THE RADIUS OF STARLIKENESS FOR CONVEX FUNCTIONS OF COMPLEX ORDER

YAŞAR POLATOĞLU, METIN BOLCAL, and ARZU ŞEN

Received 4 November 2003

We will give the relation between the class of Janowski starlike functions of complex order and the class of Janowski convex functions of complex order. As a corollary of this relation, we obtain the radius of starlikeness for the class of Janowski convex functions of complex order.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let *F* be the class of analytic functions in $D = \{z \mid |z| < 1\}$, and let *S* denote those functions in *F* that are univalent and normalized by f(0) = 0, f'(0) = 1. Furthermore, let Ω be the family of functions $\omega(z)$ regular in *D* and satisfying $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in D$.

For arbitrary fixed numbers $-1 \le B < A \le 1$, denoted by P(A, B), the family of functions

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots, \qquad (1.1)$$

which is regular in *D* on the condition such that

$$p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}$$
(1.2)

for some functions $\omega(z) \in \Omega$ and every $z \in D$. This class was introduced by Janowski [7].

Moreover, let $S^*(A, B, b)$ be denoted by the family of functions $f(z) \in S$ such that f(z) is in $S^*(A, B, b)$ if and only if $f(z)/z \neq 0$,

$$1 + \frac{1}{b} \left(z \cdot \frac{f'(z)}{f(z)} - 1 \right) = p(z), \quad (b \neq 0, \text{ complex})$$
(1.3)

for some functions $p(z) \in P(A, B)$ and all z in D.

Finally, let C(A, B, b) denote the family of functions which are regular:

$$1 + \frac{1}{b} \cdot z \cdot \frac{f''(z)}{f'(z)} = p(z), \quad (b \neq 0, \text{ complex})$$
(1.4)

for some functions $p(z) \in P(A, B)$ and every z in D.

We note that P(-1,1) is the class of Caratheodory functions, and therefore the class C(A, B, b) contains the following classes. b = 1, C(1, -1, 1) = C is the well-known class of convex functions [2], and C(1, -1, b) = C(b) is the class of convex functions of complex order [7, 8]. $C(1, -1, 1 - \beta)$, $(0 \le \beta < 1)$ is the class of convex functions of order β [9]. For A = 1, B = -1, $b = e^{-i\lambda} \cdot \cos \lambda$, $|\lambda| < \pi/2$ is the class of functions for which zf'(z) is λ -spirallike [3, 6, 11, 12, 13, 14]. For A = 1, B = -1, $b = (1 - \beta)e^{-i\lambda} \cdot \cos \lambda$, $0 \le \beta < 1$, $|\lambda| < \pi/2$ is the class of functions for which zf'(z) is λ -spirallike of order β [3, 6, 11, 12, 13, 14].

2. Representation theorem for the class $S^*(A, B, b)$. The following lemma, well known as Jack's lemma, is required in our investigation.

LEMMA 2.1 [4, 5]. Let w(z) be a nonconstant and analytic function in the unit disc D with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at the point z_0 , then $z_0w'(z_0) = kw(z_0)$ and $k \ge 1$.

LEMMA 2.2. $e^{-i\alpha}f(e^{i\alpha}z)$, $\alpha \in [0, 2\pi)$ is in C(A, B, b) whenever f(z) is in C(A, B, b). **PROOF.** If $f(z) \in C(A, B, b)$, then

$$g(z) = e^{-i\alpha} f(e^{i\alpha}z) \Longrightarrow 1 + \frac{1}{b} z \frac{g'(z)}{g(z)} = 1 + \frac{1}{b} (e^{i\alpha}z) \frac{f'(e^{i\alpha}z)}{f(e^{i\alpha}z)}.$$
(2.1)

We note that similarly the class $S^*(A, B, b)$ is invariant under the rotation so that $e^{-i\alpha}f(e^{i\alpha}z), \alpha \in [0, 2\pi)$ is in $S^*(A, B, b)$ whenever f(z) is in $S^*(A, B, b)$.

LEMMA 2.3. *If* $g(z) \in S^*(A, B, b)$ *, then*

$$g(z) = \begin{cases} z(1+Bw(z))^{b(A-B)/B}, & B \neq 0, \ k = 1, \\ ze^{bAw(z)}, & B = 0, \ k = 1, \end{cases}$$
(2.2)

for some $w(z) \in \Omega$ and for all z in D, and conversely.

PROOF. The proof of this lemma is completed in four steps, and we have used Nicola Tuneski's technique for the special case of k = 1 [15].

FIRST STEP. If $B \neq 0$ and

$$g(z) = z(1 + Bw(z))^{b(A-B)/B},$$
(2.3)

then by taking logarithmic derivative of (2.3) followed by a brief computation using Jack's lemma and the definition of subordination, we obtain

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad \text{for } k = 1,$$
(2.4)

and so from the definition of $S^*(A, B, b)$ it follows that $g(z) \in S^*(A, B, b)$. (See [10].)

SECOND STEP. If B = 0, then we have $g(z) = ze^{bAw(z)}$. Similarly, we get

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = 1 + Aw(z), \quad \text{for } k = 1.$$
(2.5)

The equality shows that $g(z) \in S^*(A, B, b)$.

THIRD STEP. Conversely, if $g(z) \in S^*(A, B, b)$ and $B \neq 0$, then we have

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = \frac{1 + Aw(z)}{1 + Bw(z)}.$$
(2.6)

Equation (2.6) can be written in the form

$$\frac{g'(z)}{g(z)} = \frac{b(A-B)(w(z)/z)}{1+Bw(z)} + \frac{1}{z}.$$
(2.7)

If we use Jack's lemma in (2.7) for k = 1, we obtain

$$\frac{g'(z)}{g(z)} = \frac{b(A-B)w'(z)}{1+Bw(z)} + \frac{1}{z}.$$
(2.8)

Integrating both sides of equality (2.8), we get (2.3).

FOURTH STEP. Again, conversely, if $g(z) \in S^*(A, B, b)$ and B = 0, then in the same way we obtain $g(z) = ze^{bAw(z)}$ which completes the proof.

LEMMA 2.4. Let f(z) be regular and analytic in D, and normalized so that f(0) = 0, f'(0) = 1. A necessary and sufficient condition for $f(z) \in C(A,B,b)$ is that for each member $g(z) = z + b_1 z + b_2 z^2 + \cdots$ of $S^*(A,B,b)$ the following equation holds:

$$g(z,\zeta) = z \left(\frac{f(z) - f(\zeta)}{z - \zeta}\right)^2, \quad \zeta, z \in D, \ \zeta \neq z, \ \zeta = nz, \ |n| \le 1.$$
(2.9)

PROOF. If $f(z) \in C(A, B, b)$, then this function is analytic, regular, and continuous in the unit disc. Therefore, equality (2.9) can be written in the form

$$g(z) = z(f'(z))^2.$$
 (2.10)

If we take the logarithmic derivative of equality (2.10) followed by simple calculations, we get

$$1 + \frac{1}{2b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = 1 + \frac{1}{b} z \frac{f''(z)}{f'(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}.$$
 (2.11)

On the other hand, *b* is a complex number and $b \neq 0$. Therefore, $b_1 = 2b$ is a complex number and $2b \neq 0$, thus (2.11) can be written in the form

$$1 + \frac{1}{b_1} \left(z \frac{g'(z)}{g(z)} - 1 \right) = 1 + \frac{1}{b} z \frac{f''(z)}{f'(z)}.$$
(2.12)

Considering equality (2.12), the definition of C(A,B,b), and the definition of $S^*(A,B,b)$, we obtain $g(z) \in S^*(A,B,2b)$.

Conversely, if $g(z) \in S^*(A, B, b)$, and $g(z) = z((f(z) - f(\zeta))/(z - \zeta))$ holds, then from Lemma 2.3 we get

$$g(z) = z \left(\frac{f(z) - f(\zeta)}{z - \zeta}\right)^2 = \begin{cases} z \left(1 + Bw(z)\right)^{b(A - B)/B}, & B \neq 0, \\ z e^{bAw(z)}, & B = 0. \end{cases}$$
(2.13)

If we take the logarithmic derivative with respect to z of (2.13) followed by simple calculations, we get

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = \frac{1}{b} \left[\frac{2zf'(z)}{f(z) - f(\zeta)} - \frac{z + \zeta}{z - \zeta} \right] + 1 - \frac{1}{b}$$

$$= \frac{1 + Aw(z)}{1 + Bw(z)}, \quad B \neq 0,$$

$$1 + \frac{1}{b} \left(z \frac{g'(z)}{g(z)} - 1 \right) = \frac{1}{b} \left[\frac{2zf'(z)}{f(z) - f(\zeta)} - \frac{z + \zeta}{z - \zeta} \right] + 1 - \frac{1}{b}$$

$$= 1 + Aw(z), \quad B = 0.$$

(2.14)

Furthermore, if we write $F(z, \zeta) = (1/b)[2zf'(z)/(f(z) - f(\zeta)) - (z + \zeta)/(z - \zeta)] + 1 - 1/b$, then we have

$$\lim_{\zeta \to z} F(z,\zeta) = 1 + \frac{1}{b} z \frac{f''(z)}{f'(z)}.$$
(2.15)

Considering relations (2.14) and (2.15) together, we obtain $f(z) \in C(A, B, b)$. **COROLLARY 2.5.** *If* $f(z) \in C(A, B, b)$, *then*

$$2\left[1+\frac{1}{b}\left(z\frac{f'(z)}{f(z)}-1\right)\right]-1=p(z)=\frac{1+Aw(z)}{1+Bw(z)}.$$
(2.16)

PROOF. If we take $\zeta = 0$ in $F(z, \zeta)$, we obtain the desired result of this corollary.

3. The radius of starlikeness for the class C(A, B, b)

LEMMA 3.1. *If* $f(z) \in C(A, B, b)$ *, then*

$$\left| z \frac{f'(z)}{f(z)} - \frac{2 - [B^2 - b(2B^2 - AB)r^2]}{2(1 - B^2r^2)} \right| \le \frac{|b|(A - B)r}{2(1 - B^2r^2)}.$$
(3.1)

PROOF. If $p(z) \in P(A,B)$, then

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2}.$$
(3.2)

The inequality (3.2) was proved by Janowski [7]. Considering Corollary 2.5 and inequality (3.1), then we get

$$\left| 2 \left[1 + \frac{1}{b} \left(z \frac{f'(z)}{f(z)} - 1 \right) - 1 \right] - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2}.$$
(3.3)

After brief calculations from (3.3), we obtain (3.1).

THEOREM 3.2. The radius of starlikeness for the class C(A, B, b) is

$$r_{s} = \frac{4}{|b|(A-B) + \sqrt{|b|^{2}(A-B)^{2} + 8[2B^{2} + (AB-B^{2})\operatorname{Re}b]}}.$$
(3.4)

This radius is sharp, because the extremal function is

$$f_{*}(z) = \begin{cases} \int_{0}^{z} (1 + B\zeta)^{b(A-B)/B} d\zeta, & B \neq 0, \\ \int_{0}^{z} e^{Ab\zeta} d\zeta, & B = 0. \end{cases}$$
(3.5)

PROOF. After the brief calculations from inequality (3.1), we get

$$\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) \ge \frac{2 - |b|(A - B)r - [2B^2 + (AB - B^2)\operatorname{Re}b]r^2}{1 - B^2r^2}.$$
(3.6)

Hence for $r < r_s$ the right-hand side of inequality (3.6) is positive. This implies that (3.4) holds.

Also note that inequality (3.6) becomes an equality for the function $f_*(z)$. It follows that (3.4) holds.

COROLLARY 3.3. If A = 1, B = -1, b = 1, then $r_s = 1$. This is the radius of starlikeness of convex functions which is well known (see [1, Volume II, page 88]).

REFERENCES

- O. Altintaş, Ö. Özkan, and H. M. Srivastava, *Majorization by starlike functions of complex order*, Complex Var. Theory Appl. 46 (2001), no. 3, 207-218.
- [2] O. Altintaş and H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J. 17 (2001), 175– 183.
- [3] A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, *Radii of convexity and strong starlikeness for some classes of analytic functions*, J. Math. Anal. Appl. 211 (1997), no. 1, 301–313.
- [4] A. W. Goodman, *Univalent Functions. Vol. I*, Mariner Publishing, Florida, 1983.
- [5] _____, Univalent Functions. Vol. II, Mariner Publishing, Florida, 1983.
- [6] I. S. Jack, *Functions starlike and convex of order* α, J. London Math. Soc. (2) **3** (1971), no. 2, 469-474.
- [7] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297–326.
- [8] R. J. Libera, Univalent α -spiral functions, Canad. J. Math. **19** (1967), 449–456.
- [9] R. J. Libera and M. R. Ziegler, *Regular functions* f(z) for which zf'(z) is α -spiral, Trans. Amer. Math. Soc. **166** (1972), 361–370.

YAŞAR POLATOĞLU ET AL.

- [10] M. A. Nasr and M. K. Aouf, On convex functions of complex order, Bulletin of the Faculty of Sciences, University of Mansoura 9 (1982), 566–580.
- [11] Y. Polatoğlu, M. Bolcal, and A. Şen, Two-point distortion theorems for certain families of analytic functions in the unit disc, Int. J. Math. Math. Sci. 2003 (2003), no. 66, 4183– 4193.
- [12] M. S. Robertson, Univalent functions f(z) for which zf'(z) is spirallike, Michigan Math. J. **16** (1969), 97-101.
- [13] E. M. Silvia, A brief overview of subclasses of spiral-like functions, Current Topics in Analytic Function Theory (H. M. Srivastava and S. Owa, eds.), World Scientific, New Jersey, 1992, pp. 328–336.
- [14] L. Spacek, *Prispevek k teorii funkci prostych*, Časopis Pěst. Mat. Fys. **62** (1933), 12–19.
- [15] N. Tuneski, On the quotient of the representations of convexity and starlikeness, Math. Nachr. 248/249 (2003), 200-203.

Yaşar Polatoğlu: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey *E-mail address*: y.polatoglu@iku.edu.tr

Metin Bolcal: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey *E-mail address*: m.bolcal@iku.edu.tr

Arzu Şen: Department of Mathematics and Computer Science, Faculty of Science and Letters, Kültür University, Istanbul 34191, Turkey *E-mail address*: a.sen@iku.edu.tr

2428