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1. Introduction. Throughout the paper, by an algebra we will mean an algebra over

a fixed unital commutative ring Φ, and we assume that Φ contains the element 1/2.

Let � be an associative superalgebra, that is, a Z2-graded associative algebra. This

means that there existΦ-submodules �0, �1 of � such that �=�0⊕�1, �0�0 ⊆�0 (�0

is a subalgebra of �), �0�1 ⊆�1, �1�0 ⊆�1 (�1 is an �0-bimodule), and �1�1 ⊆�0.

We say that �0 is the even and �1 is the odd part of �. An element a ∈ �i, i = 0 or

i= 1, is said to be homogeneous of degree i, and in this case we write |a| = i. An ideal

U of � is said to be graded if U = U∩�0⊕U∩�1. A superalgebra � is called prime if

the product of any two nonzero graded ideals in � is nonzero, and is called semiprime

if it does not contain nonzero nilpotent graded ideals.

Introducing a new product in � by x◦sy = (1/2)(xy+(−1)|x||y|yx), x,y ∈�0∪�1,

� becomes a Jordan superalgebra. Over the recent years there has been a considerable

interest in the relation between Jordan, Lie, and associative structures in associative su-

peralgebras. The present paper continues this line of investigations. Some more details

about the background of this research and a more comprehensive list of references are

given in our preceding paper [6].

Let i = 0 or i = 1. A Φ-linear map Di : � → � such that D(�j) ⊆ �j+i, i,j ∈ Z2, is

called a superderivation of degree i if it satisfies

Di(xy)=Di(x)y+(−1)i|x|xDi(y) ∀x,y ∈�0∪�1, (1.1)

and is called a Jordan superderivation of degree i if it satisfies

Di
(
x◦sy

)=Di(x)◦sy+(−1)i|x|x◦sDi(y) ∀x,y ∈�0∪�1. (1.2)

A (general) superderivation is the sum of a superderivation of degree 0 and a su-

perderivation of degree 1. Similarly, a Jordan superderivation is defined as the sum

of Jordan superderivations of degrees 0 and 1. Superderivations are obviously Jordan

superderivations, while the converse may not be true. In [6] we proved that every Jordan

superderivation on a prime associative superalgebra � is a superderivation, unless �0
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is a commutative algebra. The case when �0 is commutative is indeed exceptional, as

shown by examples in [6].

The concept of a Jordan superderivation can be viewed as a generalization of the

concept of a Jordan derivation of an associative algebra. Namely, in the case of triv-

ial superalgebras (i.e., the odd part is 0), these two notions coincide. Herstein’s clas-

sical result [7] from 1957 implies that every Jordan derivation on a prime algebra

over Φ is a derivation. In 1975, Cusack [5] proved that the same result holds true in

semiprime algebras (see also [3]). It is therefore natural to ask whether our result from

[6] can be extended to semiprime superalgebras. Our main goal is to prove the following

generalization.

Theorem 1.1. Let �=�0⊕�1 be a semiprime associative superalgebra and let D =
D0+D1 be a Jordan superderivation. Then there exist graded ideals U and V of � such

thatDi(ux)=Di(u)x+(−1)i|u|uDi(x), i= 0,1, for all u∈U and x ∈�, and [v0,x0]=
0 for all v0 ∈ V0 and x0 ∈�0. Moreover, U∩V = 0 and U⊕V is an essential ideal of �.

If U = 0, then �0 is commutative, and if V = 0, then D is a superderivation.

In particular, this theorem shows that the restriction of D to U is a superderivation

and the superalgebra V has a commutative even part. The next example (a modification

of the one given in [1, page 458]) shows that, in general, U and V cannot be chosen so

that their sum is equal to �.

Example 1.2. Let A = A0⊕A1 and B = B0⊕B1 be prime associative superalgebras

satisfying the following conditions: none of them contains an identity element, A0 is a

noncommutative algebra, B is commutative (as an algebra) and B1 	= 0. For example, one

can take the trivial superalgebra of all finite-rank operators on an infinite-dimensional

vector space (over a field Φ) for A, and B =XΦ[X] (i.e., the algebra of polynomials over

Φ with constant term 0) with graduation B0 = Φ[X2] and B1 =XΦ[X2]. Let �=A⊕B⊕Φ
be the unitization of the algebra A⊕B. Set �0 = A0⊕B0⊕Φ1 and �1 = A1⊕B1 and

note that thereby � becomes a semiprime associative superalgebra whose even part

is noncommutative. Let b0+b1 = b ∈ B be such that b0 	= 0 and define D : � → � by

D(x0+x1+y0+y1+λ) = by1 for all x0 ∈ A0, x1 ∈ A1, y0 ∈ B0, y1 ∈ B1, and λ ∈ Φ.

Then D is a Jordan superderivation which is not a superderivation. Since � is a unital

algebra whose only central idempotents are 0 and 1, � does not contain proper ideals

U and V such that �=U⊕V .

In the proof of Theorem 1.1 we will, on the one hand, use several computations from

[6], and, on the other hand, we will use some ideas from [2, 3, 4].

2. Preliminaries. We first fix the notation. Throughout the paper, by � = �0⊕�1

we will denote a semiprime associative superalgebra. It is easy to see that � is also

semiprime as an algebra (i.e., if a ∈ � and a�a = 0, then a = 0) and also �0 is a

semiprime algebra [9, Lemma 1.2]. As usual, we will write [a,b] = ab− ba and a ◦
b = (1/2)(ab+ba) for a,b ∈ �. By Z(�) (resp., Z(�0)) we denote the center of �

(resp., �0). Further, D = D0+D1 will denote a Jordan superderivation of �, where, of

course, Di, i= 0,1, denotes a Jordan superderivation of degree i. Define a bilinear map
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δi : �×�→� by

δi(x,y)=Di(xy)−Di(x)y−(−1)i|x|xDi(y) (2.1)

for all x,y ∈�0∪�1. Clearly, δi = 0 if and only if Di is a superderivation of degree i.
If x and y are elements in � such that x�y = 0, then it follows that xy = yx =

y�x = 0. Namely, we have ya(x�y)ax = 0 for all a∈�, which in turn implies y�x =
0 by the semiprimeness of �. Similarly, from x(y�x)y = 0 and y(x�y)x = 0 we get

xy =yx = 0. For such elements x, y , we will write x ⊥y .

The proof of Theorem 1.1 consists of several steps. First, we gather some auxiliary

results which will be needed later.

Lemma 2.1. Suppose that a∈�1 is such that ax1,x1a∈ Z(�0) for all x1 ∈�1. Then

a2 ∈ Z(�).
Proof. We have 0 = [a2,ax1] = a[a2,x1] and 0 = [a2,x1a] = [a2,x1]a for all

x1 ∈ �1. Therefore [a2,[a2,�1]] = 0, which, together with [a2,[a2,�0]] = 0, gives

[a2,[a2,�]]= 0. But then a2 ∈ Z(�) by [8, Lemma 1.1.9].

The next lemma is a slight extension of [6, Lemma 2.3].

Lemma 2.2. Let U be a graded ideal of �.

(i) If u1U1u1 = 0, where u1 ∈U1, then u1 = 0.

(ii) If u0 ∈U0 and u1 ∈U1 are such that u0Uiu1 =u1Uiu0 = 0, where i= 0 or i= 1,

then u0Uu1 =u1Uu0 = 0.

(iii) If u1U0 = 0 or U0u1 = 0, where u1 ∈U1, then u1 = 0.

Proof. (i) We have u1Uu1Uu1 ⊆ u1Uu1U1u1+u1U1u1Uu1+u1U1u1 for all u1 ∈
U1. Since u1U1u1 = 0, it follows that u1Uu1Uu1 = 0, and so, since � is a semiprime

algebra, it follows that u1 = 0.

(ii) Assume that u0U0u1 = u1U0u0 = 0. Hence (u0U1u1)U0(u0U1u1) = 0. Since U0

is a semiprime algebra, we get u0U1u1 = 0. This, together with our assumption, gives

u0Uu1 = 0.

Now let u0U1u1 =u1U1u0 = 0. Hence (u0U0u1)U1(u0U0u1)= 0, and so by (i) we get

u0U0u1 = 0. Since, by our assumption, also u0U1u1 = 0, it follows that u0Uu1 = 0, as

desired.

(iii) Suppose that u1U0 = 0. Hence u1U0x1u1 = 0 and x1u1U0u1 = 0 for all x1 ∈�1.

From (ii) it follows that u1Ux1u1 = 0 for all x1 ∈�1. Therefore x1u1Ux1u1 = 0, which

in turn implies �1u1 = 0, since U is semiprime. Using (i), we get u1 = 0.

Lemma 2.3. LetU be a graded ideal of �. Suppose thata1∈�1 is such that [U0a1,U0]=
0. Then U0a1 ⊆ Z(�).

Proof. We have 0 = [u0a1,x0v0] = [u0a1,x0]v0+x0[u0a1,v0] for all u0,v0 ∈ U0,

x0 ∈ �0. Therefore [u0a1,x0]U0 = 0. Since [u0a1,x0] ∈ U1, we arrive at [U0a1,�0] =
0 by Lemma 2.2(iii). Hence 0 = [u0a1,(u0a1)x1] = u0a1[u0a1,x1] and 0 = [u0a1,
x1(u0a1)]= [u0a1,x1]u0a1 for allu0 ∈U0 andx1 ∈�1. Therefore [u0a1,[u0a1,�1]]=
0, which in turn implies [u0a1,[u0a1,�]] = 0 for all u0 ∈ U0 and a1 ∈ �1. Since � is

semiprime, the result follows by [8, Lemma 1.1.9].
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Lemma 2.4. If x and y are homogeneous elements in � such that x ⊥ y , then

x◦sDi(y)= 0, i= 0,1.

Proof. Sincex◦sy = 0, it follows that 0=Di(x◦sy)=Di(x)◦sy+(−1)|x|ix◦sDi(y).
Using our assumptions and multiplying this identity on the left by xa, a∈�, we arrive

at xa(x◦sDi(y)) = 0, which in turn implies (x◦sDi(y))�(x◦sDi(y)) = 0. Since � is

semiprime, the result follows.

Lemma 2.5 [6, Lemma 2.6]. It holds that

(i) δi(x0,y0) = −δi(y0,x0), δi(x0,y1) = −δi(y1,x0) and δi(x1,y1) = δi(y1,x1)
for all x0,y0 ∈�0, x1,y1 ∈�1;

(ii) Di([x2
1 ,y])= [[Di(x1),x1]s,y]s+[x2

1 ,Di(y)] for all x1 ∈�1, y ∈�.

The next lemma is also just a slight extension of [6, Lemma 2.6].

Lemma 2.6. Let U be a graded ideal of �. Suppose that δi(U0,�0)= 0. Then

(i) [δi(�1,�1),U0]= 0;

(ii) δi(u0,x1)y1 =u0δi(x1,y1)−δi(u0x1,y1) for all u0 ∈U0, x1,y1 ∈�1;

(iii) δi(x0,u1)y1 = x0δi(u1,y1)−δi(x0u1,y1) for all x0 ∈�0,u1 ∈U1, andy1 ∈�1;

(iv) (−1)iy1δi(u0,x1) = δi(x1u0,y1)−δi(x1,y1)u0 for all u0 ∈ U0, x1 ∈ �1, and

y1 ∈�1;

(v) (−1)iy1δi(x0,u1) = δi(u1x0,y1)−δi(u1,y1)x0 for all x0 ∈ �0, u1 ∈ U1, and

y1 ∈�1;

(vi) δ0(U0,�1)⊥ [�0,U0];
(vii) δ1(U0,�1)�1[�0,U0]= [�0,U0]�1δ1(U0,�1)= 0.

Proof. We have Di([x2
1 ,u0])= [Di(x2

1),u0]+[x2
1 ,Di(u0)] for all x1 ∈�1, u0 ∈U0.

From Lemma 2.5(ii), it follows that [δi(x1,x1),u0] = 0 for all u0 ∈ U0 and x1 ∈ �1.

Linearizing, we get [δi(�1,�1),U0]= 0.

Now consider the expressionDi(u0x1y1)withu0 ∈U0, x1,y1 ∈�1. On the one hand,

Di
(
u0
(
x1y1

))=Di
(
u0
)
x1y1+u0Di

(
x1y1

)

=Di
(
u0
)
x1y1+u0

(
δi
(
x1,y1

)+Di
(
x1
)
y1+(−1)ix1Di

(
y1
))
,

(2.2)

and on the other hand,

Di
((
u0x1

)
y1
)= δi

(
u0x1,y1

)+Di
(
u0x1

)
y1+(−1)iu0x1Di

(
y1
)

= δi
(
u0x1,y1

)+(δi
(
u0,x1

)+Di
(
u0
)
x1+u0Di

(
x1
))
y1

+(−1)iu0x1Di
(
y1
)
.

(2.3)

Comparing these two relations, we obtain (ii). In a similar fashion, by computing

Di(y1x1u0) in two different ways (and using Lemma 2.5), we get (iv), by computing

Di(x0u1y1), x0 ∈�0, u1 ∈U1, y1 ∈�1, we get (iii), and by computing Di(y1u1x0), we

get (v).



JORDAN SUPERDERIVATIONS. II 2361

Using (i) and (ii), it follows that [δi(u0,�1)�1,u0]= 0 for all u0 ∈U0. For any z0 ∈�0

and z1 ∈�1, we have z1z0 ∈�1, and so

δi
(
u0,x1

)
z1
[
z0,u0

]= [δi
(
u0,x1

)
z1z0,u0

]−[δi
(
u0,x1

)
z1,u0

]
z0 = 0, (2.4)

proving that

δi
(
u0,�1

)
�1
[
�0,u0

]= 0 ∀u0 ∈U0. (2.5)

Comparing (i) and (iv), we get [�1δi(u0,�1),u0]= 0, and then, considering an element

z0z1 ∈�1, one obtains

[
�0,u0

]
�1δi

(
u0,�1

)= 0 ∀u0 ∈U0. (2.6)

A linearization of (2.5) gives δi(u0,x1)y1[z0,v0] + δi(v0,x1)y1[z0,u0] = 0 for all

u0,v0 ∈U0, z0 ∈�0, x1,y1 ∈�1. Using (2.6), it follows that

(
δi
(
u0,x1

)
y1
[
z0,v0

])
a1
(
δi
(
u0,x1

)
y1
[
z0,v0

])

=−δi
(
u0,x1

)
y1
[
z0,v0

]
a1δi

(
v0,x1

)
y1
[
z0,u0

]= 0
(2.7)

for all a1 ∈�1. Similarly,

([
z0,v0

]
y1δi

(
u0,x1

))
a1
([
z0,v0

]
y1δi

(
u0,x1

))= 0. (2.8)

Suppose that i = 0. Using (2.5) and (2.6), we arrive at [�0,u0] ⊥ δ0(u0,�1) by Lemma

2.2(ii). A linearization of this implies

(
δ0
(
u0,x1

)
y
[
z0,v0

])
a
(
δ0
(
u0,x1

)
y
[
z0,v0

])

=−δ0
(
u0,x1

)
y
[
z0,v0

]
aδ0

(
v0,x1

)
y
[
z0,u0

]= 0
(2.9)

for all a ∈ �. Therefore [z0,v0] ⊥ δ0(u0,x1) since � is semiprime. Assume now that

i = 1. Therefore [z0,v0]�1δ1(u0,x1) = 0 and δ1(u0,x1)�1[z0,v0] = 0 by (2.7), (2.8),

and Lemma 2.2(i). Thereby the proof is completed.

3. Jordan superderivations of degree 0. By [�0,�0] we will mean the additive sub-

group of � generated by elements of the form [x0,y0] for all x0,y0 ∈ �0. In what

follows, we will denote by U the ideal of � generated by [�0,�0]. Note that U is a

graded ideal.

Theorem 3.1. δ0(U,�)= 0.

Proof. Since D0 is a Jordan derivation on �0, it follows that

δ0
(
�0,�0

)= 0 (3.1)

by [5]. Therefore we have

δ0
(
�0,�1

)⊥ [�0,�0
]

(3.2)
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by Lemma 2.6(vi). In particular,

[
y1δ0

(
x0,x1

)
,y0

]
z
[
y1δ0

(
x0,x1

)
,y0

]

= (y1δ0
(
x0,x1

)
y0z−y0y1δ0

(
x0,x1

)
z
)[
y1δ0

(
x0,x1

)
,y0

]= 0
(3.3)

for all x0,y0 ∈ �0, x1,y1 ∈ �1, and z ∈ �, since y1δ0(x0,x1) ∈ �0. In view of the

semiprimeness of �, we may conclude that [y1δ0(x0,x1),y0]= 0 for all y0 ∈�0. Sim-

ilarly, [δ0(x0,x1)y1,y0]= 0, and therefore

�1δ0
(
�0,�1

)
,δ0
(
�0,�1

)
�1 ⊆ Z

(
�0
)
. (3.4)

By Lemma 2.1 we arrive at

δ0
(
�0,�1

)2 ⊆ Z(�). (3.5)

Pick any u0 ∈U0. We have δ0(u0,x1)y1 ⊥ v for all v ∈U0∪U1 and x1,y1 ∈�1 by (3.2).

Using Lemma 2.4, it follows that

δ0
(
u0,x1

)
y1D0(v)+D0(v)δ0

(
u0,x1

)
y1 = 0. (3.6)

Replacing y1 by δ0(u0,x1) and using (3.5), we obtain δ0(u0,x1)2D0(v)= 0 for all v ∈
U0∪U1. Since

(
δ0
(
u0,x1

)
y1
)2 = δ0

(
u0,x1

)
y1
(
D0
(
u0x1

)−D0
(
u0
)
x1−u0D0

(
x1
))
y1 (3.7)

for all x1,y1 ∈ �1, we infer that δ0(u0,x1)4 = 0. Again, using (3.5), it follows that

δ0(u0,x1)2 = 0 since � is semiprime. Let v ∈ U1. Therefore, multiplying (3.6) on the

left by δ0(u0,x1)y1, we get

0= (δ0
(
u0,x1

)
y1
)2D0(v)+δ0

(
u0,x1

)
y1
(
D0(v)δ0

(
u0,x1

))
y1

= (δ0
(
u0,x1

)
y1
)2D0(v)+D0(v)δ0

(
u0,x1

)2y2
1

= (δ0
(
u0,x1

)
y1
)2D0(v).

(3.8)

Ifv ∈U0, thenδ0(u0,x1)y1D0(v)= 0 by (3.6). Using (3.7), we arrive at (δ0(u0,x1)y1)3 =
0, which yields δ0(u0,x1)y1 = 0 for allu0 ∈U0, x1,y1 ∈�1 by the semiprimeness of �0

and (3.4). Using Lemma 2.2(i), it follows that δ0(u0,x1)= 0 for all u0 ∈U0 and x1 ∈�1.

Analogously, we can show that δ0(x0,u1)= 0 for all x0 ∈�0 and u1 ∈U1. Therefore

δ0
(
U0,�1

)= δ0
(
U1,�0

)= 0. (3.9)

Pick any u1 ∈ U1 and x1 ∈�1. Since x2
1 ∈�0, it follows from (3.9) that δ0(x2

1 ,u1) = 0.

Hence

D0
([
x2

1 ,u1
])= [D0

(
x2

1

)
,u1

]+[x2
1 ,D0

(
u1
)]
. (3.10)

On the other hand,

D0
([
x2

1 ,u1
])= [D0

(
x1
)
x1+x1D0

(
x1
)
,u1

]+[x2
1 ,D0

(
u1
)]

(3.11)
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by Lemma 2.5(ii). Comparing both identities, we arrive at [δ0(x1,x1),u1]= 0 for allu1 ∈
U1 and x1 ∈�1. Lemma 2.6(i) implies [δ0(x1,x1),U]= 0 for all x1 ∈�1. A linearization

of this expression gives

[
δ0
(
�1,�1

)
,U
]= 0 (3.12)

by Lemma 2.5(i). From (3.4) and Lemma 2.6(i) and (ii), we get [x0δ0(x1,y1),y0]= 0 for

all x0,y0 ∈�0 and x1,y1 ∈�1, which in turn implies

[
�0,�0

]
δ0
(
�1,�1

)= 0. (3.13)

Hence a1[x0,y0]δ0(x1,y1) = 0 for all a1 ∈ �1 by (3.13). Using a1[x0,y0] ∈ U1 and

(3.12), it follows that δ0(�1,�1)�1[�0,�0] = 0. Again, using Lemma 2.6(i) and (3.13),

it follows that δ0(�1,�1)�0[�0,�0]= 0. Thus

[
�0,�0

]⊥ δ0
(
�1,�1

)
. (3.14)

Pick any u1 ∈ U1. According to (3.14), we have δ0(u1,x1) ⊥ v for all v ∈ U0∪U1 and

x1 ∈ �1. Whence δ0(u1,x1)D0(δ0(u1,x1)v) = 0. By (3.1) and (3.9), we obtain δ0(u1,
x1)2D0(v)= 0 since δ0(u1,x1)D0(δ0(u1,x1))v = 0 by (3.14). Obviously,

δ0
(
u1,x1

)3 = δ0
(
u1,x1

)2(D0
(
u1x1

)−D0
(
u1
)
x1−u1D0

(
x1
))= 0. (3.15)

Using that �0 is semiprime and δ0(u1,x1)∈ Z(�0), we get δ0(u1,x1)= 0 for allu1 ∈U1

and x1 ∈�1. Hence

δ0
(
U1,�1

)= 0. (3.16)

Thereby the proof is completed.

4. Jordan superderivations of degree 1

Lemma 4.1. LetD : �0 →�1 be a linear map satisfyingD(x◦y)=D(x)◦y+x◦D(y)
for all x,y ∈�0. Then, for all x,y,z,w ∈�0,

[x,y]⊥ (D(zw)−D(z)w−zD(w)). (4.1)

Proof. Using [6, Lemma 2.7] (with �0 = B and M =�1), it follows that

[x,y]�0[x,y]�0
(
D(xy)−D(x)y−xD(y))= 0,

(
D(xy)−D(x)y−xD(y))�0[x,y]�0[x,y]= 0

(4.2)

for all x,y ∈ �0. Write c = [x,y] and m = D(xy)−D(x)y − xD(y) for brevity.

Therefore (cx0m)x1(cx0m) = 0 for all x0 ∈ �0 and x1 ∈ �1. From Lemma 2.2(i) it

follows that c�0m= 0. Analogously, m�0c = 0. Lemma 2.2(ii) implies m⊥ c. Using [4,

Lemma 1.2], the result follows.

Lemma 4.2. If a1 ∈�1 is such that U0a1 ⊆ Z(�) and a1[U0,U0]= 0, then a1U = 0.
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Proof. We have 0 = x(u0a1)[v0,w0] = u0a1x[v0,w0] for all u0,v0,w0 ∈ U0, and

x ∈ �. It follows that U0a1�[U0,U0] = 0, which in turn implies a1�[U0,U0] = 0 by

Lemma 2.2(iii) and the semiprimeness of U0. Therefore 0 = a1y[u0,x0v0] =
a1y[u0,x0]v0 for all u0,v0 ∈ U0, x0 ∈ �0, and y ∈ �. Hence a1�[�0,U0] = 0 by

Lemma 2.2(iii) and the semiprimeness of U0. In the same way, we can show that

a1�[�0,�0]U0 = 0. Again, using Lemma 2.2(iii) and the semiprimeness of U0, it fol-

lows that a1�[�0,�0]= 0 since a1�[�0,�0]⊆U . Therefore a1U = 0.

Lemma 4.3. Let a0,b0 ∈�0 be such that a0[�0,b0]= 0. Then [a0,b0]= 0.

Proof. We have 0 = a0[x0y0,b0] = a0x0[y0,b0] for all x0,y0 ∈ �0. Hence

[a0,b0]�0[a0,b0]= 0, which yields [a0,b0]= 0.

Theorem 4.4. δ1(U,�)= 0.

Proof. By Lemma 4.1, we have [�0,�0] ⊥ δ1(�0,�0). In particular, [y1δ1(x0,y0),
z0]�[y1δ1(x0,y0),z0] = 0 for all x0,y0,z0 ∈ �0 and y1 ∈ �1, since y1δ1(x0,y0) ∈
�0. Using that � is semiprime, it follows that [y1δ1(x0,y0),z0] = 0. Analogously,

[δ1(x0,y0)y1,z0]= 0. Hence

�1δ1
(
�0,�0

)
,δ1
(
�0,�0

)
�1 ⊆ Z

(
�0
)
. (4.3)

Using Lemma 2.1, we infer that

δ1
(
�0,�0

)2 ⊆ Z(�). (4.4)

Let u0,v0 ∈ U0. Then we have δ1(u0,y0)y1 ⊥ v0 for all y0 ∈ �0 and y1 ∈ �0 by

Lemma 4.1. Hence

δ1
(
u0,y0

)
y1D1

(
v0
)+D1

(
v0
)
δ1
(
u0,y0

)
y1 = 0 (4.5)

by Lemma 2.4. Replacing y1 by δ1(u0,y0) and using (4.4), it follows that δ1(u0,
y0)2D1(v0)= 0 for all v0 ∈U0. Since

(
δ1
(
u0,y0

)
y1
)2 = δ1

(
u0,y0

)
y1
(
D1
(
u0y0

)−D1
(
u0
)
y0−u0D1

(
y0
))
y1 (4.6)

for all y0 ∈�0, y1 ∈�1, we obtain δ1(u0,y0)4 = 0. Using that � is semiprime and (4.4),

we arrive at δ1(u0,y0)2 = 0 for all u0 ∈U0 and y0 ∈�0. Multiplying (4.5) on the left by

δ1(u0,y0)y1, we get

0= (δ1
(
u0,y0

)
y1
)2D1

(
v0
)+δ1

(
u0,y0

)
y1
(
D1
(
v0
)
δ1
(
u0,y0

))
y1

= (δ1
(
u0,y0

)
y1
)2D1

(
v0
)+D1

(
v0
)
δ1
(
u0,y0

)2y2
1

= (δ1
(
w0,y0

)
y1
)2D1

(
v0
)
.

(4.7)
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Therefore (δ1(u0,y0)y1)3 = 0 by (4.6). The semiprimeness of �, together with (4.3),

gives δ1(u0,y0)y1 = 0 for all y1 ∈�. Using Lemma 2.2(i), we obtain

δ1
(
U0,�0

)= 0. (4.8)

Using Lemma 2.6(vii), it follows that

0= δ1
(
u0,x1

)
y1
[
x0,y0v0

]

= δ1
(
u0,x1

)
y1y0

[
x0,v0

]+δ1
(
u0,x1

)
y1
[
x0,y0

]
v0

(4.9)

for all u0,v0 ∈U0, x0,y0 ∈�0, and x1,y1 ∈�1, which in turn implies δ1(u0,x1)y1[x0,
y0]U0 = 0 and analogously U0[x0,y0]y1δ1(u0,x1) = 0. Since δ1(u0,x1)y1[y0,x0],
[y0,x0]y1δ1(u0,x1)∈U1, it follows that

δ1
(
U0,�1

)
�1
[
�0,�0

]= [�0,�0
]
�1δ1

(
U0,�1

)= 0 (4.10)

by Lemma 2.2(iii). Using Lemma 2.6(i), (ii), and (iv), it follows that δ1(u0,x1)y1 −
y1δ1(u0,x1)= δ1(x1u0,y1)−δ1(u0x1,y1) for all u0 ∈U0, x1,y1 ∈�1, which yields

[
δ1
(
u0,x1

)
y1,v0

]= [y1δ1
(
u0,x1

)
,v0
]
, u0,v0 ∈U0, x1,y1 ∈�1. (4.11)

Multiplying this expression on the right by z1[z0,y0], where z0,y0 ∈�0 and z1 ∈�1,

we obtain

[
δ1
(
U0,�1

)
�1,U0

]
�1
[
�0,�0

]= [�0,�0
]
�1
[
δ1
(
U0,�1

)
�1,U0

]= 0 (4.12)

by (4.10). Lemma 2.2(ii) implies

[
δ1
(
U0,�1

)
�1,U0

]⊥ [�0,�0
]
. (4.13)

In particular,

[
δ1
(
U0,�1

)
�1,U0

]
�
[
δ1
(
U0,�1

)
�1,U0

]= 0. (4.14)

Since � is semiprime, it follows that [δ1(U0,�1)�1,U0] = 0. From Lemma 2.6(ii) and

(iv), we get

[
U0δ1

(
�1,�1

)
,U0

]= [δ1
(
�1,�1

)
U0,U0

]= 0. (4.15)

Using Lemma 2.3, we arrive at

U0δ1
(
�1,�1

)⊆ Z(�). (4.16)

Using (4.15) and Lemma 2.6(i), we obtain 0 = [u0x1,v0] = u0[x1,v0]+ [u0,v0]x1 for

all u0,v0 ∈ U0 and x1 ∈ δ1(�1,�1). Therefore [U0,U0]δ1(�1,�1) = 0, and similarly

δ1(�1,�1)[U0,U0]= 0. Using Lemma 4.2, it follows that

δ1
(
�1,�1

)⊥ [�0,�0
]
. (4.17)



2366 MAJA FOŠNER

In particular,

[
δ1
(
�1,�1

)
�1,�0

]
�
[
δ1
(
�1,�1

)
�1,�0

]= 0, (4.18)

which in turn implies

δ1
(
�1,�1

)
�1,�1δ1

(
�1,�1

)⊆ Z(�0
)

(4.19)

since � is semiprime. Lemma 2.1 implies

δ1
(
�1,�1

)2 ⊆ Z(�). (4.20)

Pick u1 ∈ U1, v ∈ U0∪U1, and x1,y1 ∈�1. We have δ1(u1,x1)y1 ⊥ v by (4.17). Using

Lemma 2.4, it follows that

δ1
(
u1,x1

)
y1D1(v)+D1(v)δ1

(
u1,x1

)
y1 = 0. (4.21)

Replace y1 by δ1(u1,x1). Therefore δ1(u1,x1)2D1(v)= 0 for all v ∈ U0∪U1 by (4.20).

Since

(
δ1
(
u1,x1

)
y1
)2 = δ1

(
u1,x1

)
y1
(
D1
(
u1x1

)−D1
(
u1
)
x1+u1D1

(
x1
))
y1 (4.22)

for all y1 ∈�1, we get δ1(u1,x1)4 = 0. The semiprimeness of � yields δ1(u1,x1)2 = 0

for all u1 ∈ U1, x1 ∈�1. Let v ∈ U0. Multiplying (4.21) on the left by δ1(u1,x1)y1, we

see that

0= (δ1
(
u1,x1

)
y1
)2D1(v)+δ1

(
u1,x1

)
y1
(
D1(v)δ1

(
u1,x1

))
y1

= (δ1
(
u1,x1

)
y1
)2D1(v)+D1(v)δ1

(
u1,x1

)2y2
1

= (δ1
(
u1,x1

)
y1
)2D1(v).

(4.23)

If v ∈U1, then δ1(u1,x1)y1D1(v)= 0 by (4.21). Therefore (δ1(u1,x1)y1)3 = 0 by (4.22).

Since �0 is semiprime and (4.19) holds, we obtain δ1(u1,x1)y1 = 0 for all x1,y1 ∈�1

and u1 ∈U1. By Lemma 2.2(i), it follows that

δ1
(
U1,�1

)= 0. (4.24)

Using Lemma 2.6(iii), we arrive at δ1(�0,U1)�1 = 0, which in turn implies

δ1
(
�0,U1

)⊥�1. (4.25)

Therefore

δ1
(
x0,u1

)
D1
(
x1
)+D1

(
x1
)
δ1
(
x0,u1

)= 0 (4.26)

for all x0 ∈�0, x1 ∈�1, u1 ∈U1 by Lemma 2.4. Again, using Lemma 2.4, we obtain

δ1
(
x0,u1

)
y0D1

(
x1
)+D1

(
x1
)
δ1
(
x0,u1

)
y0 = 0 (4.27)
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for all y0 ∈�0, since δ1(x0,u1)y0 ⊥ x1 by (4.25). Multiplying (4.26) on the right by y0 ∈
�0 and comparing the identity so obtained with (4.27), it follows that δ1(x0,u1)[y0,
D1(x1)] = 0 for all x0,y0 ∈ �0, u1 ∈ U1, and x1 ∈ �1. Using Lemma 4.3, we ob-

tain [δ1(x0,u1),D1(x1)] = 0. Hence [δ1(x0,u1)y0,D1(x1)] = δ1(x0,u1)[y0,D1(x1)]+
[δ1(x0,u1),D1(x1)]y0 = 0 for all y0 ∈ �0. By (4.27), we get δ1(x0,u1)�0D1(x1) = 0

for all x0 ∈ �0, u1 ∈ U1, and x1 ∈ �1. Therefore δ1(x0,u1)y0δ1(x0,u1) =
δ1(x0,u1)y0(D1(x0u1)−D1(x0)u1−x0D1(u1)) = 0 by (4.25). By the semiprimeness

of �0, it follows that

δ1
(
�0,U1

)= 0. (4.28)

Using Lemma 2.6(ii) and (iv), it follows that δ1(U0,�1)U1 =U1δ1(U0,�1)= 0. Therefore

δ1(U0,�1)�0U1 = 0 and U1�0δ1(U0,�1)= 0. By Lemma 2.2(ii), it follows that

δ1
(
U0,�1

)⊥U1. (4.29)

Pick any u0 ∈ U0 and u1 ∈ U1. Then we have δ1(u0,x1)y0 ⊥ u1 for all y0 ∈ �0 and

x1 ∈�1. Using (4.28), we get 0=D1((δ1(u0,x1)y0)u1)=D1(δ1(u0,x1)y0)u1+δ1(u0,
x1)y0D1(u1). Multiplying this identity on the left by δ1(u0,x1)z0, z0 ∈�0, we obtain

δ1(u0,x1)z0δ1(u0,x1)y0D1(u1)= 0. Henceδ1(u0,x1)y0D1(u1)�0δ1(u0,x1)y0D1(u1)
= 0, which in turn implies

δ1
(
U0,�1

)
�0D1

(
U1
)= 0 (4.30)

since �0 is semiprime. By (4.29), we have δ1(u0,x1)v0 ⊥y1 for all v0 ∈U0 and y1 ∈�1.

Whence

δ1
(
u0,x1

)
v0D1

(
y1
)+D1

(
y1
)
δ1
(
u0,x1

)
v0 = 0 (4.31)

by Lemma 2.4. Since also x0δ1(u0,x1)v0 ⊥y1, x0 ∈�0, we arrive at

x0δ1
(
u0,x1

)
v0D1

(
y1
)+D1

(
y1
)
x0δ1

(
u0,x1

)
v0 = 0 (4.32)

for all u0,v0 ∈ U0, x0 ∈�0, x1,y1 ∈�1 by Lemma 2.4. If we multiply (4.31) on the left

by x0 and compare the identity so obtained with (4.32), it follows that

[
�0,D1

(
�1
)]
δ1
(
U0,�1

)
U0 = 0. (4.33)

Since [�0,D1(�1)]δ1(U0,�1) ⊆ U0, we obtain [�0,D1(�1)]δ1(U0,�1) = 0 by the

semiprimeness of U0. Therefore also δ1(U0,�1)[�0,D1(�1)] = 0. Using Lemma 4.3, it

follows that [δ1(U0,�1),D1(�1)] = 0, which yields [δ1(U0,�1)�0,D1(�1)] = 0. Using

(4.31), we obtain δ1(U0,�1)U0D1(�1)= 0. By (4.29), we arrive at

δ1
(
u0,x1

)
v0δ1

(
u0,x1

)= δ1
(
u0,x1

)
v0
(
D1
(
u0x1

)−D1
(
u0
)
x1−u0D1

(
x1
))= 0

(4.34)
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for all v0 ∈ U0. Using that U0 is semiprime, it follows that U0δ1(U0,�1) = 0, which in

turn implies Uδ1(U0,�1)= 0. Analogously, δ1(U0,�1)U = 0. Using (4.8), we obtain

0= δ1
(
u0,x1

)
x0D1

((
δ1
(
u0,x1

)
y0
)
v0
)= δ1

(
u0,x1

)
x0δ1

(
u0,x1

)
y0D1

(
v0
)

(4.35)

for all x0,y0 ∈�0, u0,v0 ∈U0, and x1 ∈�1. Hence

(
δ1
(
u0,x1

)
x0D1

(
v0
))

�1
(
δ1
(
u0,x1

)
x0D1

(
v0
))= 0, (4.36)

which yields δ1(U0,�1)�0D1(U0)= 0 by Lemma 2.2(i). Using (4.30), it follows that

δ1
(
u0,x1

)
x0δ1

(
u0,x1

)= δ1
(
u0,x1

)
x0
(
D1
(
u0x1

)−D1
(
u0
)
x1−u0D1

(
x1
))= 0.

(4.37)

Consequently,

δ1
(
U0,�1

)= 0. (4.38)

Thereby the proof is completed.

5. Proof of Theorem 1.1. Theorems 3.1 and 4.4 show that D(ux) = D0(ux) +
D1(ux) = D0(u)x+uD0(x)+D1(u)x+ (−1)|u|uD1(x). Therefore D|U is the sum of

superderivations of degrees 0 and 1.

Set V =Ann(U). Pick v0 ∈ V0. We have

[
v0,x0

]
y0
[
v0,x0

]= v0
(
x0y0

[
v0,x0

])−x0v0
(
y0
[
v0,x0

])= 0 (5.1)

for all v0 ∈ V0, x0,y0 ∈�0, since y0[v0,x0],x0y0[v0,x0] ∈ U0. By the semiprimeness

of �0, we arrive at [v0,x0]= 0 for all x0 ∈�0 and v0 ∈ V0.

We show that

δ1
(
�0,�1

)⊥ [�0,�0
]
. (5.2)

Consider the expression D1(u0x0y1) with u0 ∈U0, x0 ∈�0, y1 ∈�1. On the one hand,

D1
(
u0
(
x0y1

))=D1
(
u0
)
x0y1+u0D1

(
x0y1

)
, (5.3)

and, on the other hand,

D1
((
u0x0

)
y1
)=D1

(
u0x0

)
y1+u0x0D1

(
y1
)

=D1
(
u0
)
x0y1+u0D1

(
x0
)
y1+u0x0D1

(
y1
)
.

(5.4)

Comparing these two relations, we obtain U0δ1(�0,�1)= 0. In particular,

[
�0,�0

]
�0δ1

(
�0,�1

)= 0. (5.5)
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We also have �1[�0,�0]�1δ1(�0,�1) = 0. By Lemma 2.2(i), we arrive at [�0,
�0]�1δ1(�0,�1)= 0 and the result follows. If U = 0, then �0 is commutative. Note that

δ0(x,y),δ1(x,y)∈ V , x,y ∈�0∪�1, by (3.1), (3.2), (3.14), (4.17), (5.2), and Lemma 4.1.

Therefore V = 0 implies that D is a superderivation.

We have UV = 0, and hence U∩V = 0 since � is semiprime. Suppose that (U+V)∩
I = 0 for some graded ideal I of �. Hence UI = VI = 0. Therefore I ⊆ Ann(U) ∩
Ann(V)=Ann(U)∩Ann(Ann(U))= 0. Thus U⊕V is an essential ideal of �. The proof

is completed.
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