*}
$$

Thus, by an application of Theorem 1.1, the proof of Theorem 2.5 is completed.

By taking $a=c=1$ in Theorem 2.5 and after a suitable change in the parameters, we have the following.
Corollary 2.6. Let $\alpha, \beta \neq 0$ be real and $1+\alpha>0$. Let $q(z)$ be univalent in $\Delta$ and let it satisfy (2.13). If $f \in A_{0}$ and

$$
\begin{equation*}
\left\{\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha\left(1-\left[f^{\prime}(z)\right]^{-\beta}\right)\right\}\left[f^{\prime}(z)\right]^{\beta} \prec z q^{\prime}(z)+\alpha q(z)-\alpha, \tag{2.31}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[f^{\prime}(z)\right]^{\beta} \prec q(z) \tag{2.32}
\end{equation*}
$$

and $q(z)$ is the best dominant.

If we take (2.16) in Corollary 2.6, we obtain a recent result of Singh [7, Theorem 1(ii), page 571].

Theorem 2.7. Let $a \neq-1$. Let $\alpha, \beta$, and $\gamma$ be real numbers and let $\beta, \gamma \neq 0$ and $1+\alpha / \gamma>0$. Let $q(z) \in \mathscr{A}$ be univalent in $\triangle$ and let it satisfy the following condition for $z \in \triangle:$

$$
\mathfrak{R}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}-\frac{\alpha}{\gamma} & \text { if } \frac{\alpha}{\gamma} \leq 0  \tag{2.33}\\ 0 & \text { if } \frac{\alpha}{\gamma} \geq 0\end{cases}
$$

If $f(z) \in \mathscr{A}_{0}$ and

$$
\begin{align*}
& \left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right)^{\beta}\left\{\beta \gamma\left[(a+1) \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}-a \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-1\right]+\alpha\right\}  \tag{2.34}\\
& \quad \prec \gamma z q^{\prime}(z)+\alpha q(z)
\end{align*}
$$

then

$$
\begin{equation*}
\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right)^{\beta} \prec q(z) \tag{2.35}
\end{equation*}
$$

and $q(z)$ is the best dominant.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right)^{\beta} \tag{2.36}
\end{equation*}
$$

Then, clearly, $p(z)$ is analytic in $\Delta$. Also, by a simple computation together with the use of the familiar identity (1.7), we find from (2.36) that

$$
\begin{equation*}
\frac{1}{\beta} \frac{z p^{\prime}(z)}{p(z)}=(a+1) \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}-a \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-1 . \tag{2.37}
\end{equation*}
$$

Therefore, it follows from (2.36) and (2.37) that

$$
\begin{align*}
& \left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right)^{\beta}\left\{\beta \gamma\left[(a+1) \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}-a \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-1\right]+\alpha\right\}  \tag{2.38}\\
& \quad=\gamma z p^{\prime}(z)+\alpha p(z)
\end{align*}
$$

In view of (2.38), the subordination (2.34) becomes

$$
\begin{equation*}
\gamma z p^{\prime}(z)+\alpha p(z) \prec \gamma z q^{\prime}(z)+\alpha q(z) \tag{2.39}
\end{equation*}
$$

and this can be written as (1.19), where

$$
\begin{equation*}
\mathcal{\vartheta}(w):=\alpha w, \quad \varphi(w):=\gamma . \tag{2.40}
\end{equation*}
$$

Note that $\varphi(w) \neq 0$ and $\vartheta(w), \varphi(w)$ are analytic in $\mathbb{C}$. Let the functions $Q(z)$ and $h(z)$ be defined by

$$
\begin{align*}
& Q(z):=z q^{\prime}(z) \varphi(q(z))=\gamma z q^{\prime}(z) \\
& h(z):=\vartheta(q(z))+Q(z)=\alpha q(z)+\gamma z q^{\prime}(z) \tag{2.41}
\end{align*}
$$

In light of hypothesis (2.33) stated in Theorem 2.7, we see that $Q(z)$ is starlike and

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\Re\left\{\frac{\alpha}{\gamma}+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0 . \tag{2.42}
\end{equation*}
$$

Since $\vartheta$ and $\varphi$ satisfy the conditions of Theorem 1.1, the result follows by an application of Theorem 1.1.

By taking $a=c=1$ in Theorem 2.7 and after a suitable change in the parameters, we have the following.

Corollary 2.8. Let $\alpha, \beta \neq 0$ and $\gamma$ be real with $1+\alpha / \gamma>0$. Let $q(z)$ be univalent in $\Delta$ and let it satisfy (2.33).

If $f \in A_{0}$ and

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}\left\{\beta \gamma\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right]+\alpha\right\} \prec \gamma z q^{\prime}(z)+\alpha q(z) \tag{2.43}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta} \prec q(z) \tag{2.44}
\end{equation*}
$$

and $q(z)$ is the best dominant.
If we take (2.16) and $\gamma=1$ in Corollary 2.8, we obtain a recent result of Singh [7, Theorem 1(iii), page 571] and, by setting

$$
\begin{equation*}
q(z)=\int_{0}^{1} \frac{1-\lambda z t^{\alpha}}{1+\lambda z t^{\alpha}} d t \tag{2.45}
\end{equation*}
$$

and $\alpha=1$ in Corollary 2.8, we obtain another recent result of Singh [7, Theorem 3, page 573].

Theorem 2.9. Let $\alpha \neq 0$ and $\gamma$ be real numbers, $(a+1) \alpha \gamma<0$. Let $q(z) \in \mathscr{A}$ be univalent in $\triangle$ and let it satisfy the following condition for $z \in \triangle$ :

$$
\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}\frac{\alpha+\gamma(a+1)}{\alpha} & \text { if } \frac{\alpha+\gamma(a+1)}{\alpha} \geq 0  \tag{2.46}\\ 0 & \text { if } \frac{\alpha+\gamma(a+1)}{\alpha} \leq 0\end{cases}
$$

If $f(z) \in \mathscr{A}_{0}$ and

$$
\begin{gather*}
\alpha \frac{L(a, c) f(z)}{L(a+1, c) f(z)}\left(\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}\right)+\gamma \frac{L(a, c) f(z)}{L(a+1, c) f(z)}  \tag{2.47}\\
\quad \prec \frac{a \alpha}{a+1}+\left(\frac{\alpha}{a+1}+\gamma\right) q(z)-\frac{\alpha}{a+1} z q^{\prime}(z)
\end{gather*}
$$

then

$$
\begin{equation*}
\frac{L(a, c) f(z)}{L(a+1, c) f(z)}<q(z) \tag{2.48}
\end{equation*}
$$

and $q(z)$ is the best dominant.
The proof of this theorem is similar to that of Theorem 2.1 and hence it is omitted.
By taking $a=c=1$ in Theorem 2.9 and after a suitable change in the parameters, we have the following.

Corollary 2.10. Let $0 \leq \alpha \leq 1$ and $q(z)$ be univalent in $\Delta$ and let them satisfy

$$
\mathfrak{R}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)> \begin{cases}\alpha & \text { if } \alpha \geq 0  \tag{2.49}\\ 0 & \text { if } \alpha \leq 0\end{cases}
$$

If $f \in A_{0}$ and

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\alpha\left(\frac{f(z)}{z f^{\prime}(z)}-1\right) \prec(1+\alpha)-\alpha q(z)-z q^{\prime}(z) \tag{2.50}
\end{equation*}
$$

then (2.15) holds and $q(z)$ is the best dominant.
Let

$$
\begin{equation*}
q(z)=1+\frac{\lambda z}{k} \int_{0}^{1} \frac{t^{\alpha}}{1+(z / k) t} d t \tag{2.51}
\end{equation*}
$$

After a change of variable in (2.51), we get

$$
\begin{equation*}
q(z)=1+\frac{\lambda}{z^{\alpha}} \int_{0}^{z} \frac{\eta^{\alpha}}{k+\eta} d \eta . \tag{2.52}
\end{equation*}
$$

By differentiating (2.52), we have

$$
\begin{equation*}
z q^{\prime}(z)=\frac{\lambda z}{k+z}-\alpha q(z)+\alpha \tag{2.53}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha-\alpha q(z)-z q^{\prime}(z)=-\frac{\lambda z}{k+z} . \tag{2.54}
\end{equation*}
$$

Since the bilinear transform

$$
\begin{equation*}
w=-\frac{\lambda z}{k+z} \tag{2.55}
\end{equation*}
$$

maps $\Delta$ onto the disk

$$
\begin{equation*}
\left|w+\frac{\lambda}{1-k^{2}}\right| \leq \frac{|\lambda| k}{k^{2}-1}, \tag{2.56}
\end{equation*}
$$

from Corollary 2.10 for the function $q(z)$ given by (2.51), we obtain a recent result of Singh [7, Theorem 2(i), page 572].

Theorem 2.11. Let $\alpha \neq 0$ and $\gamma$ be real numbers, $(a+1) \alpha \gamma<0$. Let $q(z) \in \mathscr{A}$ be univalent in $\triangle$ and let it satisfy (2.46) for $z \in \triangle$.

If $f(z) \in \mathscr{A}_{0}$ and

$$
\begin{equation*}
\alpha z \frac{L(a+2, c) f(z)}{[L(a+1, c) f(z)]^{2}}+\gamma \frac{z}{L(a+1, c) f(z)} \prec(\alpha+\gamma) q(z)-\frac{\alpha}{a+1} z q^{\prime}(z) \tag{2.57}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{z}{L(a+1, c) f(z)} \prec q(z) \tag{2.58}
\end{equation*}
$$

and $q(z)$ is the best dominant.
The proof of this theorem is similar to that of Theorem 2.1 and therefore it is omitted.
By taking $a=c=1$ in Theorem 2.11 and after a suitable change in the parameters, we have the following.

Corollary 2.12. Let $0 \leq \alpha \leq 1$ and $q(z)$ be univalent in $\Delta$ and let them satisfy (2.49). If $f \in A_{0}, f(z) f^{\prime}(z) / z \neq 0$, and

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)^{2}}-\alpha\left(\frac{1}{f^{\prime}(z)}-1\right) \prec \alpha-\alpha q(z)-z q^{\prime}(z) \tag{2.59}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{f^{\prime}(z)} \prec q(z) \tag{2.60}
\end{equation*}
$$

and $q(z)$ is the best dominant.
On setting (2.51) in Corollary 2.12, we obtain a recent result of Singh [7, Theorem 2(ii), page 572].

Acknowledgment. The authors are thankful to the referees for their comments.

## References

[1] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745.
[2] J.-L. Liu and S. Owa, On a class of multivalent functions involving certain linear operator, Indian J. Pure Appl. Math. 33 (2002), no. 11, 1713-1722.
[3] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.
[4] M. Obradowič and N. Tuneski, On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 181 (2000), no. 24, 59-64.
[5] K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math. 32 (2001), no. 4, 543-550.
[6] J. Patel and P. Sahoo, Properties of a class of analytic functions involving a linear operator, Demonstratio Math. 35 (2002), no. 3, 495-507.
[7] V. Singh, On some criteria for univalence and starlikeness, Indian J. Pure Appl. Math. 34 (2003), no. 4, 569-577.
V. Ravichandran: Department of Computer Applications, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602 105, Tamil Nadu, India

E-mail address: vravi@svce.ac.in
Herb Silverman: Department of Mathematics, College of Charleston, Charleston, SC 29424, USA
E-mail address: silvermanH@cofc.edu
S. Sivaprasad Kumar: Department of Mathematics, Sindhi College, 123 P.H. Road, Numbal, Chennai 600 077, Tamil Nadu, India

E-mail address: sivpk71@yahoo.com
K. G. Subramanian: Department of Mathematics, Madras Christian College, Tambaram, Chennai 600 059, Tamil Nadu, India

E-mail address: kgsmani@vsn1.net

