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We consider a class of discrete differential operators acting on multidimensional Haar
wavelet basis with the aim of finding wavelet approximate solutions of partial differential
problems. Although these operators depend on the interpolating method used for the Haar
wavelets regularization and the scale dimension space, they can be easily used to define the
space of approximate wavelet solutions.
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1. Introduction. Advantage has extensively taken upon wavelets in order to analyze

a number of different applications, such as image processing, signal detection, geo-

physics, medicine, or turbulent flows [8, 9, 10, 13, 14, 15, 18]. More mathematically

focussed differential equations and even nonlinear problems have also been studied

with this cargo of possibilities that wavelets have brought out into scene [1, 2, 6, 16].

In this paper, we study a Cauchy problem with the PDE ut = Lu, where the unknown

function u(t,x)∈ L2([0,1]) for each t ∈ [0,T ], x∈ [0,1]d, d∈N, and L is a (nonneces-

sarily linear) partial differential operator whose derivatives act on the space variable.

Situations like this happen quite commonly in evolution processes, such as fluid dynam-

ics, heat transfer, elasticity, traffic flow, shock propagation, and so on [5, 12]. According

to the nature and properties of L, different approaches have been developed, and even

simple difference approximations may provide good results [3, 11]. However, in the

presence of discontinuities some difficulties arise.

The development of Haar wavelets with its extreme suitability for dealing with ex-

perimental problems having piecewise constant functions as initial conditions or func-

tions with sharp discontinuities, such as those that appear in the Riemann problem or

within smooth environments, seems to provide a natural scheme to study these prob-

lems, and wavelet (approximate) solutions have been obtained by using some regular

(mostly Daubechies) bases of wavelets [11].

In the following, we propose an algorithm based upon Haar wavelet basis in order

to define a discrete operator that maps piecewise constant functions into piecewise

constant functions, which projects the continuous operator L therein, and enables to

get wavelet approximate solutions in L2([0,1]) just working with Haar wavelets.

2. Haar wavelet basis. Haar wavelets are piecewise constant functions with compact

support and finite jumps at their extremal points. The drawback of not being smooth

enough has been overcome by a smoothing process based on spline interpolation [3].
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Haar functions ϕnk (x) := 2n/2ϕ(2nx− k) are generated from the scaling function

ϕ(x) which is given by the characteristic function χ[0,1]. Then the Haar family of

wavelets ψnk (x) := {2n/2ψ(2nx−k)}k,n∈Z fulfills

ψnk (x)=



2−n/2, x ∈
[
k
2n
,
k+1/2

2n

)
,

−2−n/2, x ∈
[
k+1/2

2n
,
k+1
2n

)
,

0, elsewhere,

(2.1)

‖ψnk (x)‖2 = 1, and the multiresolution axioms [7], as well as the recursive conditions

2n+1/2ϕnk (x)=ϕn+1
k (x)+ϕn+1

k+1 (x), 2n+1/2ψnk (x)=ϕn+1
k (x)−ϕn+1

k+1 (x), k,n∈ Z.
(2.2)

Haar wavelets form a complete orthonormal system for the (finite-energy) L2(R)-
functions [7] so that

L2(R)=
⊕
n∈Z
Wn = Vq⊕

⊕
j≥q
Wj, q ∈ Z,

Vn+1 = Vn⊕Wn.
(2.3)

Here, for each fixed n∈ Z, Vn is the subspace

Vn :=
{
f ∈ L2(R) : f =

∑
n,k∈Z

cnk χDnk , c
n
k = constant

}
, (2.4)

where Dnk = [k/2n,(k+1)/2n) andWn are orthogonal subspaces in L2(R), the so-called

wavelet spaces. As usual, we consider the scalar product

〈f ,g〉 :=
∫ +∞
−∞
f(x)g(x)dx

(∀f ,g ∈ L2(R)
)
. (2.5)

According to the first equation of (2.3), we have that f(x) =∑
n,k∈Zβnkψ

n
k (x). If we

fix a resolution value N = 2M ,M ∈N, in (2.3), then an approximation of the L2(R)-space

is obtained, for example, by L2(R)	 V0
⊕N
n=0Wn, that is,

f(x)	πNf(x) :=α0
0+

M−1∑
n=0

2n−1∑
k=0

βnkψ
n
k (x), (2.6)

πN being a projection operator into VN so that πN : L2(R)→ VN . In general, the coeffi-

cients αkn, βnk are given by

αnk =
〈
f ,ϕnk

〉
, βnk =

〈
f ,ψnk

〉
. (2.7)

The dyadic discretization is the operator ∇N : L2(R) → KN ⊂ �2, where K stands

for the complex or real field, and ∇Nf(x) = fN = (f0,f1, . . . ,fN−1)T ∈ KN with fk :=
f(k/(N−1)), 0≤ k≤N−1.
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The above notation may be simplified if we denote βN := (α0
0,β

0
0,β

1
0, . . . ,β

M−1
2M−1−1) and

ΨN(x) := (ϕ(x),ψ0
0(x),ψ

1
0(x), . . . ,ψ

M−1
2M−1−1(x)) so that

πNf(x)= βNΨTN(x), fN = βN∇NΨTN(x). (2.8)

If P2i denotes the permutation (or shuffle) matrix (cf. [3, 4, 7]) and I is the identity

matrix, then the discrete Haar wavelet transform is the one-to-one linear operator � of

KN onto KN such that

�fN = βTN =
[ M∏
k=1

(
P2k⊕I2M−2k

)(
H2k⊕I2M−2k

)]
fN. (2.9)

The matrices H2i have size 2i×2i and are the direct sum of the lattice coefficients of

the system (2.2),

H2i :=
(

2−1/2 2−1/2

2−1/2 −2−1/2

)
1

⊕···⊕
(

2−1/2 2−1/2

2−1/2 −2−1/2

)
2i−1

, (2.10)

where, for 1≤ j ≤ 2i−1 and Op,q standing for the p×q null matrix,

(
2−1/2 2−1/2

2−1/2 −2−1/2

)
j
=


O2j−2,2j−2 O2j−2,2 O2j−2,2i−2j

O2,2j−2

(
2−1/2 2−1/2

2−1/2 −2−1/2

)
O2,2i−2j

O2i−2j,2j−2 O2i−2j,2 O2i−2j,2i−2j

 . (2.11)

Thus, having in mind that VN+1 �KN by identifying α0
0+

∑M−1
n=0

∑2n−1
k=0 β

n
kψ

n
k (x) with

{α0
0,β

n
k }n=0,...,M−1
k=0,...,2M−1−1, the projection operator πN : L2(R) → VN+1 may be factorized by

means of the following diagram:

L2(R)

πN

∇N
KN

�

VN+1 �KN

(2.12)

The operator πN maps each f ∈ L2(R) into a piecewise constant function πNf ∈
VN+1, being easy to check limN→∞πNf = f pointwise (cf. [7]).

Note that the inverse discrete Haar transform �−1 of (2.9) is univocally defined [7],

but the inverse ∇−N := (∇N)−1 of the operator ∇N is not because there are infinitely

many functions interpolating a finite set of values.

3. Haar series regularization. In what follows, we will consider the interpolating

operator �p :KN → Cp−1(Ω) which maps the vector fN(= (fi)N−1
i=0 ), based on the dyadic

nodes of Ω ⊆ R, into the p-differentiable function s(x) := �pfN , where C−1(Ω) stands

for the piecewise continuous functions defined on Ω. Hence s(x) is an interpolating

function of order p through (i/(N−1),fi), i= 0, . . . ,N−1.
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Definition 3.1 (interpolating p-space). For a given resolution N, the interpolating

p-space σp is the space σp ⊂ L2(Ω) of interpolating functions with (nonredundant)

fixed conditions at the boundary

σp :=
{
s(x)=�pfN, with �−p := (

�p
)−1 =∇N, ∀fN ∈KN

}
. (3.1)

There follows that, fixing the resolution N and the interpolating method, each func-

tion in σp corresponds one-to-one to a discrete set fN , making the following diagrams

commutative:

L2(Ω)⊃ σp
πN

∇N
KN

�

VN+1

L2(Ω)⊃ σp KN
�p

VN+1

π−N
�−1 (3.2)

Theorem 3.2. For a fixed resolution N and a given interpolating method, the inverse

π−N of the projection operator πN is univocally defined when acting on the σp space

functions by means of

π−N =�p�−1 (
πN =�∇N). (3.3)

Proof. Note that ∇N�p =�p∇N = I and �−1 is univocally defined [7].

Definition 3.3. The q-derivative of a p-interpolating function, 0≤ q ≤ p, at a given

dimension N is the linear operator δ(p,q) :KN → VN+1 such that

δ(p,q) :=πN d
q

dxq
�p. (3.4)

This definition provides an algorithm that maps piecewise constant functions into

piecewise constant functions. If we look at it, we may note that firstly it smoothens

piecewise constant functions with a suitable interpolation; secondly it finds out the

derivative of the interpolating function, and then this derivative is transformed into a

piecewise constant function by the discrete Haar wavelet transform.

From [7, page 13] and since (dq/dxq)�p∇Nf belongs to L2(Ω) for each f ∈ L2(Ω), it

follows that ‖(dq/dxq)�p∇Nf −δ(p,q)∇Nf‖2
L2 ≤ 2−2M−1

2µ(Ω)K+ε, where µ stands for

the Lebesgue measure, K = ∑M−1
k=0 ((m0,k,N)2+ (m−1,k,N)2)1/2, with m0,k,N and m−1,k,N

being the average value of (dq/dxq)�p∇Nf over the first and the second half of DNk ,

respectively, and ε may be taken as small as desired since any function in L2(Ω) may

be approximated by functions with compact support which are piecewise constant.

It is easy to see that if f = ∑M−1
k=0 fkχDk , g =

∑M−1
k=0 gkχDk ∈ VN , where fk, gk are

constants, then there are unique ck such that fk = gk+ck. Hence, there exists a matrix

A(p,q) depending on N that makes

δ(p,q)∇Nf =A(p,q)∇Nf ,
δ(p,q)fN =A(p,q)βN∇NΨTN(x).

(3.5)
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At the end of this paper, we provide an appendix with some of these matrices A for

different spline interpolations.

4. Multidimensional wavelet solution. In a d-dimensional variable space x =
(x1, . . . ,xd), we restrict ourselves to considering the same dyadic discretization on each

coordinate of x so that the natural generalization of the dyadic discretization operator

∇N : L2(Rd)→∏d
k=1K

N (N = 2M) is given by

∇Nf(x) := f
(
i1
N−1

,
i2
N−1

, . . . ,
id
N−1

)
, 0≤ ij ≤N−1, 1≤ j ≤ d. (4.1)

By using tensor products, we define VN(x) :=⊗d
i=1VN(xi), where the (orthonormal)

wavelet basis is {ψnk (x1)⊗···⊗ψnk (xd)}, 0 ≤ k ≤ N −1 (cf. [17]). Thus VN(x) is the

space of the piecewise constant functions on thed-dimensional productDNk ×DNh , 0≤ h,

k≤ 2N−1, which can be represented as

πNf(x) :=
∏

1≤i≤d
αiϕ

(
xi
)+ ∑

0≤ki≤2ni−1
0≤ni≤M
1≤i≤d

∏
1≤i≤d

βniki ψ
ni
ki

(
xi
)

+
∑

0≤ki≤2ni−1
0≤ni≤M
1≤i≤d

∏
1≤i,j≤d
i≠j

ωniki,jϕ
(
xj
)
ψniki

(
xi
)
,

(4.2)

in short, πNf(x) :=∑
0≤ij≤M−1, 1≤j≤dβ

i1i2···id
N ∇N(ψN(xi1)⊗···⊗ψN(xid)).

Then the discrete d-dimensional Haar wavelet transform is the one-to-one linear op-

erator �d =�⊗ d···⊗� of (KN)d onto (KN)d, and the discrete derivative of ∇Nf(x) is

the tensor product of the corresponding 1-dimensional discrete derivative. Hence, in

the 2-dimensional case, this leads to a matrix A(p,q), which in fact is the same as the

one of the 1-dimensional case, such that

δ(p,q)x f
(
i1
N−1

,
i2
N−1

)
=A(p,q)f

(
·, i2
N−1

)
, 0≤ i2 ≤N−1,

δ(p,q)y f
(
i1
N−1

,
i2
N−1

)
=A(p,q)

(
i1
N−1

,·
)
, 0≤ i1 ≤N−1,

(4.3)

proving that if x1 = i1/(N−1), x2 = i2/(N−1),

δ(p,q)x ∇Nf (x1,x2
)=A(p,q)βN∇NΨTN(x1

)⊗∇NΨTN(x2
)
, (4.4)

and analogously for δ(p,q)y . Taking this into account, we obtain the following result.
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Proposition 4.1. An approximate wavelet solution ũ(t,x)=πNu(t,x) of the Cauchy

problem

ut = Lu, u(0,x)=u0(x), x∈ [0,1]d, t ∈ [0,T ], (4.5)

is obtained by taking

ũ(t,x) :=
∑

0≤ij≤M−1
1≤j≤d

βi1i2···idN (t)∇N(ψN(xi1)⊗···⊗ψN(xid)),
(4.6)

where the wavelet coefficients are explicit functions of t.

Proof. From (4.5), it follows that πNut = πNLu. Hence, if Lδ denotes the operator

acting on piecewise functions obtained by replacing the partial derivatives that ap-

pear on L with the corresponding δ(p,q)ij ∇N , for example, if L= L(∂/∂x,∂2/∂x∂y), then

Lδ = L(δ(p,1)x ∇N,δ(p,1)y δ(p,1)x ∇N), it happens that the projection in VN(x) must verify

ũt(t,x)= Lδũ(t,x) and

∑
0≤ij≤M−1

1≤j≤d

βi1i2···idN (0)∇N(ψN(xi1)⊗···⊗ψN(xid))=∇Nf(x).
(4.7)

Orthonormality of the scaling functions ϕ and ψnk gives an easily solved first-order

ordinary system in the unknown wavelet coefficients. Note that due to the definition of

Haar wavelets, the boundary conditions are automatically fulfilled.

5. Spline Haar solution of a parabolic equation. In this section, we will compare the

Haar regularized solution of the following 1-dimensional parabolic problem with the

exact solution and the one obtained with Crank-Nicholson’s method.

Example 5.1. Compare at time 0.04 and 0.08 the above-mentioned methods in the

heat equation, without exchanges at the boundary, and a periodic function as initial

function given by

ut =uxx, 0
x 
 1, t � 0,

u(x,0)= sin(πx),

u(0, t)=u(1, t)= 0.
(5.1)

In Figure 5.1, the exact solution u(x,t) = sin(πx)e−π2t at t = 0.01 and the one ob-

tained by the Haar regularized method based on 64 nodes are shown as functions of

the variable distance, x. Table 5.1 compares the set of values that we obtain (HR) at

time t = 0.04, t = 0.08 with the exact ones (E) and those obtained by Crank-Nicholson’s

method (CN).
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Figure 5.1. Exact and Haar regularized solution with 64 nodes.

Table 5.1

x
t = 0.04 t = 0.08

E HR CN E HR CN

0 0 0 0 0 0 0

0.2 0.396065 0.398 0.399 0.266878 0.269 0.271

0.4 0.640846 0.648 0.646 0.431818 0.440 0.439

0.6 0.640846 0.648 0.646 0.431818 0.440 0.439

0.08 0.396065 0.398 0.399 0.266878 0.269 0.271

1 0 0 0 0 0 0

6. Annex. Finally, we enclose a list of matrices A(p,q), announced at the end of

Section 3, which satisfy δ(p,q)∇Nf =A(p,q)∇Nf . We fix our attention on the case p = 3,

q = 1. For this and different resolutions N = 2M , M ∈ N, the matrices A(p,q) are com-

puted according to the following steps:

(1) discretize the interval [0,1] at the dyadic points k/(N−1), 0≤ k≤N−1,

(2) consider the points whose first coordinates are the dyadic points and whose

second coordinates are arbitrary values a0,a1, . . . ,aN−1, that is, (0,a0),(1/(N−
1),a1), . . . ,(1,aN−1),

(3) build up the cubic spline that goes through the aforementioned set of points,

(4) compute the first derivative of this spline and evaluate it at the dyadic points,

(5) assuming the above evaluations generate the points (0,a′0), (1/(N−1),a′1), . . . ,
(1,a′N−1), then A(3,1) is the N×N matrix that satisfies


a′0
a′1
...

a′N−1

=A(3,1)

a0

a1

...

aN−1

 . (6.1)
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With a bound error of 10−5, routine calculations make A(3,1) become

(−0.16667 0.16667

−0.16667 0.16667

)
,

N = 21 = 2,


−0.97941 1.24412 −0.34412 0.07941

−2.14412 0.29118 2.40882 −0.55588

0.55588 −2.40882 −0.29118 2.14412

−0.07941 0.34412 −1.24412 0.97941

 ,
N = 22 = 4,



−3.96693 5.02851 −1.33162 0.31661 −0.04656 0 0.00401 −0.00401

−4.56556 0.16762 5.51672 −1.31167 0.19289 0 −0.01662 0.01662

1.22919 −5.69897 0.26473 4.93006 −0.72501 0 0.06246 −0.06246

−0.35120 1.62828 −6.57564 2.59141 2.70715 0 −0.23324 0.23324

0 0 0 0 −10.5 14 −2.62951 −0.87049

0 0 0 0 −3.5 0 0.25129 3.24871

0 0 0 0 0 0 −21 21

0 0 0 0 0 0 0 0


,

N = 23 = 8.
(6.2)
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