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We prove a theorem of Mazhar (1999) on |N̄,pn|k summability factors under weaker con-
ditions by using a quasi β-power increasing sequence instead of an almost increasing se-
quence.
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1. Introduction. A positive sequence (bn) is said to be almost increasing if there

exist a positive increasing sequence (cn) and two positive constants A and B such that

Acn ≤ bn ≤ Bcn (see [1]). Obviously, every increasing sequence is almost increasing.

However, the converse need not be true as can be seen by taking the example, say

bn =ne(−1)n . Let
∑
an be a given infinite series with partial sums (sn). Let (tn) denote

thenth (C,1)mean of the sequence (nan). A series
∑
an is said to be summable |C,1|k,

k≥ 1, if (see [6, 8])

∞∑
n=1

∣∣tn∣∣k
n

<∞. (1.1)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv �→∞ as n �→∞, P−i = p−i = 0, i≥ 1. (1.2)

The sequence-to-sequence transformation

σn = 1
Pn

n∑
v=0

pvsv (1.3)

defines the sequence (σn) of the (N̄,pn) mean of the sequence (sn), generated by the

sequence of coefficients (pn) (see [7]). The series
∑
an is said to be summable |N̄,pn|k,

k≥ 1, if (see [3])

∞∑
n=1

(
Pn
pn

)k−1∣∣∆σn−1

∣∣k <∞, (1.4)

where

∆σn−1 =− pn
PnPn−1

n∑
v=1

Pv−1av, n≥ 1. (1.5)
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In the special case when pn = 1 for all values of n, |N̄,pn|k summability is the same as

|C,1|k summability. Also if we take pn = 1/(n+1), then |N̄,pn|k summability reduces

to |N̄,1/(n+1)|k summability.

Mazhar [9] has proved the following theorem on |C,1|k summability factors of an

infinite series.

Theorem 1.1. If (Xn) is a positive nondecreasing sequence such that

λmXm =O(1) as m �→∞, (1.6)

m∑
n=1

nXn
∣∣∆2λn

∣∣=O(1) as m �→∞, (1.7)

m∑
n=1

∣∣tn∣∣k
n

=O(Xm) as m �→∞, (1.8)

then the series
∑
anλn is summable |C,1|k, k≥ 1.

Bor [5] has extended Theorem 1.1 for |N̄,pn|k summability method in the following

form.

Theorem 1.2. Under the conditions (1.6), (1.7),

Pn =O
(
npn

)
, (1.9)

m∑
n=1

pn
Pn

∣∣tn∣∣k =O(Xm) as m �→∞, (1.10)

the series
∑
anλn is summable |N̄,pn|k, k≥ 1.

For pn = 1, (1.10) is the same as (1.8), and (1.9) holds. In this case, Theorem 1.2

reduces to Theorem 1.1. Also if we assume that (npn)=O(Pn), then (1.10) is equivalent

to (1.8) and |N̄,pn|k is equivalent to the |C,1|k summability (see [2, 4]). Hence, under

the additional assumption (npn)=O(Pn), Theorem 1.1 is equivalent to Theorem 1.2.

Quite recently, Mazhar [10] obtained a further generalization of Theorem 1.2 under

weaker conditions by using an almost increasing sequence instead of positive nonde-

creasing sequence. Also it is clear that (1.9) and (1.10) imply (1.8). On the other hand,

(1.9) implies that

m∑
n=1

Pn
n
=O(Pm) as m �→∞. (1.11)

It may be remarked that (1.9) implies (1.11), but the converse need not be true. His

theorem is as follows.

Theorem 1.3. If (Xn) is an almost increasing sequence and the conditions (1.6), (1.7),

(1.8), (1.10), and (1.11) hold, then the series
∑
anλn is summable |N̄,pn|k, k≥ 1.

2. The main result. The aim of this note is to prove Theorem 1.3 under weaker con-

ditions. For this we need the concept of quasi β-power increasing sequence. A positive



QUASI β-POWER INCREASING SEQUENCES 2373

sequence (γn) is said to be quasi β-power increasing sequence if there exists a constant

K =K(β,γ)≥ 1 such that

Knβγn ≥mβγm (2.1)

holds for all n ≥m ≥ 1. It should be noted that every almost increasing sequence is a

quasi β-power increasing sequence for any nonnegative β, but the converse need not be

true as can be seen by taking the example, say γn =n−β for β > 0. So we are weakening

the hypotheses of Theorem 1.3, replacing an almost increasing sequence by a quasi

β-power increasing sequence. Now, we will prove the following theorem.

Theorem 2.1. Let (Xn) be a quasi β-power increasing sequence for some 0< β < 1.

If the conditions (1.6), (1.7), (1.8), (1.10), and (1.11) are satisfied, then the series
∑
anλn

is summable |N̄,pn|k, k≥ 1.

We need the following lemma for the proof of Theorem 2.1.

Lemma 2.2. If (Xn) is a quasi β-power increasing sequence for some 0< β < 1, then

under the conditions (1.6) and (1.7),

nXn
∣∣∆λn∣∣=O(1), (2.2)

∞∑
n=1

Xn
∣∣∆λn∣∣<∞. (2.3)

Proof. The condition (1.6) implies that λn = O(1) and it is easy to see that (1.7)

implies that n∆λn =O(1). Thus ∆λn→ 0, n→∞. Since 0< β< 1, for any v ≥n we have

nXn ≤KvXv , by (2.1). Hence, by (1.7), we get that

nXn
∣∣∆λn∣∣≤nXn

∞∑
v=n

∣∣∆2λv
∣∣≤K ∞∑

v=n
vXv

∣∣∆2λv
∣∣<∞, (2.4)

thus nXn|∆λn| =O(1) as n→∞. Also,

∞∑
n=1

Xn
∣∣∆λn∣∣=

∞∑
n=1

Xn

∣∣∣∣∣
∞∑
v=n

∆2λv

∣∣∣∣∣≤
∞∑
v=1

∣∣∆2λv
∣∣ v∑
n=1

Xn

=
∞∑
v=1

∣∣∆2λv
∣∣ v∑
n=1

nβXnn−β ≤
∞∑
v=1

∣∣∆2λv
∣∣KvβXv

v∑
n=1

n−β

≤K
∞∑
v=1

∣∣∆2λv
∣∣vβXv

∫ v
1

dx
xβ

≤K
∞∑
v=1

∣∣∆2λv
∣∣K(β)vXv <∞,

(2.5)

where K(β) is a constant depending only on β. This completes the proof of the lemma.

3. Proof of Theorem 2.1. Let (Tn) denote the (N̄,pn) mean of the series
∑
anλn.

Then, by definition, and changing the order of summation, we have

Tn = 1
Pn

n∑
v=0

pv
v∑
i=0

aiλi = 1
Pn

n∑
v=0

(
Pn−Pv−1

)
avλv. (3.1)
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Then, for n≥ 1, we have

Tn−Tn−1 = pn
PnPn−1

n∑
v=1

Pv−1avλv = pn
PnPn−1

n∑
v=1

Pv−1λv
v

vav. (3.2)

By Abel’s transformation, we have

Tn−Tn−1 = n+1
nPn

pntnλn− pn
PnPn−1

n−1∑
v=1

pvtvλv
v+1
v

+ pn
PnPn−1

n−1∑
v=1

Pv∆λvtv
v+1
v

+ pn
PnPn−1

n−1∑
v=1

Pvtvλv+1
1
v

= Tn,1+Tn,2+Tn,3+Tn,4.

(3.3)

Since

∣∣Tn,1+Tn,2+Tn,3+Tn,4∣∣k ≤ 4k
(∣∣Tn,1∣∣k+∣∣Tn,2∣∣k+∣∣Tn,3∣∣k+∣∣Tn,4∣∣k), (3.4)

to complete the proof of Theorem 2.1, it is enough to show that

∞∑
n=1

(
Pn
pn

)k−1∣∣Tn,r∣∣k <∞, for r = 1,2,3,4. (3.5)

In view of (1.6), (λn) is bounded. Hence, we have that

m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,1∣∣k =
m∑
n=1

pn
Pn

∣∣λn∣∣k−1∣∣λn∣∣∣∣tn∣∣k =O(1)
m∑
n=1

∣∣λn∣∣pnPn
∣∣tn∣∣k

=O(1)
m−1∑
n=1

∆
∣∣λn∣∣

n∑
v=1

pv
Pv

∣∣tv∣∣k+O(1)∣∣λm∣∣
m∑
n=1

pn
Pn

∣∣tn∣∣k

=O(1)
m−1∑
n=1

∣∣∆λn∣∣Xn+O(1)∣∣λm∣∣Xm
=O(1) as m �→∞,

(3.6)

by virtue of (1.6), (1.10), and (2.3). Now, when k > 1, applying Hölder’s inequality with

indices k and k′, where 1/k+1/k′ = 1, as in Tn,1, we have that

m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,2∣∣k =O(1)
m+1∑
n=2

pn
PnPn−1

{n−1∑
v=1

pv
∣∣λv∣∣k∣∣tv∣∣k

}{
1

Pn−1

n−1∑
v=1

pv

}k−1

=O(1)
m∑
v=1

pv
∣∣λv∣∣k−1∣∣λv∣∣∣∣tv∣∣k

m+1∑
n=v+1

pn
PnPn−1

=O(1)
m∑
v=1

∣∣λv∣∣pvPv
∣∣tv∣∣k =O(1) as m �→∞.

(3.7)

In view of (2.3), it is clear that

∞∑
n=1

∣∣∆λn∣∣<∞, (3.8)
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hence

m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,3∣∣k =O(1)
m+1∑
n=2

pn
PnPn−1

{n−1∑
v=1

Pv
∣∣∆λv∣∣∣∣tv∣∣k

}{
1

Pn−1

n−1∑
v=1

Pv
∣∣∆λv∣∣

}k−1

=O(1)
m∑
v=1

Pv
∣∣tv∣∣k∣∣∆λv∣∣

m+1∑
n=v+1

pn
PnPn−1

=O(1)
m∑
v=1

∣∣∆λv∣∣∣∣tv∣∣k

=O(1)
m−1∑
v=1

∆
(
v
∣∣∆λv∣∣)

v∑
i=1

1
i
∣∣ti∣∣k+O(1)m∣∣∆λm∣∣

m∑
v=1

1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

v
∣∣∆2λv

∣∣Xv+O(1)
m−1∑
v=1

∣∣∆λv+1

∣∣Xv+1

+O(1)m∣∣∆λm∣∣Xm =O(1) as m �→∞,
(3.9)

by virtue of (1.7), (1.8), (2.2), and (2.3). Since (λn) is bounded, finally we have that

m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,4∣∣k ≤
m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

Pv
∣∣λv+1

∣∣k∣∣tv∣∣k 1
v

{
1

Pn−1

n−1∑
v=1

Pv
v

}k−1

=O(1)
m∑
v=1

Pv
∣∣λv+1

∣∣∣∣tv∣∣k 1
v

m+1∑
n=v+1

pn
PnPn−1

=O(1)
m∑
v=1

∣∣λv+1

∣∣∣∣tv∣∣k
v

=O(1)
m−1∑
v=1

∆
∣∣λv+1

∣∣ v∑
r=1

1
r
∣∣tr∣∣k+O(1)∣∣λm+1

∣∣ m∑
v=1

1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

∣∣∆λv+1

∣∣Xv+1+O(1)
∣∣λm+1

∣∣Xm+1

=O(1) as m �→∞,

(3.10)

by virtue of (1.6), (1.8), (1.11), and (2.3). Therefore, we get that

m∑
n=1

(
Pn
pn

)k−1∣∣Tn,r∣∣k =O(1) as m �→∞, for r = 1,2,3,4. (3.11)

This completes the proof of Theorem 2.1.

Finally, if we take pn = 1 for all values of n in Theorem 2.1, then we get a new result

concerning the |C,1|k summability factors. Furthermore, if we take pn = 1/(n+1), then

we get another new result for |N̄,1/(n+1)|k summability factors.
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