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We consider spin-coating over a small sinusoidal topography modelling the physical prob-
lem of the coating of a television screen. This involves depositing a phosphor layer on a
substrate with a precoating consisting of small parallel striations. Despite the fact that the
basic flow is radial, we show that the final liquid coating does not have radial variation;
rather, it varies according to the underlying topography. We use a thin film model resulting
in an evolution equation for the fluid thickness and sketch several techniques for obtaining
approximate solutions in appropriate limiting situations.
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1. Introduction. Spin-coating involves placing a suspension on a substrate which is

then rotated. As a result of centrifugal effects, the liquid flows radially away from the

centre [1, 2, 3, 6, 10, 11, 12, 14, 15, 18, 19, 20, 23, 27, 28]. The suspension consists

of the colloid material to be deposited on the substrate suspended in a solvent, for

example, phosphor in water. The centrifugal forces are offset by viscous and surface

tension effects. At the beginning of the process, the liquid height drops rapidly due to

centrifugal action; thereafter, the liquid height decreases slowly as the dominant con-

tributor to the liquid height reduction is evaporation. When all the solvent is removed

by a combination of spinning and evaporation, all that remains is a coating profile of the

colloid material. In the present paper, we develop a model to predict the fluid thickness

during spin-coating over a substrate with a preexisting topography.

This process is of considerable importance in industry. When coating the inside of

colour TV screens [10, 11, 13] (the latter is a useful reference on spin-coating—the pro-

cess used to coat the inside of colour TV screens), three different colour phosphors have

to be applied. The finished product has a strip of the first colour phosphor approxi-

mately 1 mm wide running from the top to the bottom of the screen (see Figure 1.1). A

strip of the second and third phosphor colours of similar width are applied adjacent

to the first strip. This process is repeated across the entire screen. The first phosphor

colour is applied using spin-coating on a flat topography. The space for the second and

third phosphor colours is obtained by etching the profile of the first phosphor. The

second and third phosphor colours are then applied using spin-coating over what is

essentially a periodic topography. At the end of this paper, we use Fourier series tech-

niques and the fluid thickness over a sinusoidal topography to find the fluid profile

over an arbitrary even periodic topography.
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Figure 1.1. Schematic of the coating process. The substrate to be coated has
a preexisting topography, the peaks of which are shown as parallel lines. The
coating solution is placed on the substrate which is then rotated in order to
spread the liquid.

Lammers [10, 11, 12] numerically obtained the fluid and solute profiles during spin-

coating over repeated steps up and down including evaporation and both constant and

variable surface tension (induced by Marangoni effects). Recent work by Homsy et al.

[4, 8, 29] has studied the stability of flows of this type and it has even suggested how

capillary ridges in the free surface can be flattened using Marangoni effects.

In this paper, we apply lubrication theory [21, 26] and use a perturbation technique

to solve for the fluid thickness over a small sinusoidal topography during spin-coating

using a number of ad hoc analytical methods of solution. Firstly, we obtain solutions

over different spatial domains assuming that the first-order perturbation of the fluid

thickness is time independent. This is justified towards the end of the process when

we would expect the rate of fluid reduction to be negligible in comparison to the rate of

change in the flow direction. Secondly, we incorporate time dependence. We note that

the basic spin effects induce a radial flow so, at first glance, we might expect a radially

symmetric fluid profile. We will show in fact that the fluid profile is dependent only on

the x∗ direction as outlined in Figure 1.1.

In Section 2, we develop the mathematical model. In Section 3, we obtain solutions

using a variety of approximations. In Section 4, we show how the results may be gener-

alised to the case of arbitrary topography. Finally, we make some closing observations.
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2. Mathematical model. The mathematical modelling of the physical process started

with the work of Emslie et al. [3]. This analysis considers only Newtonian fluids, and

takes advantage of the thinness of the film compared with the radial expanse of the

substrate, justifying the use of a lubrication analysis. Emslie et al. neglected all forces

except centrifugal and viscous; thus gravitational, coriolis, surface tension, and capil-

lary forces are ignored as is air drag on the free surface. Neglect of these forces is usu-

ally justified except for uneven substrates, where capillary forces must be introduced.

Less justifiable is the assumption of the constancy of fluid properties, most notably

the unrealistic assumption of neglecting solvent evaporation. The effect of evaporation

of the coating liquid was first addressed by Meyerhofer [19]. He included evaporation

of the solvent in a model predicting quite successfully the final layer thickness of so-

lute. Despite Meyerhofer’s own opinion, his set of equations is amenable to analytical

treatments. The main precursor to the work in the present paper was contributed by

Lammers [10, 11, 12]. He modelled the slightly varying evaporation rate and solved Mey-

erhofer’s model for nonuniform evaporation analytically (using perturbation theory)

and numerically [10, 11, 12]. Lammers also solved the governing spin-coating equa-

tions numerically for the fluid and solute thickness over a nonflat substrate incor-

porating evaporation and constant and varying surface tension, including Marangoni

effects.

The related problem of calculating the film thickness of thin film flow over topogra-

phy caused by different external forces has been addressed by many authors. Extensive

research contributions have been made on thin film flow in particular by Stillwagon and

Larson [27] who worked on levelling of thin films over uneven substrates during spin-

coating. Other contributions on the spin-coating process include [6, 10, 11, 12, 13, 18,

23, 28] and gravity-driven flow [5, 7, 22, 24, 25]. In particular, the closely related work

[7] considers the motion of a thin viscous film flowing over a trench or a mold. Lubrica-

tion theory is used to simplify the equations of motion to a nonlinear partial differential

equation for the evolution of the free surface in time and space. Quasisteady solutions

for the free surface are reported for different sized topographies, in particular, differ-

ent depth, width, and steepness. The authors reveal that the free surface develops a

ridge before the entrance to a trench (or exit from a mold) and this ridge can become

large for steep substrate features of significant depth. Other related works [5, 25] com-

pute the fluid thickness over an arbitrary topography using numerical and analytical

methods, respectively. The results show, for an isolated mold type topography, that the

fluid thickness reduces just before reaching the topography and a horseshoe-shaped

risen wake appears in front of the topography. Other works [16, 17] consider the non-

linear evolution of small- and large-amplitude initial periodic disturbances on vortex

tails.

Lawrence [14, 15] showed that the final coating thickness in spin-coating depends on

the initial concentration of solute, the kinematic viscosity, the diffusion coefficient of

the solute, and the spin speed, but is independent of the evaporation rate.

We define the typical fluid thickness to be H, the characteristic length scale (period

of the topography) to be L� H; and ε is a small parameter defined by ε = H/L. The

substrate topography under consideration is assumed to take the form
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T∗
(
x∗
)= εHT(x∗

L

)
. (2.1)

We use Cartesian coordinates such that the y∗-independent topography shows sinu-

soidal variation in the x∗ direction, where the reference frame is rotating with the

substrate (see Figure 1.1). The Navier Stokes equations for incompressible flow are

(
u∗ ·�)u∗ = − 1

ρ
�p∗+ν�2 u∗+(ω2x∗,ω2y∗,0

)
, (2.2)

divu∗ = 0, (2.3)

where the velocity vector u∗ = (u∗,v∗,w∗), the acceleration vector due to centrifugal

induced spin effects, is included explicitly, p∗ is the the pressure, ω is the angular

velocity, ρ is density, and ν is the kinematic viscosity. We wish to simplify the Navier

Stokes equations for the case of thin film flow. We nondimensionalise all variables

according to the following scales (variables with asterisks are dimensional, uppercase

symbols are dimensional and are of the order of their respective dimensional variables,

and lowercase variables are nondimensional and are of order unity):

x∗ = Lx, y∗ = Ly, t∗ = 3
2
Λt, p∗ = Pp, u∗ =Uu,

v∗ =Uv, w∗ =Ww, z∗ =Hz, h∗ =Hh.
(2.4)

z∗ denotes the Cartesian coordinate in the direction perpendicular to the plane of

fluid flow. u∗, v∗, and w∗ are the velocities in the x∗, y∗, z∗ directions, respectively.

h∗ is the perpendicular distance from the z∗ = 0 plane to the top of the fluid. Λ is

the time scale for the process which will be defined precisely later. U and W are the

typical in-plane and vertical velocities, respectively, withW = εU . We define ev to be the

evaporation rate which is assumed to be independent of the film thickness [19] and we

define a Reynolds number as�= (H2/L2)(UL/ν)= ε2(UL/ν)� 1 and neglect terms of

O(�,ε2) (though we retain terms of O(ε) which include the effects of the topography).

We choose, as a pressure scale, P = µUL/H2 and find that (2.2) can be approximated by

0=−∂p
∂x

+ ∂
2u
∂z2

+x, 0=− ∂p
∂y

+ ∂
2v
∂z2

+y, 0=−∂p
∂z

(2.5)

if we define U =H2ω2L/ν .

2.1. The boundary conditions. We assume that the air exerts zero stress on the

liquid surface, that is, on the free surface

tTTn= 0, (2.6)

where n is the unit normal vector at the fluid surface, T is the liquid stress tensor,

and t is a tangential unit vector at the fluid surface. At the free surface given by z∗ =
h∗(x∗,y∗), it follows that n= (1/

√
1+h∗2

x +h∗2
y )(−h∗x,−h∗y,1). In dimensionless form,

we find, to O(ε2), that

∂u
∂z

= 0;
∂v
∂z

= 0 on z = h(x,y). (2.7)
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The no-slip condition in dimensionless form is

u= v = 0 on z = εT . (2.8)

2.2. The evolution equation. From (2.5), (2.7), and (2.8), we find u, the in-plane ve-

locity, to be

u=�pdyn

[
z2−(εT)2

2
−h(z−εT)

]
, (2.9)

where pdyn denotes the dimensionless dynamic pressure including the centrifugal ef-

fects. We define the components of ū to be the in-plane velocities averaged over the

film thickness so that

ū=−�pdyn
(h−εT)2

3
. (2.10)

Applying a force balance normal to the fluid surface, we obtain

nTTn= γκ, (2.11)

where γ is the surface tension of the fluid and κ is the curvature of the liquid free

surface. In dimensionless form and incorporating the thin film approximation, this

reduces to

p =−B�2h, (2.12)

where B = γH3/µUL3 is assumed to be at least O(ε) in order to retain surface tension

effects. Assuming incompressibility and including the evaporation rate ev scaled with

the ratio of the typical fluid thickness to the process time H/Λ, we obtain the following

evolution equation for the liquid free surface h(x,y,t):

∂h
∂t
+ ∂

(
ū(h−εT))
∂x

+ ∂
(
v̄(h−εT))
∂y

+ evΛ
H

= 0. (2.13)

We assume that the Peclet numbers in the x∗ and y∗ directions are large so that con-

vection dominates diffusion. Exploiting the thinness of the liquid film, we assume that

the concentration of solute across the film is approximately constant, that is, the rel-

evant Peclet number in the z∗ direction is assumed small. The diffusivity coefficient

and the viscosity are also assumed constant though these may in fact be dependent on

the solute concentration. However, in this approximation, the variation in the diffusion

coefficients can be neglected because of the assumed Peclet numbers. In addition, it

is now known [12] that in most practical coating applications, the flow has practically

stopped as a result of convective thinning before the viscosity increases significantly.

This indicates that the approximation originally made by Meyerhofer [19] and followed

by many other authors, for example, as in [23], was essentially correct. Of course, im-

proved models could take into account the small viscosity changes that can occur (this

is discussed in [12]) but our aim here is to develop a leading-order model in the spirit

of Meyerhofer and Lammers et al.
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If we define a flux via q = (x + B(hxx +hyy)x,y + B(hxx +hyy)y)(h− εT)3, the

evolution equation can be written as

∂h
∂t
+ 1

3
∇·q+ evΛ

H
= 0. (2.14)

Equation (2.14) contains one unknown dependent variable h, and will be used later

to obtain the leading- and first-order perturbation equations of the scaled fluid thick-

ness h. We linearise by substituting (2.13) into

h(x,y,t)= h0(t)+εh1(x,y,t) (2.15)

and ignoring terms ofO(ε2) or smaller. This substitution is motivated by the fact that at

leading order, that is, for spin-coating on a flat substrate, it is well known that regardless

of the initial film thickness, the liquid quickly levels into a uniform film [3] whose

thickness depends only on the time. In fact, the film thickness, after a short time,

is more or less independent of the initial film thickness. In this model, we are thus

ignoring the very early (and unimportant) stages of the process, during which the film

quickly equilibrates. The directional variation in our model arises at the next order via

the effects of the topography. Hence we find that

dh0

dt
+ε∂h1

∂t
=−h3

0−
3evΛ
2H

+ε
[
− 3

2
xh2

0
∂
(
h1−T

)
∂x

− 3
2
yh2

0
∂
(
h1−T

)
∂y

−3h2
0

(
h1−T

)− B
2
h3

0�2 (�2h1
)]
.

(2.16)

Following previous authors, for example, Meyerhofer [19], we assume that the evapora-

tion rate is independent of the concentration. In practical situations, the coating process

is begun with an excess of dilute solution (in which case, the final coating thickness is

independent of the initial film height). The process separates approximately into two

stages. During the first stage, the film thins primarily because of spin effects and evap-

orative effects are virtually negligible. During this stage, the evaporation rate can be

taken to be approximately constant, as the solute concentration remains at its initial

value. As the film becomes thinner, the flow slows down until finally (from a practi-

cal point of view) further thinning only progresses via evaporation with subsequent

increase in concentration (spin effects are practically zero at this point). If the evapo-

ration rate is strongly concentration-dependent during this phase, the assumption of

constant evaporation rate is, strictly speaking, incorrect, but in fact, this will not lead to

any error in predicting the final layer thickness, the primary aim of this analysis (though

it will incorrectly predict the overall process time). This is the reason that the constant

evaporation model of Meyerhofer [19] gives results for the final film thickness in agree-

ment with experiment; we will adopt the same approach. Of course, if the evaporation

rate ev is known as a function of the concentration, this can be easily incorporated into

the model to obtain improved estimates for the overall process time.
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We now choose H = h∗0 and Λ such that 3evΛ/2H = 1 so that (2.16) yields

dh0

dt
=−h3

0−1, (2.17)

∂h1

∂t
=−3

2
xh2

0
∂
(
h1−T

)
∂x

− 3
2
yh2

0
∂
(
h1−T

)
∂y

−3h2
0

(
h1−T

)−βh3
0�2 (�2h1

)
, (2.18)

where β= γH/2ρω2L4 and 1< β< 1/ε since, typically, γ = 4×10−2 Kg/s2, H = 10−5 m,

ρ = 103 Kg/m3, ω= 10s−1, and L= 10−3 m.

It is an elementary exercise to show that we also obtain (2.18) if we start with the

spin-coating equation in its more familiar cylindrical coordinate form:

∂h∗

∂t∗
= − 1

3r∗
ρω2

µ
∂
∂r∗

(
r∗2(h∗−T∗)3

)
− γ

3µ
�·
((
h∗−T∗)3�(�2h∗

))−ev, (2.19)

and then make the assumption thath= h0(t)+εh1(x,y,t). We note that if L (the period

of the topography) is very large, the topography is effectively flat and the problem

simplifies to solving (2.17), that is, a solution uniform in x and y and dependent on

t only.

Solving (2.17) using an infinite initial condition, we obtain the following base-state

solution for h0:

t =−1
3

ln


 h0+1√

h2
0−h0+1


− 1√

3
arctan

(
2h0−1√

3

)
+ π

2
√

3
, (2.20)

where we use the principal value of the arctan function.

2.2.1. A solution strategy. In Figure 1.1, we consider a rotating substrate. We are

interested in the case where we have a low-amplitude, long-period sinusoidal topog-

raphy uniform with respect to the y∗ direction (see Figure 1.1). We thus assume that

T∗(x∗) = εH cos(2πx∗/L) so that T(x) = cos(2πx). In Figure 1.1, the peaks of the

topography are shown as straight lines.

The central line is defined as the line passing through the centre of rotation in the

plane of the substrate parallel to the peaks of the topography, that is, the line x = 0 (see

Figure 1.1). As the centrifugal force acting on the fluid is proportional to the distance

from the centre of rotation, the x component of this force is proportional to x and

is constant along a line of constant x. As the topography is dependent on x only, the

topographical disturbance to the flow will be constant on a line of constantx. According

to the lubrication approximation, the velocity responds linearly to the driving force

which results in the x component of velocity being constant on a line of constant x
(i.e., on a line parallel to the central line).

For a line of constant x, the y component of centrifugal force and consequently the

velocity in the y direction are linear in y . Hence, from (2.10), we see that the fluid

thickness must be constant on a line of constant x (equivalently, the pressure will not

vary in the y direction as can be seen from (2.12)).
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Hence, we look for translation-invariant solutions for the fluid profile which depend

on x, t only. Though the topography is independent of y , the basic spin effects induce

a radial flow; so at first sight, we might not expect such a y-independent film thickness.

However, because the base flow is position independent, it is clear that we can simplify

by assuming that h1 = h1(x,t), and (2.18) now yields

∂h1

∂t
=−3

2
xh2

0
∂
(
h1−T

)
∂x

−3h2
0

(
h1−T

)−βh3
0
∂4h1

∂x4
. (2.21)

We will use the initial condition h1(x,0)= 0. The correctness of the form of h1(x,t) is

verified by the fact that (2.21) is y independent and no contradiction arises.

3. Solutions. Since (2.21) has nonconstant coefficients, we cannot find a solution us-

ing standard techniques such as separation of variables, and a full solution can only

be found numerically. Instead we set ourselves the task of constructing an approxi-

mate analytic solution in an ad hoc fashion. For small perpendicular distances from

the centre line, the x component of centrifugal force is small and the surface tension

effect is dominant, so the amplitude of the fluid profile is small in this region. At larger

distances, the x component of centrifugal force is large in comparison to the surface

tension effect and, as a result, the fluid profile will be almost conformal to the topogra-

phy. For these reasons and from what is known from experimental works [10, 11, 12],

we predict that the disturbance in the fluid thickness for small x will consist of small

sinusoidal oscillations whose amplitude increases approximately linearly with x, while

for large x, it will become almost conformal.

Consequently, we will use the following ansatz to solve (2.21):

h1 =A(x,t)x sin(2πx)+B(x,t)cos(2πx). (3.1)

We first solve for h1 and assume A(x,t) and B(x,t) are independent of time and have

negligible space derivatives. Subsequently, we assume A(x,t) and B(x,t) are indepen-

dent of time and the solution is only valid for x � β, though spatial derivatives are

included.

Then we incorporate the time dependence and the spatial derivatives of A(x,t) and

B(x,t) in the solution procedure for x� β. Finally, the time dependence of A(x,t) and

B(x,t) is included in the solution procedure and the solutions are valid for all x. In this

case, the spatial derivatives are assumed negligible; we will justify this a posteriori.

3.1. Quasistatic solutions. We solve for the first-order perturbation term of the fluid

thickness assuming it is independent of time. This assumption is reasonable towards

the end of the process when h1 and consequently A(x,t) and B(x,t) are changing least

rapidly. Physically, this corresponds to the situation where the liquid level is thinning

slowly relative to the speed with which the profile adjusts to an underlying topography.

In this section, we obtain solutions for h1 over different spatial domains and for

t� 1 when the flow is quasisteady.
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3.1.1. Solutions for t� 1. The space derivatives of A(x) and B(x) are assumed to

be negligible which we will verify a posteriori. On substituting the topography T(x)=
cos(2πx) and (3.1) into the governing equation for h1 (2.21), we obtain

0=
(
− 9

2
h2

0A+3πh2
0B−16π4βh3

0A−3h2
0π
)
x sin(2πx)

+(−3h2
0B−3πx2h2

0A−16π4βh3
0B+32π3βh3

0A+3h2
0

)
cos(2πx).

(3.2)

Equating the coefficients of sine and cosine on the right-hand side of (3.2) to zero, we

obtain two linear equations in A(x) and B(x) whose solutions are

A(x)= −(16/3)π3h0β
3/2π2+(8/3)π2h0β+(256/9)π6h2

0β2+x2
,

B(x)= 3/2π2−(16/3)π2h0β+x2

3/2π2+(8/3)π2h0β+(256/9)π6h2
0β2+x2

.
(3.3)

In (3.3),h0 is assumed independent of t for t� 1; the flow is assumed to have effectively

stopped at this point. From (3.3), it can be seen that A(x) takes a finite negative value

when x = 0 and increases asymptotically to zero as x→∞, while B(x) assumes a value

close to zero whenx = 0 and increases asymptotically to unity asx→∞. This behaviour

of A(x) and B(x) is expected from physical considerations [10, 11, 12]. We assumed

that spatial derivatives of A(x) and B(x) up to and including the fourth order were

negligible. For h0 = 1 and β = 5, the maximum absolute value of the first four spatial

derivatives of A(x) and B(x) is < 10−4.

3.1.2. Solution for x� β, t� 1. We solve for h1(x,t)while now including the effect

of the spatial derivatives. To evaluate these,A(x) and B(x) are written in a Taylor series

in powers of x/β. From the previous subsection, A(x) can be written as

A(x)= a1β
b1+c1β+d1β2+x2

. (3.4)

Equation (3.4) can be expressed as a polynomial when x� β:

A(x)= 1
β

(
A1+A2

1
β
+A3

1
β2
+A4

x2

β2

)
, (3.5)

truncating so that terms of O(1/β2) or larger are included. Similarly, B(x) can be writ-

ten as

B(x)= a2+b2β+x2

c2+d2β+e2β2+x2
, (3.6)

which can be expressed as

B(x)= 1
β

(
B1+B2

1
β
+B3

1
β2
+B4

x2

β2
+B5

x2

β

)
. (3.7)

The spatial derivatives of A(x) and B(x) can be easily obtained from (3.5) and (3.7).

Substituting (3.1) into (2.21), we obtain 14 groups of terms. Each group will consist of
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terms which can be a function ofh0,Ai, Bj , i= 1, . . . ,4, j = 1, . . . ,5, with factors involving

powers of β and x. As the left-hand side of (2.21) equals zero and the common factors

in each group are independent, all of these groups must equal zero. We thus obtain 9

linearly independent equations in the 9 unknowns Ai, Bj :

0=−3π−16π4h0A1,

0= 3+32π3h0A1−16π4h0B1,

0=−3πA1−16π4h0B5,

0= 3πB5−16π4h0A4,

0=−9
2
A1+3πB1−64π3h0B5−16π4h0A2,

0=−6B5−3πA2+96π3h0A4−16π4h0B4,

0=−3B1+48π2h0B5+32π3h0A2−16π4h0B2,

0=−9
2
A2+3πB2+144π2h0A4−64π3h0B4−16π4h0A3,

0=−3B2−48πh0A4+48π2h0B4+32π3h0A3−16π4h0B3.

(3.8)

Equations (3.8) can be solved to express Ai and Bj in terms of h0. Thus from (3.4), (3.5),

(3.6), and (3.7), we find that

A(x)= −(16/3)π3h0β
−13/2π2−(56/3)π2h0β+(256/9)π6h2

0β2+x2
,

B(x)= 7/2π2−(16/3)π2h0β+x2

9/2π2−(104/3)π2h0β+(256/9)π6h2
0β2+x2

.
(3.9)

Equations (3.9) are very similar to the solution for A(x) and B(x) in Section 3.1.1. This

similarity remains the case when x > β despite the restriction on x in the current

method of solution.

To show the similarity between solutions resulting from the two methods, we plot

h1 for the two time-independent solution methods together with two time-dependent

solutions in Figures 3.1, 3.2, 3.3, and 3.4.

3.2. Time-dependent solutions

3.2.1. Solution for x� β and all t. In the previous section, we neglected time depen-

dence. In this subsection, we solve in the region x� β for the first-order perturbation

term of the fluid thickness including time dependence and the effect of the spatial

derivatives. As in the previous subsection, we express A(x,t) and B(x,t) as polynomi-

als in x for x� β. Rewriting (3.5) and (3.7), incorporating the time dependence in Ai,
Bj , we have

A(x,t)= 1
β

(
A1(t)+A2(t)

1
β
+A3(t)

1
β2
+A4(t)

x2

β2

)
,

B(x,t)= 1
β

(
B1(t)+B2(t)

1
β
+B3(t)

1
β2
+B4(t)

x2

β2
+B5(t)

x2

β

)
.

(3.10)
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1412108642

x

0.004

0.002

0

−0.002

−0.004

h1

Figure 3.1. h1 for t = 0.1, β= 10.

1412108642

x

0.006

0.004

0.002

0

−0.002

−0.004

−0.006

h1

Figure 3.2. h1 for t = 0.3, β= 10.
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x

0.002

0.001

0

−0.001

−0.002

h1

Figure 3.3. h1 for t = 0.1, β= 20.
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1412108642

x

0.003

0.002

0.001

0

−0.001

−0.002

−0.003

h1

Figure 3.4. h1 for t = 0.3, β= 20.

Substituting (3.10) into (3.1) and using (2.21), we obtain

1
β

(
dA1

dt
+ dA2

dt
1
β
+ dA3

dt
1
β2
+ dA4

dt
x2

β2

)
x sin(2πx)

+ 1
β

(
dB1

dt
+ dB2

dt
1
β
+ dB3

dt
1
β2
+ dB4

dt
x2

β2
+ dB5

dt
x2

β

)
cos(2πx).

(3.11)

Again from (3.1) and (2.21), we obtain 14 groups of terms identical to those in the

previous section. On comparing to (3.11), we obtain 9 linearly independent first-order

ordinary differential equations in Ai, Bj as follows:

0=−3π−16π4h0A1,

0= 3+32π3h0A1−16π4h0B1,

0=−3πA1−16π4h0B5,

0= 3πB5−16π4h0A4,

dA1

dt
=−9

2
A1+3πB1−64π3h0B5−16π4h0A2,

dB5

dt
=−6B5−3πA2+96π3h0A4−16π4h0B4,

dB1

dt
=−3B1+48π2h0B5+32π3h0A2−16π4h0B2,

dA2

dt
=−9

2
A2+3πB2+144π2h0A4−64π3h0B4−16π4h0A3,

dB2

dt
=−3B2−48πh0A4+48π2h0B4+32π3h0A3−16π4h0B3.

(3.12)

Considering (3.12) and using (3.10) in the form

A(x,t)= a1(t)β
b1(t)+c1(t)β+d1(t)β2+x2

,

B(x,t)= a2(t)+b2(t)β+x2

c2(t)+d2(t)β+e2(t)β2+x2
,

(3.13)
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we can express ai(t), bj(t), ck(t), dl(t), and em(t) in terms of the known Ai(t), Bj(t)
as outlined in the previous subsection, giving

a1 = −16π3h0

3
, b1 = −8+71h3

0−38h6
0

18π2h6
0

, c1 = −8
(−2+19h3

0

)
π2

9h2
0

,

d1 = 256h2
0π6

9
, a2 = 7

2π2
, b2 = −16h0π2

3
,

c2 = −32+5h3
0+118h6

0

18π2h6
0

, d2 = 8π2
(
2−11h3

0

)
3h2

0

, e2 = 256h2
0π6

9
.

(3.14)

The solution of A(x,t) and B(x,t) is given by (3.13), respectively, where ai(t), bj(t),
ck(t), dl(t), and em(t) are defined by (3.14).

3.2.2. Solution for all x, t. In this subsection, we solve for h1(x,t) including time

dependence over the entire x domain. We will neglect space derivatives and justify this

a posteriori. Substituting (3.1) into (2.21), we obtain

∂A
∂t
x sin(2πx)+ ∂B

∂t
cos(2πx)

=
(
− 9

2
h2

0A−3πh2
0+3πh2

0B−16π4βh3
0A
)
x sin(2πx)

+(3h2
0−3h2

0B+32π3βh3
0A−16π4βh3

0B−3πh2
0Ax

2)cos(2πx).

(3.15)

By equating the coefficients of sin(2πx) and cos(2πx) on both sides of (3.15), we

obtain a pair of coupled pseudopartial differential equations

∂A(x,t)
∂t

+α1(t)A(x,t)+β1(t)B(x,t)= r1(t), (3.16)

∂B(x,t)
∂t

+α2(x,t)A(x,t)+β2(t)B(x,t)= r2(t), (3.17)

where

α1 = 9
2
h2

0+16π4βh3
0, β1 =−3πh2

0, r1 =−3πh2
0,

α2 =−32π3βh3
0+3πh2

0x
2, β2 = 3h2

0+16π4βh3
0, r2 = 3h2

0.
(3.18)

The time dependence of the coefficients (3.18) in (3.16) and (3.17) is solely incorporated

in h0 as can be seen from (2.17). Substituting (3.16) into (3.17), we obtain

∂2A
∂t2

+
(
α1− 1

β1

∂β1

∂t
+β2

)
∂A
∂t
+
(
∂α1

∂t
−β1α2−α1

(
1
β1

∂β1

∂t
−β2

))
A

= ∂r1

∂t
−r1

(
1
β1

∂β1

∂t
−β2

)
−β1r2.

(3.19)

We substitute (3.18) into the coefficients of (3.19) and use (2.17) and the chain rule to

change the independent variable t to h0, giving

∂2A
∂h2

0

−
(

32π4βh3
0+

2
h0

)
∂A
∂h0

+(9π2h4
0x

2+256π8β2h6
0−16π4βh2

0

)
A=−48π5βh5

0.

(3.20)
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In the appendix, we show that

A(x,t)= 8
√

2π5β√
x

h3/2
0 e4π4βh4

0

[
−J1/2

(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 cos
(
πxh̄3

0

)
dh̄0

+J−1/2
(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 sin
(
πxh̄3

0

)
dh̄0

]
.

(3.21)

We obtain an expression for B(x,t) by substitution using (3.16) and (2.17) and find,

after simplification,

B(x,t)= 1−8
√

2π5β
√
x
(
1+h3

0

)
h3/2

0 e4π4βh4
0

×
[
−J′1/2

(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 cos
(
πxh̄3

0

)
dh̄0

+J′−1/2
(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 sin
(
πxh̄3

0

)
dh̄0

]

+
[

1
3π

(
9
2
+16π4βh0

)
− 1+h3

0

3πh3
0

(
3
2
+16π4βh4

0

)]
A(x,t).

(3.22)

In Figures 3.1, 3.2, 3.3, and 3.4, we graphed h1(x,t) (using the solutions of Section

3.2.2) against x at t = 0.1,0.3, respectively, with β = 10,20. We found excellent agree-

ment betweenh1(x,t) of Sections 3.2.1 and 3.2.2 whenx� β. We also found agreement

between the time-dependent solutions for large t and the quasisteady solutions. Con-

sequently, the a posteriori verification that justifies neglecting the spatial derivatives

of A(x) and B(x) in Section 3.1.1 also suffices for Section 3.2.2.

Despite the different approaches used, all four solutions are similar though the last

solution is the most complete since it includes time dependence and is valid for all x
(unlike the solution methods in Sections 3.1.2 and 3.2.1).

For x � β, t � 1, Section 3.1.2 is appropriate. For other values of x, the solu-

tion given by Section 3.1.1 should be selected. For x � β, the solution outlined by

Section 3.2.1 is the simplest. For other x values, the solution given by Section 3.2.2

should be chosen.

Finally, in Figure 3.5, by way of partial verification of the approach taken in this

paper, we compare the solutions of Section 3.1.1 to a perturbation solution for t� 1,

β� 1. The perturbation solution (chosen to be regular at the origin) is

h1 = cos(2πx)+ −8βπ2h0

3x2

(
cos(2πx)+2πx sin(2πx)−1

)+O(β2) (3.23)

and it is clear that there is very good agreement between the solutions.

4. The fluid profile over an arbitrary even topography. Since we have obtained the

fluid profile over a particular sinusoidal topography, we can use Fourier theory to find

the fluid thickness over an arbitrary even periodic topography. Such topographies ap-

pear commonly in industry, for example, when applying the second and third phosphor

colours to the inside of a TV screen [12]. Taking an arbitrary even topography of period
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0.50.40.30.20.1
x

1

0.5

0

−0.5

−1

z

Section 3.1.1
Perturbation solution
Topography

Figure 3.5. h1(x,t), t� 1. Comparisons of h1 using Section 3.1.1 and a per-
turbation approach. h0 = 1, β= 0.001.

2Q, f(x∗), then

f
(
x∗
)= c0+

∞∑
n=1

cn cos
nπ
Q
x∗dx∗, (4.1)

where

c0 = 1
Q

∫Q
0
f
(
x∗
)
dx∗, cn = 2

Q

∫Q
0
f
(
x∗
)
cos

nπ
Q
x∗dx∗. (4.2)

The solution for (2.21) when the topography is

cos2πx or cos
2πx∗

L
(4.3)

is given by (3.1). At this point, we rewrite (3.1) in dimensional form. If we replace L by

2Q/n in (3.1), we have a solution for the topography cos(nπ/Q)x∗ which we define

as h[n]1 . Since (2.21) is linear, the solution for an arbitrary topography f(x∗) is

hf(x
∗)

1 =
∞∑
n=1

cnh
[n]
1 . (4.4)

c0 does not appear in (4.4) as it has no effect on the first-order perturbation term of

the fluid profile.
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5. Summary. In this paper, we found the fluid profile flowing over a particular small

sinusoidal topography during spin-coating. We used lubrication theory to obtain an

evolution equation for the fluid thickness. We then applied a perturbation technique

to solve for the fluid profile and we found a translation-invariant solution for the fluid

thickness which is dependent on time and perpendicular distance from the central

line (the line parallel to the peaks of the topography and passing through the axis of

rotation).

Using a number of ad hoc analytical techniques, we solved for the first-order per-

turbation term of the fluid thickness. In Section 3.1.1, we solved for the fluid profile

over the entire substrate for t� 1. In Section 3.1.2, we found the steady state solution

in the region close to the central line. Neglecting time dependence is justifiable close

to the end of the process as a quasisteady state is approached. In Section 3.2.1, we

include time dependence but restrict the solution domain to that of Section 3.1.2. In

Section 3.2.2, we find a time-dependent solution over the entire substrate.

Despite the different solution methods, the two time-independent solutions and the

two time-dependent solutions of A(x,t) and B(x,t) and thus h1(x,t) are almost iden-

tical as can be seen in Figures 3.1, 3.2, 3.3, and 3.4. The last solution method is the most

complete as it includes time dependence (unlike solution methods in Sections 3.1.1 and

3.1.2) and is valid over the entire substrate. Neglecting the space derivatives of A(x,t)
and B(x,t) was justified a posteriori.

Any substrate topography which is periodic in one Cartesian coordinate and inde-

pendent of the other can be represented by a Fourier series. Since the equation for the

first-order perturbation term of the scaled fluid thickness (2.21) is linear, the fluid pro-

file over such a topography can be obtained as a sum of solutions of fluid thicknesses

over sinusoidal topographies with different periods. Consequently, this analysis gives

fluid profile solutions over real topographies which occur in industry, for example, the

topography which occurs when applying the second and third phosphor colours during

spin-coating of TV screens [10, 11, 12].

Further work should involve a detailed comparison with experimental results and

should numerically verify the solutions obtained in this paper. We do not undertake

the numerics here but we note that the different approximations used are, at any rate,

self-consistent and physically reasonable when compared with (limited) existing exper-

imental data [10, 11].

Appendix

Solutions for A(x,t) and B(x,t).

∂2A
∂h2

0

−
(

32π4βh3
0+

2
h0

)
∂A
∂h0

+(9π2h4
0x

2+256π8β2h6
0−16π4βh2

0

)
A=−48π5βh5

0.
(A.1)

We will compare the homogeneous form of (A.1) to
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x2d2y
dx2

−x(2a+γ−1+2bcxc
)dy
dx

+
(
a(a+γ)+

(
1
4
−m2

)
γ2+bc(2a+γ−c)xc+b2c2x2c+−1

4
α2γ2x2γ

)
y = 0.

(A.2)

The solution of (A.2) is given by [9] as follows:

y(x)= xa exp
(
bxc

)
ȳ
(
m,αxγ

)
, (A.3)

with

ȳ(m,x)= C1Mm(x)+C2M−m(x), (A.4)

where C1 and C2 are constants and

Mm(x)=
√
xJm

(
ix
2

)
. (A.5)

Comparing the coefficients of the homogeneous form of (A.1) with those of (A.2), we

have the following relationships:

2a+γ−1= 2, c = 4, 2bc = 32π4β,

a(a+γ)+
(

1
4
−m2

)
γ2 = 0, bc(2a+γ−c)=−16π4β,

b2c2 = 256π8β2, γ = 3, −1
4
α2γ2 = 9π2x2.

(A.6)

As 6 of the 8 equations in (A.6) are independent, we can solve for the 6 unknowns a,

b, c, α, γ, and m, giving

a= 0, b = 4π4β, c = 4, α=±2πxi, γ = 3, m=±1
2
. (A.7)

Using (A.3), (A.4), (A.5), and (A.7), the two fundamental solutions of the homogeneous

form of (A.1) which we define as u1 and u2 are

u1 =
√
xexp

(
4π4βh4

0

)
h3/2

0 J1/2
(
πxh3

0

)
,

u2 =
√
xexp

(
4π4βh4

0

)
h3/2

0 J−1/2
(
πxh3

0

)
.

(A.8)

Using “variation of parameters,” we will find a solution to the inhomogeneous form of

(A.1) of the form

A=u1v1+u2v2, (A.9)

where

u1v′1+u2v′2 = 0, u′1v
′
1+u′2v′2 =−48π5βh5

0. (A.10)

Solving (A.10) for v′1 and v′2, we obtain

v′1 =
48π5βh5

0u2

u1u′2−u′1u2
, v′2 =

−48π5βh5
0u1

u1u′2−u′1u2
. (A.11)
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The denominator of (A.11) is

3πx2h5
0 exp

(
8π4βh4

0

)(
J1/2

(
πxh3

0

)
J′−1/2

(
πxh3

0

)−J′1/2(πxh3
0

)
J−1/2

(
πxh3

0

))
, (A.12)

which can be written as

3πx2h5
0 exp

(
8π4βh4

0

)
W
[
J1/2

(
πxh3

0

)
,J−1/2

(
πxh3

0

)]
, (A.13)

where W is the Wronskian of the two functions. Since

W
[
J1/2(z),J−1/2(z)

]= −2
πz

, (A.14)

(A.12) can be written as

− 6
π
xh2

0 exp
(
8π4βh4

0

)
. (A.15)

Substituting (A.15) into (A.11), we have

v′1 =−8π6β
h9/2

0√
x

exp
(−4π4βh4

0

)
J−1/2

(
πxh3

0

)
,

v′2 = 8π6β
h9/2

0√
x

exp
(−4π4βh4

0

)
J1/2

(
πxh3

0

)
.

(A.16)

Since

J−1/2(x)=
√

2
πx

cosx, J1/2(x)=
√

2
πx

sinx, (A.17)

(A.16) can be written as

v′1 =−8
√

2π5β
h3

0

x
exp

(−4π4βh4
0

)
cos

(
πxh3

0

)
,

v′2 = 8
√

2π5β
h3

0

x
exp

(−4π4βh4
0

)
sin
(
πxh3

0

)
.

(A.18)

Using (A.9), (A.8), and (A.18), we obtain

A(x,t)= 8
√

2π5β√
x

h3/2
0 e4π4βh4

0

[
−J1/2

(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 cos
(
πxh̄3

0

)
dh̄0

+J−1/2
(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 sin
(
πxh̄3

0

)
dh̄0

]
.

(A.19)
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We obtain an expression for B(x,t) by substitution using (3.16) and (2.17) and find,

after simplification,

B(x,t)= 1−8
√

2π5β
√
x
(
1+h3

0

)
h3/2

0 e4π4βh4
0

×
[
−J′1/2

(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 cos
(
πxh̄3

0

)
dh̄0

+J′−1/2
(
πxh3

0

)∫∞
h0

h̄3
0e
−4π4βh̄4

0 sin
(
πxh̄3

0

)
dh̄0

]

+
[

1
3π

(
9
2
+16π4βh0

)
− 1+h3

0

3πh3
0

(
3
2
+16π4βh4

0

)]
A(x,t).

(A.20)
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